首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Seven genes (madA to madG) are known which effect phototropism in Phycomyces. These genes have been partially ordered with respect to the associated stimulus-response pathway. Mutants affected in these genes serve as useful probes of photosensory transduction processes in this model system. To extend and deepen the analysis of the system, we have constructed a family of 21 double mutants in all combinations for the seven mad genes. A set of seven standard alleles was adopted for this work. The double mutants were isolated from crosses between isogenic single-mutant strains of opposite mating type. After a partial physiologic screening of the progeny, the double mutants were identified by complementation tests using single-mutant strains of known genotype. For all but three of the double mutants, the photogeotropism phenotypes were distinct from those of the respective single-mutant parentals. One triple mutant (madA madB madC) was constructed as part of this work. Various applications of the double mutants and the triple mutant are discussed. Recombination analyses were performed on the progeny from seven mad crosses to complete an earlier study. The results establish that all seven mad genes are unlinked.  相似文献   

2.
《Experimental mycology》1983,7(3):241-252
Seven mutants ofPhycomyces which exhibit phototropism at high intensity of blue light (10 W/m2) where the wild-type strain is unresponsive have been isolated. These mutants have the same absolute threshold for phototropism as wild type (10−9 W/m2). In comparison to wild type in the region just above this threshold, the mutants respond more strongly to light than to gravity, as determined by photogeotropic equilibrium experiments. The kinetics of phototropism, avoidance, and geotropism are also enhanced in the mutants. Therefore these mutants are designated phenotypically by the term “hypertropic.” The phenotype of these mutants is in many ways opposite to that of the so-called “stiff” mutants, which have slow tropisms. The rapid bending rates of the hypertropic mutants may be associated in part with the smaller diameter of their sporangiophores, but not according to a simple proportional relationship between phototropic bending rate and inverse diameter that applies for wild type and the hypergeotropic mutant C5. For photophorogenesis, which is mediated by the mycelium, one hypertropic mutant studied responds similarly to wild type. The pleiotropic character of these mutants suggests that they are affected near the output of the common sensory transduction pathway for these responses.  相似文献   

3.
In a recent study, we demonstrated that although the auxin efflux carrier PIN-FORMED (PIN) proteins, such as PIN3 and PIN7, are required for the pulse-induced first positive phototropism in etiolated Arabidopsis hypocotyls, they are not necessary for the continuous-light-induced second positive phototropism when the seedlings are grown on the surface of agar medium, which causes the hypocotyls to separate from the agar surface. Previous reports have shown that hypocotyl phototropism is slightly impaired in pin3 single mutants when they are grown along the surface of agar medium, where the hypocotyls always contact the agar, producing some friction. To clarify the possible involvement of PIN3 and PIN7 in continuous-light-induced phototropism, we investigated hypocotyl phototropism in the pin3 pin7 double mutant grown along the surface of agar medium. Intriguingly, the phototropic curvature was slightly impaired in the double mutant when the phototropic stimulus was presented on the adaxial side of the hook, but was not impaired when the phototropic stimulus was presented on the abaxial side of the hook. These results indicate that PIN proteins are required for continuous-light-induced second positive phototropism, depending on the direction of the light stimulus, when the seedlings are in contact with agar medium.  相似文献   

4.
Positive phototropism of perithecial beaks in the fungus Neurospora crassa has been demonstrated. The effect was shown to be mediated by blue light. When mutants (white collar-1 and white collar-2) which are blocked in the light induction of enzymes in the carotenoid biosynthetic pathway were used as the protoperithecial parent in crosses, the resulting perithecial beaks did not show a phototropic response. However, when wild type, albino-1, albino-2, or albino-3 strains were used as the protoperithecial parent, phototropism occurred.

The results show that both photoinduced carotenogenesis and phototropism in N. crassa are controlled by the white collar-1 and white collar-2 loci. Thus, the sensory transduction pathways for the two photoresponses must have some steps in common. The results further support the proposal that the white collar strains are regulatory mutants blocked in the light induction process, whereas the albino-1, albino-2, and albino-3 strains can carry out light induction but have the albino phenotype because they are each defective for a different enzyme in the carotenoid biosynthetic pathway.

  相似文献   

5.
Epistatic interactions between four rad loci in yeast   总被引:4,自引:0,他引:4  
Haploid yeast strains carrying mutations in two or more of four ad genes were contrusted by tetrad dissection, and the UV survival of these strains was measured. It was found that (with one exception) double mutant strains were not significantly more sensitive than the most sensitive single mutants, for strains involving mutant loci rad 1, rad 3 and rad 4. The exception was the double mutant rad 1–5 rad 4-4, but another double mutant involving different alleles of the the same loci did not show an enhanced UV sensitivity. Triple and quadruple mutants also failed to show a significantly increased UV sensitivity with respect to the single mutants. The results indicate that all these four mutant loci confer UV sensitivity by the same mechanism, and it is suggested that the wild-type alleles mediate excision-repair of UV-induced DNA lesions. Enhanced sensitivity of the genotype rad 1–5 rad 4-4 is attributed to leakiness of these alleles.  相似文献   

6.
Gravitropism and phototropism of the primary inflorescence stems were examined in a dominant Aux/IAA mutant of Arabidopsis, axr2/iaa7, which did not display either tropism in hypocotyls. axr2-1 stems completely lacked gravitropism in the dark but slowly regained it in light condition. Though wild-type stems showed positive phototropism, axr2 stems displayed negative phototropism with essentially the same light fluence-response curve as the wild type (WT). Application of 1-naphthaleneacetic acid-containing lanolin to the stem tips enhanced the positive phototropism of WT, and reduced the negative phototropism of axr2. Decapitation of stems caused a small negative phototropism in WT, but did not affect the negative phototropism of axr2. p-glycoprotein 1 (pgp1) pgp19 double mutants showed no phototropism, while decapitated double mutants exhibited negative phototropism. Expression of auxin-responsive IAA14/SLR, IAA19/MSG2 and SAUR50 genes was reduced in axr2 and pgp1 pgp19 stems relative to that of WT. These suggest that the phototropic response of stem is proportional to the auxin supply from the shoot apex, and that negative phototropism may be a basal response to unilateral blue-light irradiation when the levels of auxin or auxin signaling are reduced to the minimal level in the primary stems. In contrast, all of these treatments reduced or did not affect gravitropism in wild-type or axr2 stems. Tropic responses of the transgenic lines that expressed axr2-1 protein by the endodermis-specific promoter suggest that AXR2-dependent auxin response in the endodermis plays a more crucial role in gravitropism than in phototropism in stems but no significant roles in either tropism in hypocotyls.  相似文献   

7.
Recombinants between Clock Mutants of CHLAMYDOMONAS REINHARDI   总被引:3,自引:0,他引:3       下载免费PDF全文
Victor G. Bruce 《Genetics》1974,77(2):221-229
Mutants affecting the period length of the biological clock in Chlamydomonas reinhardi have been isolated and a start has been made on analyzing the genetics of this system. In four mutants, the long period characteristic seems to be controlled by single genes at separate loci. Crosses between single mutants, as well as crosses involving three or four mutant genes, yielded progeny with periods characteristic of the parents as well as recombinant types, including normal period (wild type) and extra-long periods (double, triple and quadruple mutants). It was found that the period lengthening effect is additive; that is, the period of double mutants is lengthened by the sum of the period lengthening of the single mutants.  相似文献   

8.
A new class of Phycomyces behavioral mutants with enhanced tropic responses has been analyzed genetically to determine the number of genes involved and the nature of their expression. These hypertropic mutants carry pleiotropic nuclear mutations. Besides their effects on sensory behavior, they also affect morphology and meiotic processes. Behavioral analyses of heterokaryons containing hypertropic and wild-type nuclei in varying proportions show that the hypertropic mutations in strains L82, L84, L86, and L88 are strongly dominant. Conversely, the hypertropic mutations carried by the strains L83, L85, and L87 are strongly recessive. We performed recombination analyses between hypertropic mutants and mutants with diminished phototropism, affected in the seven genes madA to madG. We found no evidence of linkage between the hypertropic mutations and any of these mad mutations. From crosses, we isolated double mutants carrying hypertropic mutations together with madC (night blind) and madG (stiff) mutations. The behavioral phenotypes of the double mutants are intermediate between those of the parentals. Complementation analyses show that the three recessive hypertropic mutations affect the same gene, which we call madH. The expression of the recessive hypertropic allele becomes dominant in heterokaryons carrying madC and madH nuclei; the madC gene has been implicated separately with the photoreceptor at the input to the sensory pathway, while the madH gene is associated with the growth control output. This result suggests the physical interaction of both gene products, madH and madC, in a molecular complex for the photosensory transduction chain.  相似文献   

9.
10.
Blue light-induced regulation of cell elongation is a component of the signal response pathway for both phototropic curvature and inhibition of stem elongation in higher plants. To determine if blue light regulates cell elongation in these responses through shared or discrete pathways, phototropism and hypocotyl elongation were investigated in several blue light response mutants in Arabidopsis thaliana. Specifically, the blu mutants that lack blue light-dependent inhibition of hypocotyl elongation were found to exhibit a normal phototropic response. In contrast, a phototropic null mutant (JK218) and a mutant that has a 20- to 30-fold shift in the fluence dependence for first positive phototropism (JK224) showed normal inhibition of hypocotyl elongation in blue light. F1 progeny of crosses between the blu mutants and JK218 showed normal phototropism and inhibition of hypocotyl elongation, and approximately 1 in 16 F2 progeny were double mutants lacking both responses. Thus, blue light-dependent inhibition of hypocotyl elongation and phototropism operate through at least some genetically distinct components.  相似文献   

11.
Phototropins (phot1 and phot2) are plant-specific blue light receptors for phototropism, chloroplast movement, leaf expansion, and stomatal opening. All these responses are thought to optimize photosynthesis by helping to capture light energy efficiently, reduce photodamage, and acquire CO2. However, experimental evidence for the promotion of plant growth through phototropins is lacking. Here, we report dramatic phototropin-dependent effects on plant growth. When plants of Arabidopsis thaliana wild type, the phot1 and phot2 mutants, and the phot1 phot2 double mutant were grown under red light, no significant growth differences were observed. However, if a very low intensity of blue light (0.1 micromol m(-2) s(-1)) was superimposed on red light, large increases in fresh weight up to threefold were found in those plants that carried functional PHOT1 genes. When the intensity of blue light was increased to 1 micromol m(-2) s(-1), the growth enhancement was also found in the phot1 single mutant, but not in the double mutant, indicating that phot2 mediated similar responses as phot1 with a lower sensitivity. The effects occurred under low photosynthetically active radiation in particular. The well-known physiological phototropin-mediated responses, including chloroplast movement, stomatal opening, and leaf expansion, in the different lines tested indicated an involvement of these responses in the blue light-induced growth enhancement. We conclude that phototropins promote plant growth by controlling and integrating a variety of responses that optimize photosynthetic performance under low photosynthetically active radiation in the natural environment.  相似文献   

12.
《Experimental mycology》1989,13(1):38-48
Mutants of Phycomyces have played a major role in the analysis of phototropism and other responses. Fifteen new mutants of Phycomyces with abnormal phototropism (genotype mad) have been isolated on the basis of their inability to bend toward dim unilateral blue light (fluence rate 5 × 10−7 W m−2), a protocol different from those employed in previous mutant hunts. One mutant resulted from chemical mutagenesis with ICR-170, and the other 14 were induced with N-methyl-N′-nitro-N-nitro-soguanidine. Seven of the mutants are “night blind”; six have phototropic thresholds intermediate between those of wild type (10−9 W m−2) and madA strains (∼ 10−4 W m−2); and one has a threshold similar to that of night-blind madB and madC mutants. The other eight mutants are “stiff”, with various reductions of tropic responsiveness. Two of them, when compared to previously isolated stiff mutants, show unusually weak responses to light, barriers, and gravity.  相似文献   

13.
In Vivo Studies of Temperature-Sensitive recB and recC Mutants   总被引:31,自引:23,他引:8       下载免费PDF全文
Some in vivo properties of Escherichia coli K-12 strains carrying recB270 (formerly recBts1) and recC271 (formerly recCts1) mutations have been determined. Single recB270 and recC271 mutants appear normal at 30 C with regard to ultraviolet and mitomycin C sensitivity, recombination proficiency, and viability. At 43 C these strains become sensitive to ultraviolet and mitomycin C, while showing only a slight decrease in recombination proficiency. The viable titers of the single mutants are somewhat reduced at 43 C. Double mutant strains carrying polA1 and recB270 or recC271 are inviable at 43 C. The double mutant strain (recB270 recC271) is sensitive to both UV and mitomycin C at 30 C, but shows only slightly reduced recombination proficiency. At 43 C the strain resembles absolute recB and recC mutants in all respects. In addition, the double mutant strain exhibits a temperature-induced drop in viable titer. The triple mutant polA1 recB270 recC271 is viable at 30 C. Two hypotheses are advanced to explain these results.  相似文献   

14.
Bacillus subtilis encodes seven extracytoplasmic function (ECF) sigma factors that regulate partially overlapping regulons related to cell envelope homeostasis and antibiotic resistance. Here, we investigated their physiological role by constructing a mutant set of single, double, triple, and quadruple ECF sigma factor deletions in the undomesticated B. subtilis strain NCIB3610. This mutant set was subsequently screened for defects in motility, multicellular differentiation, and sensitivity to more than 200 chemicals by using Phenotype MicroArrays. A quadruple mutant strain, harboring deletions of the sigV, sigY, sigZ, and ylaC gene, behaved indistinguishably from the wild-type strain, indicative of either regulatory redundancy or very specific functions of these four ECF sigma factors. In contrast, a triple mutant, inactivated for the sigM, sigW, and sigX genes (but none of the corresponding double mutants), showed a biphasic growth behavior and a complete loss of multicellular differentiation, as judged by both colony formation and the inability to form a pellicle. This triple mutant also displayed a greatly increased sensitivity to detergents and several cell wall antibiotics including beta-lactams, polymyxin B, and d-cycloserine. In several cases, these antibiotic-sensitive phenotypes are significantly enhanced in the triple mutant strain relative to strains lacking only one or two sigma factors.  相似文献   

15.
How developing seedlings integrate gravitropic and phototropic stimuli to determine their direction of growth is poorly understood. In this study we tested whether blue light influences hypocotyl gravitropism in Arabidopsis. Phototropin1 (phot1) triggers phototropism under low fluence rates of blue light but, at least in the dark, has no effect on gravitropism. By analyzing the growth orientation of phototropism-deficient seedlings in response to gravitropic and phototropic stimulations we show that blue light not only triggers phototropism but also represses hypocotyl gravitropism. At low fluence rates of blue light phot1 mutants were agravitropic. In contrast, phyAphot1 double mutants grew exclusively according to gravity demonstrating that phytochrome A (phyA) is necessary to inhibit gravitropism. Analyses of phot1cry1cry2 triple mutants indicate that cryptochromes play a minor role in this response. Thus the optimal growth orientation of hypocotyls is determined by the action of phyA-suppressing gravitropism and the phototropin-triggering phototropism. It has long been known that phytochromes promote phototropism but the mechanism involved is still unknown. Our data show that by inhibiting gravitropism phyA acts as a positive regulator of phototropism.  相似文献   

16.
Two mutants of Arabidopsis thaliana have been identified with decreased phototropism to 450-nanometer light. Fluence-response relationships for these strains (ZR8 and ZR19) to single and multiple flashes of light show thresholds, curve shapes, and fluence for maximum curvature in `first positive' phototropism which are the same as those of the wild type. Similarly, there is no alteration from the wild type in the kinetics of curvature or in the optimum dark period separating sequential flashes in a multiple flash regimen. In addition, in both strains, gravitropism is decreased compared to the wild type by an amount which is comparable to the decrease in phototropism. Based on reciprocal backcrosses, it appears that the alteration is due to a recessive nuclear mutation. It is suggested that ZR8 and ZR19 represent alterations in some step analogous to an amplifier, downstream of the photoreceptor pigment, and common to both phototropism and gravitropism.  相似文献   

17.
The genes in the RAD52 epistasis group of Saccharomyces cerevisiae are necessary for most mitotic and meiotic recombination events. Using an intrachromosomal inverted-repeat assay, we previously demonstrated that mitotic recombination of this substrate is dependent upon the RAD52 gene. In the present study the requirement for other genes in this epistasis group for recombination of inverted repeats has been analyzed, and double and triple mutant strains were examined for their epistatic relationships. The majority of recombination events are mediated by a RAD51-dependent pathway, where the RAD54, RAD55 and RAD57 genes function downstream of RAD51. Cells mutated in RAD55 or RAD57 as well as double mutants are cold-sensitive for inverted-repeat recombination, whereas a rad51 rad55 rad57 triple mutant is not. The RAD1 gene is not required for inverted-repeat recombination but is able to process spontaneous DNA lesions to produce recombinant products in the absence of RAD51. Furthermore, there is still considerably more recombination in rad1 rad51 mutants than in rad52 mutants, indicating the presence of another, as yet unidentified, recombination pathway.  相似文献   

18.
Summary Sexual crosses were studied between mutants ofPhycomyces blakesleeanus with abnormal phototropism (phenotypemad). Recombination frequencies were determined among five genesmadA tomadE. No clear evidence was found for linkage between any of the genes. Inconsistent results in crosses involvingmadC are attributed to nonisogenicity between the particular strains used. Onemad strain was discovered to be a double mutant. A new gene, tentatively designatedmadG, was segregated from a cross involving that strain.  相似文献   

19.
Lethality of rep recB and rep recC double mutants of Escherichia coli   总被引:4,自引:1,他引:3  
A rep mutation in combination with a recB or a recC mutation renders Escherichia coli non-viable. This conclusion is based on the following lines of evidence: (i) double mutants cannot be constructed by P1 transduction; (ii) induction of the λ Gam protein, which inactivates most of the RecBCD activities, is lethal in rep mutants; (iii) rep recBts recCts mutants are not viable at high temperature. The reasons for a requirement for the RecBCD enzyme in rep strains were investigated. Initiation of chromosome replication, elongation and chromosomal segregation do not seem impaired in the rep recBts recCts mutant at the non-permissive temperature. The viability of other rep derivatives was tested. rep recA recD triple mutants are not viable, whereas rep recD and rep recA double mutants are. Inactivation of both exoV activity and recBC -dependent homologous recombination is therefore responsible for the non-viability of rep recBC strains. However, sbcA and sbcB mutations, which render recBC mutants recombination proficient, do not restore viability of rep recBC mutants, indicating that recombination via the RecF or the RecE pathways cannot functionally replace RecBCD-mediated recombination. The specific requirement for RecBCD suggests the occurrence of double-strand DNA breaks in rep strains. Additional arguments in favour of the presence of DNA lesions in rep mutants are as follows: (i) expression of SOS repair functions delays lethality of rep derivatives after inactivation of RecBCD; (ii) sensitivity of rep strains to ultraviolet light is increased by partial inactivation of RecBCD. A model for the recovery of cells from double-strand breaks in rep mutants is discussed.  相似文献   

20.
A method for isolating phototaxis-deficient (Pho-) mutants of Halobacterium halobium was developed. The procedure makes use of a flashing repellent light to induce frequent reversals of swimming direction by responsive cells, thereby impeding their migration along a small capillary and resulting in a spatial separation of the parent population and a population enriched for Pho- cells. Two classes of Pho- mutants were obtained by this selection scheme: those which have lost the chemotactic response (Che-) as well as phototaxis sensitivity (general taxis mutants), and those which are defective in steps specific to phototaxis (photosignaling mutants). In the latter class, several retinal synthesis mutants were isolated, as well as a strain which fit the expected properties of a mutant lacking a functional photoreceptor protein. On the basis of spectroscopic and swimming behavior studies, the retinal-containing protein, slow-cycling or sensory rhodopsin (SR), was previously proposed to be a dual-function sensory receptor mediating both attractant and repellent photosensing. The receptor mutant Pho81 fulfills two predictions which provide direct genetic evidence for this proposal. The mutant has lost SR photoactivity as determined by spectroscopic measurements, and it has simultaneously lost both attractant and repellent phototaxis sensitivity. Comparison of [3H]retinal-labeled membrane proteins from the mutant and its SR-containing parent implicated a 25,000 Mr polypeptide as the chromophoric polypeptide of SR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号