首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of excess retinol (vitamin A alcohol) on facial process formation were examined in cultured rat embryos. The embryos were explanted at day 11 of gestation (plug day = 0) and cultured for 72 hr in rat serum containing an additional 1 or 10 micrograms/ml retinol. The reduction of outgrowth in the facial processes was observed in 1 microgram/ml retinol-treated embryos, and this type of malformation was found to be more severe in 10 micrograms/ml retinol-treated embryos. Histological findings of 10 micrograms/ml retinol-treated embryos at the 50-somite stage showed that the nasal epithelium was developed but folded. In the mesenchyme, there were necrotic cells. Thymidine incorporation by mesenchymal cells in the facial processes was also determined. At the 50-somite stage, the uptake was decreased to 66.4% of control value at 1 microgram/ml retinol, whereas the addition of the same dose of retinol did not cause the inhibition at the 36-, 40-, and 42-somite stages. The uptake at the 50-somite stage was decreased to 23.0% as a result of the 10 micrograms/ml retinol treatment. These results show that the response of the facial mesenchyme to excess retinol is dependent on the development stage and the critical stage of the facial mesenchyme for excess retinol in cultured rat embryos is the 42-somite stage.  相似文献   

2.
The effect of transforming growth factor alpha (TGFt) on the expression of imprinted Igf2 and Peg1/Mest genes was studied in diploid parthenogenetic embryos (PEs) of (CBA x C57BL/6)F1 mice during the postimplantation period of embryogenesis. The PEs were treated with TGFalpha in vitro at the morula stage and, after they developed to the blastocyst stage, were implanted into the uterus of false-pregnant females. On the tenth day of pregnancy, the PEs were explanted for subsequent in vitro culturing for 24 or 48 h. The expression of the imprinted Igf2 and Peg1/Mest genes was studied by means of whole mount in situ hybridization using digoxigenin-labeled antisense RNAs. The expression of the imprinted Igf2 and Peg1/Mest genes was studied in embryos on the tenth day of in utero development before culturing and after 24 and 48 h of culturing in vitro. The expression of Igf2 before culturing was detected only in the brain of 60% of PEs on the tents day of pregnancy (the 21-to 25-somite stages); while the Peg1/Mest expression was not detected at all. In control (not treated with TGFalpha) PEs, neither gene was expressed at the same 21- to 25-somite stages. After 24 h of culturing, the Igf2 expression was detected in the brain of 71% of PEs at the 30- to 35-somite stages, while the Peg1/Mest expression was not detected. In control (untreated) PEs, neither imprinted gene was expressed at the 30- to 35-somite stage. After 48 h of culturing, Igf2 was expressed in the regions of the brain, developing jaws, heart, liver, and somites of all TGFalpha-treated PEs at the 40- to 45-somite stages; and Peg1/Mest was expressed in the brain, heart, and liver of these embryos. In control (untreated) PEs, neither Igf2 nor Peg1/Mest was expressed at these stages The expression patterns of the imprinted Igf2 and Peg1/Mest genes in PEs at the most advanced developmental stages (40-45 somites) and in normal (fertilized) embryos at the same stages were similar; however, their expression rate in PEs was substantially lower than in normal embryos. These data indicate that exogenous TGFalpha can reactivate the expression of the two imprinted genes, modulating the effects of genomic imprinting in such a way that the PE development is improved and substantially prolonged.  相似文献   

3.
Macrophages are widely distributed in lymphohaemopoietic and other tissues of the normal and diseased adult, where they play an important role in host defence and repair. Although the development of haemopoiesis has been well studied in several species, the ontogeny of the mononuclear phagocyte system remains poorly understood. We have used a highly specific mAb, F4/80, to examine the distribution of mature macrophages in the developing mouse, with special reference to their presence in the haemopoietic microenvironment. Monocytes and macrophages were first seen in embryos on day 10 in the yolk sac and liver as well as in mesenchyme. In liver, spleen and bone marrow, there was expansion of this population associated with the initiation of haemopoiesis on days 11, 15 and 17, respectively. Macrophages in these sites formed part of the haemopoietic stroma and their extensively spread plasma membrane processes could be seen making intimate contacts with clusters of differentiating haemopoietic cells. F4/80+ cells were widely dispersed in undifferentiated mesenchymal tissue in organs such as lung, kidney and gut. Numbers of F4/80-labelled cells increased concomitantly with organ growth and local mitoses were evident, as well as actively phagocytic macrophages. Our studies establish that macrophages are among the earliest haemopoietic cells to be produced during development and that they are relatively abundant in fetal tissues in the absence of overt inflammatory stimuli. Their distribution is correlated with the sequential migration of haemopoiesis and they constitute a prominent component of the stroma in fetal liver, spleen red pulp and bone marrow. Apart from a role in haemopoietic cellular interactions, their highly developed endocytic and biosynthetic activities suggest that macrophages contribute major undefined functions during growth, turnover and modelling of fetal tissues.  相似文献   

4.
Abstract. Murine bone marrow was separated into axial and marginal fractions in order to investigate the ability of cells from different spatial locations in the marrow to establish long-term cultures. The maintenance of haemopoiesis was significantly poor in long-term cultures of marginal marrow compared with axial or control (unfractionated marrow) cultures. Using techniques to further fractionate the axial or marginal marrow by depleting either stromal or haemopoietic cells, it was possible to investigate the relative importance of stromal and haemopoietic cell components. In the combinations studied, the more important determinant of effective in vitro haemopoiesis was the source of the haemopoietic cells rather than the stroma. The most effective stem cell maintenance and commitment to differentiation was observed when the source of the haemopoietic population was axial marrow. The data are consistent with axial marrow being a source of 'high quality' stem cells and this quality being an intrinsic property of the cells rather than one imposed by the stromal environment.  相似文献   

5.
Murine bone marrow was separated into axial and marginal fractions in order to investigate the ability of cells from different spatial locations in the marrow to establish long-term cultures. The maintenance of haemopoiesis was significantly poor in long-term cultures of marginal marrow compared with axial or control (unfractionated marrow) cultures. Using techniques to further fractionate the axial or marginal marrow by depleting either stromal or haemopoietic cells, it was possible to investigate the relative importance of stromal and haemopoietic cell components. In the combinations studied, the more important determinant of effective in vitro haemopoiesis was the source of the haemopoietic cells rather than the stroma. The most effective stem cell maintenance and commitment to differentiation was observed when the source of the haemopoietic population was axial marrow. The data are consistent with axial marrow being a source of 'high quality' stem cells and this quality being an intrinsic property of the cells rather than one imposed by the stromal environment.  相似文献   

6.
A study was made of the disturbance of haemopoiesis in the small laboratory animals and dogs kept in Alpine conditions (3200 m) and exposed to ionizing radiation on days 3, 15, 22, 25 and 33 of adaptation. The radiation damage to haemopoiesis in Alpine conditions was shown to decrease at the beginning of the adaptation due to the intensification of the regenerating processes, which was manifested by the increase in the rate of DNA synthesis in the haemopoietic organs, and activation of erythropoiesis, myelopoiesis and lymphopoiesis. Later (after 30-35 days), a 2-4-fold increase was noted in the number of haemopoietic stem cells which improved the compensatory potency of the tissue under study and increased the total resistance of the organism.  相似文献   

7.
胚胎发育中,肝脏是一个重要的造血器官。近年来胎肝移植的临床应用重新引起了人们的关注。本文应用染色体的 C-带染色法研究了小鼠骨髓和胎肝造血干细胞在照射受体小鼠中的增殖能力与相互间的竞争作用。实验结果表明胎肝造血干细胞在成年骨髓中的植入率比较同样条件下的成年骨髓造血干细胞低,但胎肝造血干细胞比较成年骨髓造血干细胞具有更强的自我更新或增殖能力。在同种胎肝造血干细胞移植中,为了降低同种移植抗力,提高移植的胎肝造血干细胞在受体中的耐受性,移植前对受体作适当的免疫抑制处理是必要的。因此,克服个体发育屏障和移植免疫屏障是提高同种胎肝造血干细胞移植效果中两个重要的研究课题。  相似文献   

8.
QH1, a monoclonal antibody that recognizes quail endothelial and haemopoietic cells, was applied to quail blastodiscs in toto, in order to analyse by immunofluorescence the emergence of the vascular tree. The first endothelial cells were detected in the area opaca at the headfold stage and in the area pellucida at the 1-somite stage. Single cells then interconnected progressively, especially in the anterior intestinal portal and along the somites building up the linings of the heart and dorsal aortas. This study demonstrates that endothelial cells differentiate as single entities 4 h earlier in development than hitherto detected and that the vascular network forms secondarily. The horseshoe shape of the extraembryonic area vasculosa is also a secondary acquisition. A nonvascularized area persists until later (at least the 14-somite stage) in the region of the regressing primitive streak.  相似文献   

9.
The development of an organized network of bile canaliculi is essential for the normal functioning of the liver. We have characterized bile canaliculus development in situ from Days 3-19 and in vitro in cultured hepatocyte monolayers using electron microscopical and immunofluorescent staining with antibodies that specifically recognize antigens of the bile canaliculus. Although the liver first forms as a discrete epithelial bud of endodermal tissue at stage 12-14 (45-53 h after laying), canaliculi were first detected by our antibodies at low levels in 4-day embryos and at high levels in stage 27 (5 days after laying) and later embryos. During Days 4, 5, and 6 the canaliculi near the periphery of the rudiment do not stain while canaliculi in central areas, closer to the gut, are strongly stained. During this transition period the ultrastructure of the canaliculi in the peripheral regions is also less developed than the central canaliculi where the antigens appear. By 7 days post laying, canaliculi throughout the entire liver rudiment express the marker antigens equally and have the ultrastructural characteristics of mature, functional canaliculi. Cells prepared from liver of embryos of 11 days incubation and grown in monolayer culture reformed discernible canalicular specializations, as determined by immunofluorescent staining and electron microscopy, but only transiently (for 1 to 3 days after plating). Not all of the antigens were expressed or polarized in these cultures. The capacity of the embryonic parenchymal cells to develop and maintain polarity appears to depend on factors possibly including age-dependent changes in the cells themselves, interactions with other cell types or extracellular matrix, or the shape of the cells.  相似文献   

10.
Mature T cells are derived from prethymic stem cells, which arise at one or more extrathymic sites and enter and differentiate in the thymus. The nature of these prethymic stem cells is a critical factor for the formation of the T-cell repertoire. Although the bone marrow of adult mice can provide such stem cells, their origin during murine embryogenesis is still undetermined. Among potential sites for these progenitor cells are the fetal liver and the embryonic yolk sac. Our studies focus on the yolk sac, both because the yolk sac appears earlier than any other proposed site, and because the mammalian yolk sac is the first site of hematopoiesis. Although it has been shown that the yolk sac in midgestation contains stem cells that can enter the thymic rudiment and differentiate toward T-cell lineage, our aim was to analyze the developmental potential of cells in the yolk sac from earlier stages, prior to the formation of the liver and any other internal organ. We show here that the yolk sac from 8- and 9-day embryos (2-9 and 13-19 somites, respectively) can reconstitute alymphoid congenic fetal thymuses and acquire mature T-cell-specific characteristics. Specifically, thymocytes derived from the early embryonic yolk sac can progress to the expression of mature T lymphocyte markers including CD3/T-cell receptor (TCR), CD4 and CD8. In contrast, we have been unable to document the presence of stem cells within the embryo itself at these early stages. These results support the hypothesis that the stem cells capable of populating the thymic rudiment originate in the yolk sac, and that their presence as early as at the 2- to 9-somite stage may indicate that prethymic stem cells found elsewhere in the embryo at later times may have been derived by migration from this extra-embryonic site. Our experimental design does not exclude the possibility of multiple origins of prethymic stem cells of which the yolk sac may provide the first wave of stem cells in addition to other later waves of cells.  相似文献   

11.
The attempt of retroviral transfer of the bacterial Neor gene into stromal precursor cells able to transfer haemopoietic microenvironment and to long-term support of haemopoiesis in vitro and in vivo was made. The existence of marker gene in stromal cells was established by the method of polymerase chain reaction. The transduced stromal precursor cells create normal haemopoietic microenvironment. The data obtained would be important for the further investigation of proliferation and differentiation of stromal precursor cells.  相似文献   

12.
Eggs of the tambaqui Colossoma macropomum were incubated at 28 and 31) C. Somitogenesis started shortly after the formation of the neural plate and notochord. New somites were added at the rate of one every 13 min at 28) C and one every 11 min at 31) C. Myogenesis started in the most rostral myotomes at the 9-somite stage and proceeded in a caudal direction. Mononuclear myotubes with the morphological characteristic of muscle pioneer cells were observed lateral to the notochord. The majority of myotubes were formed from the fusion of 3–6 spindle-shaped myoblasts. Myofibril synthesis started soon after cell fusion at the periphery of myotubes. Close membrane contacts and 'gap'-type junctions were observed between myotubes, immature muscle fibres and at the inter-somite boundary, suggesting that the cells were electrically coupled. Embryos exhibited rhythmic movements at the 20-somite stage, and hatched at the 29–30-somite stage 15–18 h post-fertilisation (PFT) at 28° C and 11 h PFT at 31° C. Larvae hatched at a comparatively early stage of development prior to the completion of somitogenesis and the formation of eye pigment, pectoral fins and jaws. The myotomes comprised a single superficial layer of well-differentiated muscle fibres which contained abundant mitochondria, overlying an inner core of myotubes (presumptive white muscle layer). Differentiation and growth during the larval stages was extremely rapid, and the juvenile stage was reached after little more than 6 days at 28° C.  相似文献   

13.
In long-term marrow cultures haemopoiesis can be maintained in vitro for up to 6 months. Critical analysis of the cell populations produced has shown that the stem cells and their committed progeny have characteristics in common with the corresponding cell types in vivo. The maintenance of haemopoiesis in vitro is associated with the development of an appropriate inductive environment provided by bone marrow derived adherent cells. Analysis of the interactions between environmental and haemopoietic cells has been facilitated by the development of in vitro systems reproducing the naturally occurring genetic environmental defects and other systems where the development of a competent inductive environment shows a dependency upon corticosteroid hormones. Investigations have shown that stem cell proliferation may be controlled by production of opposing activities, one stimulatory for DNA synthesis, the other inhibitory. A model is proposed whereby modulation in the production of these factors is determined by the physical presence of stem cells in a proposed cellular milieu, within the adherent layer. The adherent layer, apart from acting at the level of stem cell proliferation, can also modify the response of differentiating cells (eg, GM-CFC) to exogenous stimulatory activities. Addition of GM-CSF or of CSF-antiserum has no effect on haemopoiesis in long-term cultures.  相似文献   

14.
Haemopoiesis continued for over 2 months in organ culture of embryonal mouse liver, and haemopoietic stem cells (CFUs) capable of DNA-synthesis were found in it all that time. Between the 10th and 40th day the number of stem cells in the culture was sustained in a steady state. Both in normal and in regenerating adult bone marrow haemopoiesis ceased within a short time in the culture. Induction of proliferation in haemopoietic stem cells combined with undamaged or improved micro-environment resulted in a little better maintenance of CFUs in the adult bone marrow culture, The results are discussed in the light of current concepts of haemopoietic stem cell regulation.  相似文献   

15.
The effects of L-cell conditioned medium which contains granulocyte/macrophage colony stimulating factor (CSF); of highly purified L-cell CSF; and the antiserum directed against L-cell CSF, have been investigated in long-term murine bone marrow cultures. Treatment of cultures with CSF containing conditioned medium led to a rapid decline in haemopoiesis. However, this inhibition of in vitro haemopoiesis is probably caused by materials other than CSF, since the addition of highly purified L-cell CSF had no appreciable effect upon long-term haemopoietic cell proliferation or differentiation. Furthermore, the inhibitory activity of L-cell conditioned medium was not abrogated following neutralization of the CSF activity by CSF antiserum. The direct addition of CSF antiserum did not inhibit granulocyte or macrophage formation. These results suggest that long-term cultures of murine marrow cells may show extensive interactions with stromal cells which are not influenced by exogenous stimulatory or inhibitory factors.  相似文献   

16.
The hypochord of the zebrafish embryo (Danio rerio) emerges at the 9-somite stage as a single row of cells in the dorsomedial endoderm immediately ventral to the notochord. It is recognizable from the 2(nd) or 3(rd) somite and extends along the trunk to the same extent as the somites. A basal lamina surrounds the hypochord and its cells are slightly larger than the nearby endoderm cells. TEM studies have shown that the hypochord cells contain, in addition to mitochondria, well-developed rough endoplasmic reticula and Golgi networks, indicating synthetic activity. Once formed, the hypochord will stay in close association with the notochord, and this axial complex gradually moves dorsally, separating the hypochord from the endoderm as a one-cell-wide, rod-like structure that is bean-shaped in transverse section. This is the situation in the 15-somite embryo, at the level of the 4-5(th) somites. In the gap between the hypochord and the endoderm, angioblast cells aggregate and start to form the dorsal aorta, which becomes intimately associated with the hypochord. In the 17-somite embryo the aortic rudiment is established just ventral to the hypochord as a tube with a lumen. As development proceeds, the size of the hypochord decreases. In the pec fin embryo the hypochord is still recognizable in the posterior trunk, but has apparently vanished in anterior regions. The temporal correlation between the appearance of the hypochord and the formation of the dorsal aorta, coupled with the intimate relationship between these structures, suggest that the hypochord may play a role in the positioning of the dorsal aorta.  相似文献   

17.
The overall pattern of cephalic neurulation and the concomitant early development of the optic vesicles in mouse embryos were examined by scanning electron microscopy. Paraffin-sectioned specimens were also examined. The overall pattern of closure of the cephalic neural folds accords well with earlier observations of this process. The earliest indication of optic placode formation was seen in histological sections of embryos at the 4-somite stage, while optic pit formation was first observed at the 5- to 6-somite stage. The upper halves of the optic vesicles were formed in 10- to 15-somite embryos by the fusion of the neural folds at the junction between the mesencephalon and prosencephalon, while closure of the lower halves was associated with the closure of the rostral neuropore, and was usually completed by about the 20-somite stage. By the 25- to 30-somite stage, a rapid increase in the volume of the forebrain was observed, so that the optic vesicles were displaced laterally. An overall increase in the volume of the optic vesicles and decrease in the diameter of the optic stalks were also observed at this time. This account of cephalic neurulation and optic organogenesis provides useful baseline data relevant to the study of the normal early development of the mouse. A comparison is made between similar events in the rat, the hamster, and the human embryo.  相似文献   

18.
In order to test the role of granulocyte-macrophage colony stimulating factor (GM-CSF) in haemopoiesis during chronic infection, mice with a targeted disruption of the gene for GM-CSF were infected intraperitoneally with the facultative intracellular pathogen, Mycobacterium avium. The bacteria spread to lungs, liver and spleen and persisted for more than 10 weeks at levels between 105 and 106 CFU. Bacterial numbers did not differ significantly between infected GM-CSF-/- and wild-type mice, making this an excellent model in which to study the effects of GM-CSF deficiency on haemopoietic cells without complications of interpretation relating to differences in bacterial load. Haemopoietic colony forming cells (CFC) in the bone marrow of GM-CSF-/- mice before infection were not different from wild-type. However, whereas CFC in wild-type mice increased 1.5-fold with infection, GM-CSF-/- mice were unable to increase their CFC and numbers were significantly lower than in infected wild-type mice. Cells attracted to the peritoneal cavity of the GM-CSF-/- mice following i.p. injection of bacteria were notably lacking in the large, granular macrophages of activated appearance, which were a feature in wild-type mice. Nitric oxide production by peritoneal cells from GM-CSF-/- mice was deficient. Thus, GM-CSF is not critical for haemopoiesis during chronic infection, but in its absence the mice are unable to increase their output of haemopoietic cells and there are deficiencies in macrophage activation.  相似文献   

19.
20.
The effect of transforming growth factor α (TGFα) on the expression of imprinted Igf2 and Peg1/Mest genes was studied in diploid parthenogenetic embryos (PEs) of (CBA × C57BL/6)F1 mice during the postimplantation period of embryogenesis. The PEs were treated with TGFα in vitro at the morula stage and, after they developed to the blastocyst stage, were implanted into the uterus of false-pregnant females. On the tenth day of pregnancy, the PEs were explanted for subsequent in vitro culturing for 24 or 48 h. The expression of the imprinted Igf2and Peg1/Mest genes was studied by means of whole mount in situ hybridization using digoxigenin-labeled antisense RNAs. The expression of the imprinted Igf2 and Peg1/Mest genes was studied in embryos on the tenth day of in utero development before culturing and after 24 and 48 h of culturing in vitro. The expression of Igf2 before culturing was detected only in the brain of 60% of PEs on the tents day of pregnancy (the 21-to 25-somite stages); while the Peg1/Mest expression was not detected at all. In control (not treated with TGFα) PEs, neither gene was expressed at the same 21-to 25-somite stages. After 24 h of culturing, the Igf2 expression was detected in the brain of 71% of PEs at the 30-to 35-somite stages, while the Peg1/Mes t expression was not detected. In control (untreated) PEs, neither imprinted gene was expressed at the 30-to 35-somite stage. After 48 h of culturing, Igf2 was expressed in the regions of the brain, developing jaws, heart, liver, and somites of all TGFα-treated PEs at the 40-to 45-somite stages; and Peg1/Mest was expressed in the brain, heart, and liver of these embryos. In control (untreated) PEs, neither Igf2 nor Peg1/Mest was expressed at these stages The expression patterns of the imprinted Igf2 and Peg1/Mest genes in PEs at the most advanced developmental stages (40–45 somites) and in normal (fertilized) embryos at the same stages were similar; however, their expression rate in PEs was substantially lower than in normal embryos. These data indicate that exogenous TGFα can reactivate the expression of the two imprinted genes, modulating the effects of genomic imprinting in such a way that the PE development is improved and substantially prolonged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号