首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
A preparation of human leukocytes was incubated with arachidonic acid. Two new dihydroxy acids with conjugated triene structures, were isolated and characterized as 8,15-dihydroxy-5,9,11,13-eicosatetraenoic acid (8,15-leukotriene B4) and 14,15-dihydroxy-5,8,10,12-eicosatetraenoic acid (14,15-leukotriene B4).  相似文献   

2.
Arachidonate 5-lipoxygenase purified from porcine leukocytes transformed arachidonic acid to 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid. By the leukotriene A synthase activity of the same enzyme the product was further metabolized to leukotriene A4 (actually detected as 6-trans-leukotriene B4, 12-epi-6-trans-leukotriene B4, abd 5,6-duhydroxy-7,9,11,14-eicosatetraenoic acids). The enzyme was incubated with [10-DR-3H]- or [10-LS-3H]- labeled arachidonic acid, and 6-trans-LTB4 and its 12-epimer were analyzed. More than 90% of 10-DR-hydrogen was lost while about 100% of 10-LS-hydrogen was retained, indicating a stereospecific hydrogen elimination from C-10 during the formation of leukotriene A4.  相似文献   

3.
Incubation of peripheral blood leukocytes with arachidonic acid (and ionophore A23187) led to the formation of leukotriene B4, Δ6-trans-leukotriene B4, Δ6-trans-12-epi-leukotriene B4, 5-hydroxy-icosatetraenoic acid, 12-hydroxy-icosatetraenoic acid and of 5S,12S-dihydroxy-6,8,10,14-(E,Z,E,Z)-icosatetraenoic acid (5S,12S-DiHETE). Incubation of leukocytes with leukotriene A4 resulted in the formation of leukotriene B4 and of its two Δ6-trans-isomers but not of the 5S,12S-DiHETE. 18O2 labeling experiments have shown that the hydroxyl groups at C5 and C12 in the 5S,12S-DiHETE are derived from molecular oxygen. The tetraacetylenic analog of arachidonic acid was found to be a potent inhibitor of the formation of the 5S,12S-DiHETE whereas it potentiated the synthesis of the 5-hydroxy acid and of leukotriene B4. Addition of the 12-hydroxy-icosatetraenoic acid to leukocytes, or of the 5-hydroxy-icosatetraenoic acid to a suspension of platelets caused the formation of the 5S,12S-DiHETE. It is concluded that the 5S,12S-DiHETE is not derived from leukotriene A4 but is a product of the successive reactions of arachidonic acid with two lipoxygenases of different positional specificities.  相似文献   

4.
The ability to synthesise prostaglandins and thromboxane from 14C-labelled arachidonic acid was investigated in 11 species of fish from the Arabian Gulf. Cyclooxygenase activity was assessed in washed whole blood cells. Arachidonic acid and its metabolites were extracted and separated on silicic acid columns and thin layer chromatography (silica gel G). Total capacity to convert [14C]arachidonic acid to prostanoids varied from 1 to 35% among the 11 fish species studied. Gray shark (Chiloscyllium griseum) blood cells had the highest capacity (37±0.4%) to convert arachidonate into prostanoids and two species of catfish (Arius bilineatus and A. thalassinus) exhibited greater than 10% capacity to convert [14C]arachidonate into prostanoids. The major prostanoid synthesised by the two catfish (A. bilineatus and A thalassinus) was 6-keto PGF, a stable metabolite of prostacyclin, PGI2. In contrast, A. teunispinis synthesised thromboxane B2, a stable metabolite of thromboxane A2. Thromboxane B2 (TXB2) was the major product synthesised by all three species of shark studied (Chil. griseum, Carcharhinus plumbeus, Carch. melanopterus), with 6-keto PGF1α a minor product. Other fish studied showed a varied pattern of prostanoid synthesis. The synthesis of these prostanoids was almost completely blocked by preincubation of the whole blood cells from catfish and shark with indomethacin (0.5 μM) suggesting the involvement of cyclooxygenase-mediated prostanoid synthesis.  相似文献   

5.
Purified human T-lymphocytes exhibit 5-lipoxygenase activity as demonstrated by the conversion of arachidonic acid to 5-hydroxy-eicosatetraenoic acid (5-HETE), 5(S),12(R)-di-hydroxy-eicosa-6,14 cis-8,10 trans-tetraenoic acid (leukotriene B4), and 5,12-di-HETE isomers of leukotriene B4 that lack a 6-cis double bond. The concentrations of leukotriene B4, 5-HETE, 11-HETE and 15-HETE in suspensions of T-lymphocytes were increased significantly by concanavalin A and by the calcium ionophore A23187. Preincubation of T-lymphocytes with 15-HETE at μM concentrations, characteristic of suspensions of stimulated lymphocytes, inhibited selectively the increases in the levels of 5-HETE and leukotriene B4, but not of 11-HETE and prostaglandin E2.  相似文献   

6.
A method for the isolation of non-ciliated bronchiolar epithelial (Clara) cells from the guinea pig is described. Following digestion of the lung tissue with Type XXIV protease, the isolated lung cells showed a viability greater than 90 % and contained 3 % of Clara cells. Several cell populations were then separated on the basis of size using 2 centrifugal elutriations. The macrophages and endothelial cells were removed from the Clara cells enriched fractions by differential adherence on Petri dishes. The Clara cell-rich suspension was then further purified by centrifugation on Percoll non-continuous density gradients consisting of 48-52-55 % Percoll solution. The lower interface and the pellet of the non-continuous gradient consisted of approximately 80 % Clara cells. Identification of isolated Clara cells was confirmed by light microscopic observations after nitroblue tetrazolium staining and by ultrastructural characteristic features as observed by electron microscopy. The metabolism of arachidonic acid into prostaglandins and TxB2 by purified Clara cells was examined by enzyme immunoassay (EIA) and leukotriene formation was investigated by reverse phase high performance liquid chromatography (RP-HPLC). Enriched guinea pig Clara cells incubated with arachidonic acid released TxB2, PGE2 and 6-keto PGF, but did not produce leukotrienes. These cells could however transform exogenous leukotriene A4 into leukotriene B4. These results suggest that guinea pig Clara cells possess the enzymes of the cyclooxygenase pathway required for TxB2, PGE2 and 6-keto-PGF synthesis. Clara cells do not possess the 5-lipoxygenase enzyme but show some leukotriene A4 hydrolase activity since they can produce leukotriene B4 upon incubation with leukotriene A4.  相似文献   

7.
Human alveolar macrophages, obtained during diagnostic bronchoscoy, were maintained in monolayer culture. Challenge of these cells (>95% purity) with 1.2 mg/ml zymosan A particles (opsonized with human serum) was followed by a rapid release of leukotriene B4 into the medium, 7.28 ± 5.99 ng/mg cell protein at 2 h mean ± S.D4, n = 4). Leukotriene B4 was identified and measured by a novel technique employing capillary column gas chromatography coupled to negative ion chemical ionization mass spectrometry. The release of thromboxane B2, prostaglandins D2, E2, F and the lysosomal enzyme N-acetyl-β-D- glucosaminidase was also measured. Thromboxane B2 was the most abundant metabolite of arachidonic acid released into the culture medium (65.2 ± 14.8 ng/mg cell protein 2 h after the addition of zymosanA, n = 4), and the synthesis of thromboxane B2 was inhibited by >90% in 1 μM Na flurbiprofen. Inhibition of cyclooxygenase activity was accompanied by a 2-fold increase in leukotriene B4 synthesis.  相似文献   

8.
The chemotactic factors f-Met-Leu-Phe, arachidonic acid and leukotriene B4 induce a rapid stimulation of both Ca2+ and Na+ influx in rabbit neutrophils. In the three cases the stimulation is rapid and the effects are not additive. Furthermore in all cases the stimulation of Na-influx but not of Ca-uptake is inhibited by the potassium-sparing diuretic amiloride. Preincubation with high concentrations of the chemotactic factor f-Met-Leu-Phe followed by washing of rabbit neutrophils reduces significantly the stimulation of calcium uptake induced by arachidonic acid, leukotriene B4 and f-Met-Leu-Phe. These results strongly suggest that the exogenous addition of arachidonic acid or of leukotriene B4 leads to the activation of the same permeation pathways as do better defined chemotactic factors.  相似文献   

9.
Mouse skin 8-lipoxygenase was expressed in COS-7 cells by transient transfection of its cDNA in pEF-BOS carrying an elongation factor-1α promoter. When crude extract of the transfected COS-7 cells was incubated with arachidonic acid, 8-hydroxy-5,9,11,14-eicosatetraenoic acid was produced as assessed by reverse- and straight-phase high performance liquid chromatographies. The recombinant enzyme also reacted on α-linolenic and docosahexaenoic acids at almost the same rate as that with arachidonic acid. Eicosapentaenoic and γ-linolenic acids were also oxygenated at 43% and 56% reaction rates of arachidonic acid, respectively. In contrast, linoleic acid was a poor substrate for this enzyme. The 8-lipoxygenase reaction with these fatty acids proceeded almost linearly for 40 min. The 8-lipoxygenase was also expressed in an Escherichia coli system using pQE-32 carrying six histidine residues at N-terminal of the enzyme. The expressed enzyme was purified over 380-fold giving a specific activity of approximately 0.2 μmol/45 min per mg protein by nickel–nitrilotriacetate affinity chromatography. The enzymatic properties of the purified 8-lipoxygenase were essentially the same as those of the enzyme expressed in COS-7 cells. When the purified 8-lipoxygenase was incubated with 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid, two epimers of 6-trans-leukotriene B4, degradation products of unstable leukotriene A4, were observed upon high performance liquid chromatography. Thus, the 8-lipoxygenase catalyzed synthesis of leukotriene A4 from 5-hydroperoxy fatty acid. Reaction rate of the leukotriene A synthase was approximately 7% of arachidonate 8-lipoxygenation. In contrast to the linear time course of 8-lipoxygenase reaction with arachidonic acid, leukotriene A synthase activity leveled off within 10 min, indicating suicide inactivation.  相似文献   

10.
Preincubation of rabbit neutrophils with the synthetic chemotactic factor f-Met-Leu-Phe has been found to diminish the ability of these cells to mobilize calcium upon subsequent stimulation by f-Met-Leu-Phe or by leukotriene B4. The preexposure of the neutrophils to leukotriene B4 on the other hand results in a diminished subsequent response to itself but an unaltered response to f-Met-Leu-Phe. These results demonstrate that deactivation can be observed at the level of calcium mobilization, strengthen the postulated second messenger role of calcium in neutrophils and imply that neutrophil activation by chemotactic factors can bypass the arachidonic acid metabolic pathway.  相似文献   

11.
Altered macrophage arachidonic acid metabolism may play a role in endotoxic shock and the phenomenon of endotoxin tolerance induced by repeated injections of endotoxin. Studies were initiated to characterize both lipoxygenase metabolite formation by endotoxin tolerant and non-tolerant macrophages in response to 4 different stimuli, i.e. endotoxin, glucan, zymosan, and the calcium ionophore A23187. In contrast to previous reports of decreased prostaglandin synthesis by tolerant macrophages, A23187-stimulated immunoreactive (i) leukotriene (LT)C4/D4 and prostaglandin (PG)E2 production by tolerant cells was greater than that by non-tolerant controls (p<0.001). However, A23187-stimulated i-6-keto-PGF levels were lower in tolerant macrophages compared to controls. Stimulation of prostaglandin and thromboxane (Tx)B2 synthesis by endotoxin or glucam was significantly less in tolerant macrophages compaared to controls (p<0.05). iLTC4/D4 production was not significantly stimulated by endotoxin or glucan, but was stimulated by zymosan in the non-tolerant cells. Synthesis ofb iLTB4 by control macrophages was stimulated by endotoxin (p<0.01). These results demonstrate that arachidonic acid metabolism via the lipoxygenase and cyclooxygenase pathways in macrophages is differentially altered by endotoxin tolerance.  相似文献   

12.
Several studies indicate that increased intake of eicosapentaenoic acid (EPA) in the diet may lead to decreased incidence of thrombotic events. Most investigators agree that this is achieved by competitively inhibiting the conversion of arachidonic acid (AA) to thromboxane A2 in the platelets. The effect of high EPA-intake on the formation of prostacyclin is less clear. However, EPA is a good substrate for lipoxygenase enzymes which results in formation of hydroperoxy- and hydroxy-acids, and, in some cases, leukotrienes. The biological activities of the leukotrienes derived from arachidonic acid suggest that they mediate or modulate some symptoms associated wth inflammatory and hypersensitivity reactions. In order to clarify the possible effect of dietary manipulation of inflammatory processes, leukotriene B5 (LTB5) was prepared and its biological activities assessed. LTB5 was biosynthesised by incubating EPA with glycogen-elicited polymorphonuclear neutrophils (PMN) from rabbits in the presence of the divalent cation ionophore, A23187. The LTB5 was extracted from the incubate using minireverse phase extraction columns (Sep-pak) and purified by reverse-phase high pressure liquid chromatography (RP-HPLC). The purity of the product assessed by repeat RP-HPLC and straight phase (SP) HPLC was greater than 95%. Ultra-violet spectrophotometry of the product confirmed its purity and also provided assessment of the yield. The biological activity of LTB5 was assessed and compared with that of LTB4 in the following tests: aggregation of rat neutrophils, chemokinesis of human PMN, lysosomal enzyme release from human PMN and potentiation of bradykinin-induced plasma exudation. In all these tests. LTB5 was considerably less active (at least 30 times) than LTB4.  相似文献   

13.
Human mononuclear cells pre-labeled with [3H]arachidonic acid were shown to release metabolites following in vitro addition of heat-killed Salmonella typhi (HKST). The amount of label released was significantly higher than that seen with live S. typhi (LST). Addition of increasing amounts of HKST resulted in an increased release of metabolites. Enzyme immunoassay of the culture supernatants revealed that the bulk of the metabolite released was prostaglandin E2 (PGE2). Leukotriene B4 (LTB4) and leukotriene C4 (LTC4) were not detectable in the culture supernatants. The significance and implications of these results are discussed.  相似文献   

14.
Polymorphonuclear leukocytes (PMNL) were preincubated in the presence and absence of lipopolysaccharide (LPS) prior to stimulation of arachidonic acid (20:4) metabolism by addition of the divalent cation ionophore, A23187. Analysis of the products by high pressure liquid chromatography showed that LPS inhibited the formation of leukotriene B4, 5-hydroxy-6,8,11,14- icosatetraenoic acid and 12-hydroxy-5,8,10,14-icosatetraenoic acid by about 70%. In the absence of ionophore, LPS had little effect on the basal synthesis of 20:4 metabolites. Preincubation with LPS also inhibited the formation of the above 3 products in the presence of an excess of exogenous 20:4, suggesting that its action was mediated by the inhibition of lipoxygenases rather than phospholipase.  相似文献   

15.
Upon melittin stimulation, cultured SCC-13 keratinocytes release prostaglandins E2, F, 6-keto-F, thromboxane B2, leukotriene B4, and 6-sulfido-peptide-containing leukotrienes (SRS) into serum free medium. Release of prostaglandins E2, F, and SRS, normalized to cell protein, is 3- to 10-fold higher from rapidly growing than confluent cultures. Cells growing with hydrocortisone in the medium produce approximately twice the level of the cyclooxygenase-mediated metabolites PGE2 and PGF as those without hydrocortisone, but similar levels of the lipoxygenase-mediated metabolite SRS. The results demonstrate the potential utility of squamous carcinoma lines for investigating biochemical pathways of arachidonic acid metabolism in keratinocytes.  相似文献   

16.
Leukotriene A4 hydrolase was rapidly and extensively purified from rat neutrophils using anion exchange and gel filtration high-pressure liquid chromatography. The enzyme which converts the allylic epoxide leukotriene A4 to the 5,12-dihydroxyeicosatetraenoic acid leukotriene B4 was localized in the cytosolic fraction and exhibited an optimum activity at pH 7.8 and apparent Km for leukotriene A4 between 2 · 10?5 and 3 · 10?5 M. The purified leukotriene A4 hydrolase was shown to have a molecular weight of 68 000 on sodium dodecylsulfate polyacrylamide gel electrophoresis and of 50 000 by gel filtration. The molecular weight and monomeric native form of this enzyme are unique characteristics which distinguish leukotriene A4 hydrolase from previously purified epoxide hydrolases.  相似文献   

17.
The effects of the lipoxygenase products of arachidonic acid, 5- and 12-hydroxyeicosatetraenoic acid (5- and 12-HETE) and leukotriene B4 (LTB4), on the spontaneous contractility of lower uterine segment human myometrial strips obtained prior to labour have been studied . 5-HETE gave a dose- dependent (10–500ng) increase in both the rate of contractions and overall contractility of myometrial strips while 12-HETE and LTB4 had no effect at the same concentrations. Prostaglandin F2 (50ng) contracted all myometrial strips in a similar pattern to 5-HETE but was approximately 10 times more potent. The effect of 5-HETE may be direct or perhaps indirect via interaction with the cyclo-oxygenase pathway. The findings do not disprove the contention that the onset of parturition may be characterized by a switch in arachidonic acid metabolism in intra-uterine tissues from lipoxygenase to cyclo-oxygenase products.  相似文献   

18.
The sensitivity of the 5-lipoxygenase to inhibition by 5,8,11,14-eicosatetraynoic acid (ETYA) is species- and/or tissue-dependent. Guinea pig peritoneal polymorphonuclear leukocytes prelabeled with [3H]arachidonic acid and stimulated with ionophore A23187 formed 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE), as well as several dihydroxy fatty acids, including 5(S),12(R)-dihydroxy-6,8,10-(cis/trans/trans)-14-(cis)-eicosatetraenoic acid. ETYA (40 microM) did not inhibit, but, rather, increased the incorporation of 3H label into 5-HETE. In contrast, ETYA markedly inhibited the formation of radiolabeled dihydroxy acid metabolites by the A23187-stimulated cells. Assay of products from polymorphonuclear leukocytes incubated with exogenous arachidonic acid plus A23187, by reverse phase high performance liquid chromatography combined with ultraviolet absorption, showed a concentration-dependent inhibition of the formation of dihydroxy acid metabolite by ETYA (1-50 microM) and an increase in 5-HETE levels (maximum of 2- to 3-fold). The latter finding was verified by stable isotope dilution assay with deuterated 5-HETE as the internal standard. Another lipoxygenase inhibitor, nordihydroguaiaretic acid, potently inhibited the formation of both 5-HETE and dihydroxy acids, with an IC50 of 2 microM. The data suggest that ETYA can inhibit the enzymatic step whereby 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid is converted to leukotriene A4 in guinea pig polymorphonuclear leukocytes.  相似文献   

19.
Metabolism of sodium (14C)-arachidonate by bovine epithelial lens cells was studied in culture. The cells converted arachidonic acid into a major product whose formation was not inhibited by aspirin, a cyclo-oxygenase inhibitor, but was suppressed by nordihydroguaiaretic acid, a lipoxygenase inhibitor and by dexamethasone. This metabolite co-migrated with leukotriene B4 in thin layer chromatography and high pressure liquid chromatography. These data represent the first evidence for a lipoxygenase product in the lens. LTB4 could play an important role in the physiopathology of this organ.  相似文献   

20.
A renal medulla 100,000g pellet metabolized arachidonic acid, C20:4, to the previously described prostaglandins prostaglandin E2, 6-ketoprostaglandin F, thromboxane B2, 12-hydroxyheptadecatrienoic acid, and 11-hydroxyeicosatetraenoic acid. In addition, under conditions of low enzyme to substrate ratios, the renal medulla also produced an unusual metabolite from arachidonic acid. This metabolite was inhibited by indomethacin, and thus suggested that it was a product of the cyclooxygenase. Addition of GSH to the incubation inhibited its formation, while p-hydroxymercuri-benzoate enhanced its formation. This compound was identified by HPLC purification, uv absorption, and gas chromatography-mass spectroscopy. The compound was 9,15 dioxo,11-hydroxyprosta-5,13-dienoic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号