共查询到20条相似文献,搜索用时 0 毫秒
1.
S G Oliver 《Journal of theoretical biology》1977,67(2):195-201
A mechanism is proposed to explain how a mutation in a single molecule of mitochondrial DNA (mitDNA) can come to affect all the other mitDNA molecules of a yeast cell. It is suggested that an initial mutation may be “amplified” by a process which is, in fact, intended to ensure the identity of the cell's complement of mitDNA molecules. It is postulated that this process involves a small number of “reference” copies of mitDNA to which all other (“derived”) copies are compared and corrected once per cell cycle. Asymmetric gene conversion is proposed as the correction mechanism and the means of “amplifying” mutations. The model is shown to be compatible with current data on spontaneous and induced mitochondrial mutation in Saccharomyces cerevisiae. 相似文献
2.
To isolate some new genes controlling the process of spontaneous mutagenesis, a collection of 16 yeast strains with enhanced rate of spontaneous canavanine resistant mutations was obtained. Genetical analysis allowed to define that the mutator phenotype of these strains is due to a single nuclear mutation. Such mutations were called hsm (high spontaneous mutagenesis). Recombinational test showed that 5 mutants under study carried 5 nonallelic mutations. It was revealed that the mutation hsm3-1 is a nonspecific mutator elevating the rate of both spontaneous canavanine resistant mutations and the frequency of reversions in mutations lys1-1 and his1-7. Genetical analysis revealed that mutation hsm3-1 is recessive. The study of cross sensitivity of mutator strains to physical and chemical mutagens demonstrated that 12 of 16 hsm mutants were resistant to the lethal action of UV, gamma rays and methylmethanesulfonate, and 4 mutants were only sensitive to these factors. Possible nature of hsm mutations is discussed. 相似文献
3.
Summary The nucleotide sequence of the repeat unit of the mitochondrial genome of a spontaneous petite mutant of S. cerevisiae is reported. The sequence provides direct information on the AT-spacers and GC-clusters of the mitochondrial genome of yeast. 相似文献
4.
The mitochondrial genome of yeast. 总被引:51,自引:0,他引:51
5.
We report an analysis of the sequences used in the excision of the mitochondrial genomes of 22 spontaneous and ten ethidium bromide (EtBr)-induced Saccharomyces cerevisiae petite mutants. In all cases, excision sequences were found to be perfect direct repeats, often flanked on one or both sides by regions of patchy homology. Sequences used in the excision of the genomes of spontaneous petites were always located in the AT spacers and GC clusters of intergenic regions of the genome; the GC clusters corresponded to ori and oris sequences, namely to canonical and surrogate origins of DNA replication, respectively. In the case of the ethidium bromide-induced petites, excision sequences were found not only in intergenic sequences, but also in the introns and exons of mitochondrial genes. 相似文献
6.
7.
Giorgio Bernardi 《Journal of molecular evolution》1976,9(1):25-35
Summary The mitochondrial genome of yeast (S. cerevisiae orS. carlsbergensis) appears to be formed by 60–70 genetic units, each one of which is formed by (1) a GC-rich sequence, possibly having a regulatory role; (2) a gene, and (3) an AT-rich spacer, which probably is not transcribed. Recombination in this genome appears to underlie a number of important phenomena. The organization of the mitochondrial genome of yeast and these recombinational events are discussed in relationship with the organization and evolution of the nuclear genome of eukaryotes. 相似文献
8.
Paul P. Jung Joseph Schacherer Jean-Luc Souciet Serge Potier Patrick Wincker & Jacky de Montigny 《FEMS yeast research》2009,9(6):903-910
Here, we report the complete nucleotide sequence of the 39 107-bp mitochondrial genome of the yeast Pichia sorbitophila . This genome is closely related to those of Candida parapsilosis and Debaryomyces hansenii , as judged from sequence similarities and synteny conservation. It encodes three subunits of cytochrome oxidase ( COX1, COX2 and COX3 ), three subunits of ATP synthase ( ATP6, ATP8 and ATP9 ), the seven subunits of NADH dehydrogenase ( NAD1-6 and NAD4L ), the apocytochrome b ( COB ), the large and small rRNAs and a complete set of tRNAs. Although the mitochondrial genome of P. sorbitophila contains the same core of mitochondrial genes observed in the ascomycetous yeasts, those coding for the RNAse P and the ribosomal protein VAR1p are missing. Moreover, the mtDNA of P. sorbitophila contains several introns in its genes and has the particularity of possessing an intron, which is not linked to any upstream exon. 相似文献
9.
R. J. Schweyen B. Weiss-Brummer B. Backhaus F. Kaudewitz 《Molecular & general genetics : MGG》1978,159(2):151-160
Summary An approach for the screening of mit- mutants, the isolation and preliminary classification of a series of such mutants is reported. Loss and retention of 8 mit- and 6 drugr markers in mitDNA was analyzed in populations of rho- clones derived from four yeast strains. The populations studied constitute a representative fraction of the rho- petites formed during growth at 35° C under the influence of mutation tsp-25 which is in common to the four strains. The majority of the rho- clones retained several of the markers studied. Depending on the marker regarded retention frequencies between 15% (oxi3) and 45% (oli1, cob) were observed. Loss of one and retention of the other of a pair of markers was determined in all rho- clones of the four populations. The frequencies of marker separation by rho- deletion thus obtained are assumed to reflect the distance between markers on the mitochondrial genome: the higher the frequency of separation the longer the distance between two markers. Based on these frequencies a unique order of markers on a circular map was determined. Positions of markers on a scale from 0 to 100 were found to be: cap/ery (0) — olil (16) — cob1-1354 (21) — ana101 (22) — cob2-1625 (24) — oli2 (35) — pho1 (40) — oxi3-2501 (44) — oxi3-3771 (47) — par (65) — oxi2 (79) — oxil (87) tms8 (93) —cap (100). The relevance of this map as to the faithful representation of the topology of gene loci on mitDNA is discussed. Correlation of retention frequencies of markers to their map positions reveals a pronounced polarity: mitDNA segments carrying the cob-oli1 segment prevail whereas segments retaining oxi3 are the least frequent. 相似文献
10.
11.
12.
13.
14.
Giorgio Bernardi 《Trends in biochemical sciences》1982,7(11):404-408
Recent investigations have provided information on the origin of replication of the mitochondrial genome of yeast and an explanation for the phenomenon of the suppressivity. 相似文献
15.
16.
17.
18.
Francisci S DE Luca C Oliva R Morea V Tramontano A Frontali L 《RNA (New York, N.Y.)》2005,11(6):914-927
We report the identification and characterization of eight yeast mitochondrial tRNA mutants, located in mitochondrial tRNA(Gln), tRNA(Arg2), tRNA(Ile), tRNA(His), and tRNA(Cys), the respiratory phenotypes of which exhibit various degrees of deficiency. The mutations consist in single-base substitutions, insertions, or deletions, and are distributed all over the tRNA sequence and structure. To identify the features responsible for the defective phenotypes, we analyzed the effect of the different mutations on the electrophoretic mobility and efficiency of acylation of the mutated tRNAs in comparison with the respective wild-type molecules. Five of the studied mutations determine both conformational changes and defective acylation, while two have neither or limited effect. However, variations in structure and acylation are not necessarily correlated; the remaining mutation affects the tRNA conformation, but not its acylation properties. Analysis of tRNA structures and of mitochondrial and cytoplasmic yeast tRNA sequences allowed us to propose explanations for the observed defects, which can be ascribed to either the loss of identity nucleotides or, more often, of specific secondary and/or tertiary interactions that are largely conserved in native mitochondrial and cytoplasmic tRNAs. 相似文献
19.