首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N A Koltovaia  A B Devin 《Genetika》1983,19(6):933-939
The sensitivity of the yeast Saccharomyces cerevisiae to nitrous acid (NA) is significantly influenced by various spontaneous mutations of the mitochondrial (mt) genome as well as by the nuclear mutation mmg 1 leading to a decrease in the spontaneous mutability of the mt genome. The mmg 1 locus and the mt genome most probably interact and this nucleo-cytoplasmic interaction plays a role in determining the NA sensitivity of yeast cells. A significant subclonal variation of the NA sensitivity has already been reported for the strains under study. Here we show this variability to decrease significantly when the cells are devoid of the mt DNA or carry the mmg 1 mutation. These data suggest a direct relation between the unstable NA sensitivity and the variability of the mt genome.  相似文献   

2.
For the first time, the possibility of maintaining an intact human mitochondrial genome in a heterologous system in the mitochondria of yeast Yarrowia lipolytica is shown. A method for introducing directional changes into the structure of the mitochondrial human genome replicating in Y. lipolytica by an artificially induced ability of yeast mitochondria for homologous recombination is proposed. A method of introducing and using phenotypic selection markers for the presence or absence of defects in genes tRNA-Lys and tRNA-Leu of the mitochondrial genome is developed. The proposed system can be used to correct harmful mutations of the human mitochondrial genome associated with mitochondrial diseases and for preparative amplification of intact mitochondrial DNA with an adjusted sequence in yeast cells. The applicability of the new system for the correction of mutations in the genes of Lys- and Leu-specific tRNAs of the human mitochondrial genome associated with serious and widespread human mitochondrial diseases such as myoclonic epilepsy with lactic acidosis (MELAS) and myoclonic epilepsy with ragged-red fibers (MERRF) is shown.  相似文献   

3.
Following targeted disruption of the unique CYC1 gene, the petite-negative yeast, Kluyveromyces lactis, was found to grow fermentatively in the absence of cytochrome c-mediated respiration. This observation encouraged us to seek mitochondrial mutants by treatment of K. lactis with ethidium bromide at the highest concentration permitting survival. By this technique, we isolated four mtDNA mutants, three lacking mtDNA and one with a deleted mitochondrial genome. In the three isolates lacking mtDNA, a nuclear mutation is present that permits petite formation. The three mutations occur at two different loci, designated MGI1 and MGI2 (for Mitochondrial Genome Integrity). The mgi mutations convert K. lactis into a petite-positive yeast. Like bakers' yeast, the mgi mutants spontaneously produce petites with deletions in mtDNA and lose this genome at high frequency on treatment with ethidium bromide. We suggest that the MGI gene products are required for maintaining the integrity of the mitochondrial genome and that, petite-positive yeasts may be naturally altered in one or other of these genes.  相似文献   

4.
The currently available yeast mitochondrial DNA (mtDNA) sequence is incomplete, contains many errors and is derived from several polymorphic strains. Here, we report that the mtDNA sequence of the strain used for nuclear genome sequencing assembles into a circular map of 85 779 bp which includes 10 kb of new sequence. We give a list of seven small hypothetical open reading frames (ORFs). Hot spots of point mutations are found in exons near the insertion sites of optional mobile group I intron-related sequences. Our data suggest that shuffling of mobile elements plays an important role in the remodelling of the yeast mitochondrial genome.  相似文献   

5.
Phadnis N  Mehta R  Meednu N  Sia EA 《DNA Repair》2006,5(7):829-839
Mitochondrial DNA is predicted to be highly prone to oxidative damage due to its proximity to free radicals generated by oxidative phosphorylation. Base excision repair (BER) is the primary repair pathway responsible for repairing oxidative damage in nuclear and mitochondrial genomes. In yeast mitochondria, three N-glycosylases have been identified so far, Ntg1p, Ogg1p and Ung1p. Ntg1p, a broad specificity N-glycosylase, takes part in catalyzing the first step of BER that involves the removal of the damaged base. In this study, we examined the role of Ntg1p in maintaining yeast mitochondrial genome integrity. Using genetic reporters and assays to assess mitochondrial mutations, we found that loss of Ntg1p suppresses mitochondrial point mutation rates, frameshifts and recombination rates. We also observed a suppression of respiration loss in the ntg1-Delta cells in response to ultraviolet light exposure implying an overlap between BER and UV-induced damage in the yeast mitochondrial compartment. Over-expression of the BER AP endonuclease, Apn1p, did not significantly affect the mitochondrial mutation rate in the presence of Ntg1p, whereas Apn1p over-expression in an ntg1-Delta background increased the frequency of mitochondrial mutations. In addition, loss of Apn1p also suppressed mitochondrial point mutations. Our work suggests that both Ntg1p and Apn1p generate mutagenic intermediates in the yeast mitochondrial genome.  相似文献   

6.
Mitochondrial cytopathies are a heterogeneous group of systemic disorders caused by mutations in mitochondrial or nuclear genome. The review presents some data on pathogenic mutations in mitochondrial DNA leading to the imbalance in the oxidation phosphorylation processes and energy metabolism in the cells and eventually to the development of mitochondrial cytopathy. The pathways of medicated correction are examined, which are aimed at obtaining optimal energy efficiency of mitochondria with impaired functions, increase of the efficiency of energy metabolism in the tissues, as well as prevention of mitochondrial membrane damage by free radicals using antioxidants and membrane protectors. A conclusion is drawn on the inefficiency of currently used therapeutic strategies and the necessity of new approaches, which can be gene therapy of mitochondrial diseases. Some modern methods for gene defects correction, capable of restoring or removing the damaged gene, expressing full gene product, or blocking the mutant or strange genes work are analyzed. It is shown that the described approaches to the gene therapy of human mitochondrial diseases demand the introduction of foreign sequences into nuclear or mitochondrial genome of a living person, which completely excludes their practical application because of the uncertainty of the outcome. A perspective approach in solving this problem may be a creation of a system allowing the correction of defect genes without introducing synthetic nucleotides into the human genome. Phenotypic selection combined with a capacity of homologous recombination, artificially imparted to mitochondria of yeast Yarrowia lipolytica, allows for replication of intact human mitochondrial DNA in yeast mitochondria, supporting a full-size native human mitochondrial DNA in the yeast cells and eliminating pathogenic mutations by means of standard sitedirected PCR mutagenesis. After the correction in the Y. lipolytica cells, copies of mitochondrial DNA of an individual patient may be returned to him using the transfection of mesenchymal stromal cells followed by selection of transfectants grown in minimal culture media, in which the cells with higher respiratory mitochondrial activity will gain the advantage.  相似文献   

7.
Instability of the mitochondrial genome (mtDNA) is a general problem from yeasts to humans. However, its genetic control is not well documented except in the yeast Saccharomyces cerevisiae. From the discovery, 50 years ago, of the petite mutants by Ephrussi and his coworkers, it has been shown that more than 100 nuclear genes directly or indirectly influence the fate of the rho(+) mtDNA. It is not surprising that mutations in genes involved in mtDNA metabolism (replication, repair, and recombination) can cause a complete loss of mtDNA (rho(0) petites) and/or lead to truncated forms (rho(-)) of this genome. However, most loss-of-function mutations which increase yeast mtDNA instability act indirectly: they lie in genes controlling functions as diverse as mitochondrial translation, ATP synthase, iron homeostasis, fatty acid metabolism, mitochondrial morphology, and so on. In a few cases it has been shown that gene overexpression increases the levels of petite mutants. Mutations in other genes are lethal in the absence of a functional mtDNA and thus convert this petite-positive yeast into a petite-negative form: petite cells cannot be recovered in these genetic contexts. Most of the data are explained if one assumes that the maintenance of the rho(+) genome depends on a centromere-like structure dispensable for the maintenance of rho(-) mtDNA and/or the function of mitochondrially encoded ATP synthase subunits, especially ATP6. In fact, the real challenge for the next 50 years will be to assemble the pieces of this puzzle by using yeast and to use complementary models, especially in strict aerobes.  相似文献   

8.
The relevance of mitochondrial DNA (mtDNA) mutations in cancer process is still unknown. Since the mutagenesis of mitochondrial genome in mammals is not possible yet, we have exploited budding yeast S. cerevisiae as a model to study the effects of tumor-associated mutations in the mitochondrial MTATP6 gene, encoding subunit 6 of ATP synthase, on the energy metabolism. We previously reported that four mutations in this gene have a limited impact on the production of cellular energy. Here we show that two mutations, Atp6-P163S and Atp6-K90E (human MTATP6-P136S and MTATP6-K64E, found in prostate and thyroid cancer samples, respectively), increase sensitivity of yeast cells both to compounds inducing oxidative stress and to high concentrations of calcium ions in the medium, when Om45p, the component of porin complex in outer mitochondrial membrane (OM), was fused to GFP. In OM45-GFP background, these mutations affect the activation of yeast permeability transition pore (yPTP, also called YMUC, yeast mitochondrial unspecific channel) upon calcium induction. Moreover, we show that calcium addition to isolated mitochondria heavily induced the formation of ATP synthase dimers and oligomers, recently proposed to form the core of PTP, which was slower in the mutants. We show the genetic evidence for involvement of mitochondrial ATP synthase in calcium homeostasis and permeability transition in yeast. This paper is a first to show, although in yeast model organism, that mitochondrial ATP synthase mutations, which accumulate during carcinogenesis process, may be significant for cancer cell escape from apoptosis.  相似文献   

9.
Saccharomyces cerevisiae strains are often host to several types of cytoplasmic double-stranded RNA (dsRNA) genomes, some of which are encapsidated by the L-A dsRNA product, an 86,000-dalton coat protein. Here we present the finding that nuclear recessive mutations in the NUC1 gene, which encodes the major nonspecific nuclease of yeast mitochondria, resulted in at least a 10-fold increase in amounts of the L-A dsRNA and its encoded coat protein. The effect of nuc1 mutations on L-A abundance was completely suppressed in strains that also hosted the killer-toxin-encoding M dsRNA. Both NUC1 and nuc1 strains containing the L-A genome exhibited an increase in coat protein abundance and a concomitant increase in L-A dsRNA when the cells were grown on a nonfermentable carbon source rather than on glucose, an effect independent of the increase in coat protein due to nuc1 mutations or to the absence of M. The increase in L-A expression in nuc1 strains was similar to that observed in strains with mutations in the nuclear gene encoding the most abundant outer mitochondrial membrane protein, porin. nuc1 mutations did not affect the level of porin in the mitochondrial outer membrane. Since the effect of mutations in nuc1 was to alter the copy number of the L-A coat protein genome rather than to change the level of the M toxin genome (as do mak and ski mutations), these mutations define a new class of nuclear genes affecting yeast dsRNA abundance.  相似文献   

10.
The nuclear gene MIP1 encodes the mitochondrial DNA polymerase responsible for replicating the mitochondrial genome in Saccharomyces cerevisiae. A number of other factors involved in replicating and segregating the mitochondrial genome are yet to be identified. Here, we report that a bacterial two-hybrid screen using the mitochondrial polymerase, Mip1p, as bait identified the yeast protein Sed1p. Sed1p is a cell surface protein highly expressed in the stationary phase. We find that several modified forms of Sed1p are expressed and the largest of these forms interacts with the mitochondrial polymerase in vitro. Deletion of SED1 causes a 3.5-fold increase in the rate of mitochondrial DNA point mutations as well as a 4.3-fold increase in the rate of loss of respiration. In contrast, we see no change in the rate of nuclear point mutations indicating the specific role of Sed1p function in mitochondrial genome stability. Indirect immunofluorescence analysis of Sed1p localization shows that Sed1p is targeted to the mitochondria. Moreover, Sed1p is detected in purified mitochondrial fractions and the localization to the mitochondria of the largest modified form is insensitive to the action of proteinase K. Deletion of the sed1 gene results in a reduction in the quantity of Mip1p and also affects the levels of a mitochondrially-expressed protein, Cox3p. Our results point towards a role for Sed1p in mitochondrial genome maintenance.  相似文献   

11.
Yme1p, an ATP-dependent protease localized in the mitochondrial inner membrane, is required for the growth of yeast lacking an intact mitochondrial genome. Specific dominant mutations in the genes encoding the alpha- and gamma-subunits of the mitochondrial F(1)F(0)-ATPase suppress the slow-growth phenotype of yeast that simultaneously lack Yme1p and mitochondrial DNA. F(1)F(0)-ATPase activity is reduced in yeast lacking Yme1p and is restored in yme1 strains bearing suppressing mutations in F(1)-ATPase structural genes. Mitochondria isolated from yme1 yeast generated a membrane potential upon the addition of succinate, but unlike mitochondria isolated either from wild-type yeast or from yeast bearing yme1 and a suppressing mutation, were unable to generate a membrane potential upon the addition of ATP. Nuclear-encoded F(0) subunits accumulate in yme1 yeast lacking mitochondrial DNA; however, deletion of genes encoding those subunits did not suppress the requirement of yme1 yeast for intact mitochondrial DNA. In contrast, deletion of INH1, which encodes an inhibitor of the F(1)F(0)-ATPase, partially suppressed the growth defect of yme1 yeast lacking mitochondrial DNA. We conclude that Yme1p is in part responsible for assuring sufficient F(1)F(0)-ATPase activity to generate a membrane potential in mitochondria lacking mitochondrial DNA and propose that Yme1p accomplishes this by catalyzing the turnover of protein inhibitors of the F(1)F(0)-ATPase.  相似文献   

12.
The mitochondrial ATP synthase is a molecular motor, which couples the flow of protons with phosphorylation of ADP. Rotation of the central stalk within the core of ATP synthase effects conformational changes in the active sites driving the synthesis of ATP. Mitochondrial genome integrity (mgi) mutations have been previously identified in the alpha-, beta-, and gamma-subunits of ATP synthase in yeast Kluyveromyces lactis and trypanosome Trypanosoma brucei. These mutations reverse the lethality of the loss of mitochondrial DNA in petite negative strains. Introduction of the homologous mutations in Saccharomyces cerevisiae results in yeast strains that lose mitochondrial DNA at a high rate and accompanied decreases in the coupling of the ATP synthase. The structure of yeast F1-ATPase reveals that the mgi residues cluster around the gamma-subunit and selectively around the collar region of F1. These results indicate that residues within the mgi complementation group are necessary for efficient coupling of ATP synthase, possibly acting as a support to fix the axis of rotation of the central stalk.  相似文献   

13.
Dominant mutations in the yeast nuclear gene NAM2 cure the RNA splicing deficiency resulting from the inactivation of the bI4 maturase encoded by the fourth intron of the mitochondrial cytochrome b gene. This maturase is required to splice the fourth intron of this gene and to splice the fourth intron of the mitochondrial gene oxi3 encoding cytochrome oxidase subunit I. We have cloned the nuclear gene NAM2, which codes for two overlapping RNAs, 3.2 kb and 3.0 kb long, which are transcribed in the same direction but differ at their 5' ends. NAM2 compensating mutations probably result from point mutations in the structural gene. Integration of the cloned gene occurs at its homologous locus on the right arm of chromosome XII. Inactivation of the NAM2 gene either by transplacement with a deleted copy of the gene, or by disruption, is not lethal to the cell, but leads to the destruction of the mitochondrial genome with the production of 100% cytoplasmic petites.  相似文献   

14.
Instability of the mitochondrial genome (mtDNA) is a general problem from yeasts to humans. However, its genetic control is not well documented except in the yeast Saccharomyces cerevisiae. From the discovery, 50 years ago, of the petite mutants by Ephrussi and his coworkers, it has been shown that more than 100 nuclear genes directly or indirectly influence the fate of the rho+ mtDNA. It is not surprising that mutations in genes involved in mtDNA metabolism (replication, repair, and recombination) can cause a complete loss of mtDNA (rho0 petites) and/or lead to truncated forms (rho) of this genome. However, most loss-of-function mutations which increase yeast mtDNA instability act indirectly: they lie in genes controlling functions as diverse as mitochondrial translation, ATP synthase, iron homeostasis, fatty acid metabolism, mitochondrial morphology, and so on. In a few cases it has been shown that gene overexpression increases the levels of petite mutants. Mutations in other genes are lethal in the absence of a functional mtDNA and thus convert this petite-positive yeast into a petite-negative form: petite cells cannot be recovered in these genetic contexts. Most of the data are explained if one assumes that the maintenance of the rho+ genome depends on a centromere-like structure dispensable for the maintenance of rho mtDNA and/or the function of mitochondrially encoded ATP synthase subunits, especially ATP6. In fact, the real challenge for the next 50 years will be to assemble the pieces of this puzzle by using yeast and to use complementary models, especially in strict aerobes.  相似文献   

15.
We have shown previously that mutations in nuclear genes, termed MGI, for mitochondrial genome integrity, can convert the petite-negative yeast Kluyveromyces lactis into a petite-positive form with the ability to produce mitochondrial genome deletion mutants (Chen and Clark-Walker, Genetics, 133, 517-525, 1993). Here we describe that two genes, MGI2 and MGI5, encode the alpha- and gamma-subunits of mitochondrial F1-ATPase. Specific mutations, Phe443-->Ser and Ala333-->Val in MGI2, and Thr275-->Ala in MGI5, confer on cells the ability to produce petite mutants spontaneously with deletions in mitochondrial (mt) DNA and the capacity to lose their mitochondrial genomes upon treatment with ethidium bromide. Structural integrity of the F1 complex seems to be needed for expression of the Mgi- phenotype as null mutations in MGI2 and MGI5 remove the ability to form mtDNA deletions. It is suggested that mgi mutations allow petites to survive because an aberrant F1 complex prevents collapse of the mitochondrial inner membrane potential that normally occurs on loss of mtDNA-encoded F0 subunits.  相似文献   

16.
The mitochondrial ATP synthase couples the flow of protons with the phosphorylation of ADP. A class of mutations, the mitochondrial genome integrity (mgi) mutations, has been shown to uncouple this process in the yeast mitochondrial ATP synthase. Four mutant forms of the yeast F1 ATPase with mgi mutations were crystallized; the structures were solved and analyzed. The analysis identifies two mechanisms of structural uncoupling: one in which the empty catalytic site is altered and in doing so, apparently disrupts substrate (phosphate) binding, and a second where the steric hindrance predicted between γLeu83 and βDP residues, Leu-391 and Glu-395, located in Catch 2 region, is reduced allowing rotation of the γ-subunit with less impedance. Overall, the structures provide key insights into the critical interactions in the yeast ATP synthase involved in the coupling process.  相似文献   

17.
Alternative oxidase (AOX) is a terminal oxidase within the inner mitochondrial membrane (IMM) present in many organisms where it functions in the electron transport system (ETS). AOX directly accepts electrons from ubiquinol and is therefore capable of bypassing ETS Complexes III and IV. The human genome does not contain a gene coding for AOX, so AOX expression has been suggested as a gene therapy for a range of human mitochondrial diseases caused by genetic mutations that render Complex III and/or IV dysfunctional. An effective means of screening mutations amenable to AOX treatment remains to be devised. We have generated such a tool by heterologously expressing AOX from the Pacific oyster (Crassostrea gigas) in the yeast Saccharomyces cerevisiae under the control of a galactose promoter. Our results show that this animal AOX is monomeric and is correctly targeted to yeast mitochondria. Moreover, when expressed in yeast, Pacific oyster AOX is a functional quinol oxidase, conferring cyanide-resistant growth and myxothiazol-resistant oxygen consumption to yeast cells and isolated mitochondria. This system represents a high-throughput screening tool for determining which Complex III and IV genetic mutations in yeast will be amenable to AOX gene therapy. As many human genes are orthologous to those found in yeast, our invention represents an efficient and cost-effective way to evaluate viable research avenues. In addition, this system provides the opportunity to learn more about the localization, structure, and regulation of AOXs from animals that are not easily reared or manipulated in the lab.  相似文献   

18.
Mitochondria are essential for regulation of cellular respiration, energy production, small molecule metabolism, anti-oxidation and cell ageing, among other things. While the mitochondrial genome contains a small number of protein-coding genes, the great majority of mitochondrial proteins are encoded by chromosomal genes. In the fission yeast Schizosaccharomyces pombe, 770 proteins encoded by chromosomal genes are located in mitochondria. Of these, 195 proteins, many of which are implicated in translation and transport, are absolutely essential for viability. We isolated and characterized eight temperature-sensitive (ts) strains with mutations in essential mitochondrial proteins. Interestingly, they are also sensitive to limited nutrition (glucose and/or nitrogen), producing low-glucose-sensitive and ‘super-housekeeping'' phenotypes. They fail to produce colonies under low-glucose conditions at the permissive temperature or lose cell viability under nitrogen starvation at the restrictive temperature. The majority of these ts mitochondrial mutations may cause defects of gene expression in the mitochondrial genome. mrp4 and mrp17 are defective in mitochondrial ribosomal proteins. ppr3 is defective in rRNA expression, and trz2 and vrs2 are defective in tRNA maturation. This study promises potentially large dividends because mitochondrial quiescent functions are vital for human brain and muscle, and also for longevity.  相似文献   

19.
BACKGROUND: The yeast CDC9 gene encodes a DNA ligase I activity required during nuclear DNA replication to ligate the Okazaki fragments formed when the lagging DNA strand is synthesised. The only other DNA ligase predicted from the yeast genome sequence, DNL4/LIG4, is specifically involved in a non-homologous DNA end-joining reaction. What then is the source of the DNA ligase activity required for replication of the yeast mitochondrial genome? RESULTS: We report that CDC9 encodes two distinct polypeptides expressed from consecutive in-frame AUG codons. Translational initiation at these two sites gives rise to polypeptides differing by a 23 residue amino-terminal extension, which corresponds to a functional mitochondrial pre-sequence sufficient to direct import into yeast mitochondria. Initiation at the first AUG codon results in a 755 amino-acid polypeptide that is imported into mitochondria, whereupon the pre-sequence is proteolytically removed to yield the mature mitochondrial form of Cdc9p. Initiation at the second AUG codon produces a 732 amino-acid polypeptide, which is localised to the nucleus. Cells expressing only the nuclear isoform were found to be specifically defective in the maintenance of the mitochondrial genome. CONCLUSIONS: CDC9 encodes two distinct forms of DNA ligase I. The first is targeted to the mitochondrion and is required for propagation and maintenance of mitochondrial DNA, the second localises to the nucleus and is sufficient for the essential cell-division function associated with this gene.  相似文献   

20.
Summary In order to find new genetic loci and functions on the yeast mitochondrial DNA, especially mutations affecting the mitochondrial protein synthesis apparatus, temperature sensitive mutants have been isolated after MnCl2 mutagenesis and mitochondrial and nuclear mutants classified according to their pattern of recombination with three rho- tester strains.Eighteen cold- and heat-sensitive respiratory deficient mitochondrial mutants have been isolated and localized on the mitochondrial genome by deletion mapping using 113 rho- strains. Eight of them appear to represent new loci, among which some are probably mutations of the tRNA and rRNA genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号