首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effects of eight different polA -alleles on the replication of six different non-transferring enterobacterial plasmids have been tested. Using phage P1CM transduction, different allelic polA - mutations were introduced into E. coli K12 strains carrying one of several antibiotic resistance plasmids. Plasmid stability in the transductants was examined by testing clones for drug resistance after growth under various conditions. From the results, the R factors may be divided into three different classes. One plasmid is only affected by PolA- conditions which inhibit host cell growth, three plasmids (from the same compatibility group) are unstable under conditions in which the cells are severely deficient in DNA polymerase I and two other plasmids (compatible with each other and with the other four) are immediately lost from such transductants and are unstable in a number of others. Furthermore, the plasmids which are most dependent on DNA polymerase I have been shown to replicate in the presence of chloramphenicol and therefore typify a class of plasmids which includes bacteriocinogenic factors such as ColE1 and CloDF13, resistance determinant RSF1030 and the E. coli 15 minicircular plasmid.  相似文献   

2.
Summary Plasmid R46 was successfully transferred from Escherichia coli K-12 into Myxococcus xanthus strain MD-1 but not into M. xanthus strain XK. Plasmid R68.45 was transferred from E. coli K-12 into both strains of M. xanthus. The effects of these plasmids on survival of M. xanthus after ultraviolet (UV)-254 nm irradiation, the ability of M. xanthus to reactivate irradiated myxophages, and Weigle reactivation of UV-irradiated myxophages by M. xanthus were studied. Plasmid R46 had no effect on UV survival of M. xanthus, but increased the host's ability to reactivate irradiated myxophages. Plasmid R68.45 protected M. xanthus strains MD-1 and XK against the lethal effects of UV irradiation and also increased the host's ability to reactivate irradiated myxophages.  相似文献   

3.
We have constructed a novel Pichia pastoris/Escherichia coli dual expression vector for the production of recombinant proteins in both host systems. In this vector, an E. coli T7 promoter region, including the ribosome binding site from the phage T7 major capsid protein for efficient translation is placed downstream from the yeast alcohol oxidase promoter (AOX). For detection and purification of the target protein, the vector contains an amino-terminal oligohistidine domain (His6) followed by the hemaglutinine epitope (HA) adjacent to the cloning sites. A P. pastoris autonomous replicating sequence (PARS) was integrated enabling simple propagation and recovery of plasmids from yeast and bacteria (1). In the present study, the expression of human proteins in P. pastoris and E. coli was compared using this single expression vector. For this purpose we have subcloned a cDNA expression library deriving from human fetal brain (2) into our dual expression T7 vector and investigated 96 randomly picked clones. After sequencing, 29 clones in the correct reading frame have been identified, their plasmids isolated and shuttled from yeast to bacteria. All proteins were expressed soluble in P. pastoris, whereas in E. coli only 31% could be purified under native conditions. Our data indicates that this dual expression vector allows the economic expression and purification of proteins in different hosts without subcloning.  相似文献   

4.
Centrifugation through a cesium chloride density gradient and agarose gel electrophoresis of the DNA from the purple non-sulfur photosynthetic bacterium Ectothiorhodospira sp. resolved a single extrachromosomal element, plasmid pDG1. Its size was estimated to be 13.2 kilobases by restriction endonuclease mapping. Plasmid pDG1 and two restriction fragments thereof were cloned in Escherichia coli C600 with plasmid pBR327 as a vector to form mixed plasmids pDGBR1, pDGBR2, and pDGBR3. The resistance to streptomycin and mercury found in Ectothiorhodospira sp. was transferred to E. coli C600 after transformation with pDGBR1 but not with pDGBR2 and pDGBR3. The replication origin of pDG1 was estimated to be within a 2-kilobase restriction fragment of pDG1 by monitoring its replication in E. coli HB101, using a kanamycin resistance reporter gene. High stringency molecular hybridization with 32P-labeled pDG1 identified specific fragments of genomic DNA, suggesting the integration of some plasmid sequences. In accordance with the hypothesis that this integration is due to a transposon, we tested the transfer of streptomycin resistance from pDG1 into plasmid pVK 100 used as a target. For this test, we regrouped in the same cells of E. coli HB101, pDGBR1 and mobilizable plasmid pVK100 (tetr, kmr). We used the conjugation capacity of the pVK100/pRK2013 system to rescue the target plasmid pVK100 into nalidixic acid-resistant E. coli DH1. The transfer frequency of streptomycin resistance into pVK100 was 10−5, compatible with a transposition event. In line with the existence of a transposon on pDG1, heteroduplex mapping indicated the presence of inverted repeats approximately 7.5 kb from one another.  相似文献   

5.
 We studied illegitimate recombination by transforming yeast with a single-stranded (ss) non-replicative plasmid. Plasmid pCW12, containing the ARG4gene, was used for transformation of yeast strains deleted for the ARG4, either in native (circular) form or after linearization within the vector sequence by the restriction enzyme ScaI. Both circular and linearized ss plasmids were shown to be much more efficient in illegitimate integration than their double-stranded (ds) counterparts and more than two-thirds of the transformants analysed contained multiple tandem integrations of the plasmid. Pulsed-field gel electrophoresis of genomic DNA revealed significant changes in the karyotype of some transformants. Plasmid DNA was frequently detected on more than one chromosome and on mitotically unstable, autonomously replicating elements. Our results show that the introduction of nonhomologous ss DNA into yeast cells can lead to different types of alterations in the yeast genome. Received: 9 February 1996/Accepted: 7 July 1996  相似文献   

6.
Lithium treated cells of the yeastPachysolen tannophilus have been transformed with a plasmid carrying the gene encoding for the hexokinase PII enzyme fromSaccharomyces cerevisiae. The gene was expressed and the presence of the enzyme within the cell was demonstrated by DEAE-cellulose chromatography of cell-free extracts. Plasmid DNA from the transformants was used to transformE. coli HB101. Plasmid DNA from the bacterial transformants had the same mobility on an agarose gel as the original plasmid.  相似文献   

7.
A simple and reproducible method for transferring low copy-number episomal plasmids from yeast toEscherichia coli has been developed. Although slightly more time-consuming than direct transfer methods, which are effective with high copy number plasmids, the method is significantly faster than methods that require purification of yeast DNA. Plasmid DNA is released from yeast cells during brief treatments involving grinding with glass beads and heating. The treated yeast are cooled, electrocompetentE. coli is added, the mixture is electroporated, and transformants are selected using standard conditions forE. coli electrotransformation. The procedure typically yields sufficient transformants for most applications.  相似文献   

8.
Summary The promiscuous IncQ plasmid pKT210 (Cmr, Smr) is efficiently transferred by transpecific conjugation from Escherichia coli to the facultatively heterotrophic cyanobacterium Synechocystis PCC6803 when mobilized by a helper plasmid coding for IncP transfer functions. The IncQ plasmid is stably maintained in the cyanobacterium as an autonomously replicating multicopy plasmid with no detectable structural alterations and can be recovered by transformation back to E. coli when using a mcrA mcrB host. Thus, the replicative host-range of IncQ plasmids extends beyond purple bacteria to the distinct procaryotic taxon of cyanobacteria, allowing the use of these small plasmids as convenient cloning vectors in Synechocystis PCC6803 and presumably also in cyanobacteria that are not amenable to genetic transformation. In contrast, an IncQ plasmid bearing the TRP1 gene of Saccharomyces cerevisiae failed to replicate when transferred to that yeast by transformation.  相似文献   

9.
We have constructed two plasmid vectors (pMR95 and pMR96) with selectable markers for the marine yeast Debaryomyces hansenii. Plasmid pMR95 contains an autonomously replicating sequence previously isolated from Debaryomyces and a hygromycin B resistance gene from the plasmid pLG90 under the control of the isocytochrome C1 promoter and terminator sequences, while pMR96 has, in addition, the Saccharomyces URA3 gene. Transformation in Debaryomyces was accomplished by electroporation. Plasmid pMR95 was capable of transforming both Saccharomyces cerevisiae and D. hansenii to hygromycin resistance at low frequencies; pMR96 transformed both yeasts at low frequencies when selected for hygromycin B resistance and at very high efficiencies when selected for uracil prototrophy. The presence of the plasmids in the transformed yeast was confirmed by polymerase chain reaction. The plasmids could be recovered back in Escherichia coli when transformed with total DNA from the yeast transformants, indicating at least a partial autonomous existence of the plasmids in the marine yeast. To our knowledge this is the first successful attempt to transform D. hansenii. Received April 16, 1998; accepted June 30, 1998.  相似文献   

10.
Summary Synechocystis 6803 contains at least four cryptic plasmids of 2.27 kb (pUS1, pUS2 and pUS3) and 5.20 kb (pUS4). The 1.70 kb HpaI fragments of the related plasmids pUS2 and pUS3 were cloned into the Apr gene of the E. coli plasmid pACYC177, yielding the Kmr hybrid plasmids pUF12 and pUF3 respectively. pUF3 recombines in Synechocystis 6803 with a 2.27 kb plasmid giving the Kmr shuttle vector pUF311. The 1.35 kb HaeII fragment containing the Cm2 gene of the E. coli plasmid pACYC184 was cloned in pUF311 generating the Cmr Kmr shuttle vector pFCLV7. Wild-type cells of Synechocystis 6803 are transformed, albeit poorly, by the plasmids pUF3, pUF12 and pFCLV7. pFCLV7 very efficiently transforms the SUF311 strain of Synechocystis 6803 containing pUF311 as a resident plasmid. This is due to recombination between the homologous parts of pFCLV7 and pUF311. For the same reason the strain SUF311 is also efficiently transformable by E. coli plasmids, as shown for pLF8, provided that they have some homology with the E. coli part of pUF311.The combined use of Synechocystis 6803 strain SUF311 and of plasmids pFCLV7 and pLF8 generates an efficient host-vector system for gene cloning in this facultatively heterotrophic cyanobacterium.  相似文献   

11.
Summary In the TL-DNA region of the octopine type Ti plasmids, an ars region was assigned as the DNA segment conferring the replicational ability to YIp5 in Saccharomyces cerevisiae. T-DNA:YIp5 hybrid plasmids containing a particular T-DNA region could transform yeast cells at a frequency of 103–104 transformants per g plasmid DNA and they were rescued in Escherichia coli, although the transformed phenotype was mitotically unstable. The instability was inferred to be caused by segregation of the plasmids due to their low efficiency of replication. The ars region was mapped on the noncoding region between the coding regions corresponding to no. 5 and no. 7 mRNA, and its minimal length determined in this experiment was about 150 bp.Abbreviations Ti plasmid tumor inducing plasmid - T-DNA transferred DNA or tumor DNA - TL-DNA left T-DNA - ars autonomously replicating sequences  相似文献   

12.
Summary Plasmid DNA containing the replication origin of the Escherichia coli chromosome (oriC) has been shown to be inefficient as a template for DNA synthesis in vitro when isolated from dam mutants. here, we extend this study to hemimethylated oriC plasmids and to replication in dam-3 mutant enzyme extracts. The results show that: (1) hemimethylated oriC plasmids replicate with the same low efficiency as nonmethylated DNA; (2) DNA synthesis starts at oriC regardless of the methylated state of the template; (3) replication in dam-3 enzyme extracts is inefficient because this strain is deficient in DnaA protein; and (4) consistent with this observation, the copy number of the oriC plasmid pFH271 is reduced in the dam-3 mutant. However, we have found that low DnaA protein levels in dam-3 mutants are not sufficient to explain the reduced transformation efficiency of oriC plasmids. We suggest that there must exist in vivo inhibitory factors not present or present in low quantities in vitro which specifically recognize the hemimethylated or nonmethylated forms of the oric region.  相似文献   

13.
Summary The recombination proficiency of three recipient strains of Escherichia coli K 12 carrying different plasmids was investigated by conjugal mating with Hfr Cavalli. Some plasmids (e.g. R1drd 19, R6K) caused a marked reduction in the yield of recombinants formed in crosses with Hfr but did not reduce the ability of host strains to accept plasmid F104. The effect of plasmids on recombination was host-dependent. In Hfr crosses with AB1157 (R1-19) used as a recipient the linkage between selected and unselected proximal markers of the donor was sharply decreased. Plasmid R1-19 also decreased the yield of recombinants formed by recF, recL, and recB recC sbcA mutants, showed no effect on the recombination proficiency of recB recC sbcB mutant, and increased the recombination proficiency of recB, recB recC sbcB recF, and recB recC sbcB recL mutants. An ATP-dependent exonuclease activity was found in all tested recB recC mutants carrying plasmid R1-19, while this plasmid did not affect the activity of exonuclease I in strain AB1157 and its rec derivatives. The same plasmid was also found to protect different rec derivatives of the strain AB1157 against the lethal action of UV light. We suppose that a new ATP-dependent exonuclease determined by R1-19 plays a role in both repair and recombination of the host through the substitution of or competition with the exoV coded for by the genes recB and recC.  相似文献   

14.
Summary The positive regulator gene (phoB) for alkaline phosphatase of Escherichia coli was cloned into the EcoRI site of pBR322 from the E. coli chromosome by a shotgun method. phoB was then constructed in vitro by replacing the C fragment of gtC by the phoB chromosomal fragment obtained from the hybrid plasmid. When the phoB mutant was lysogenized by phoB, the lysogen became PhoB+. The integration site of the phage was identified by P1 phage transduction to be around phoB site on the chromosome. From these results, we conclude that the cloned gene is phoB and not a gene which suppresses phenotypically phoB mutation when it is in a multi-copy state. The restriction map was constructed. Based on this information, several PhoB deletion plasmids and smaller PhoB+ plasmids were constructed in vitro. By examining PhoB phenotype when these plasmids were introduced into phoB mutant, we could define the phoB gene locus in 2 kb on the restriction map of the cloned chromosomal fragment. Cells carrying the multi-copy phoB gene produced alkaline phosphatase qualitatively under normal phosphate regulation. The phoB gene product was identified by the maxicell method as a protein with a molecular weight of approximately 31,000 daltons.  相似文献   

15.
Summary Xanthomonas campestris pv. campestris was tested for its ability to maintain various plasmids after they had been transferred by conjugation from Escherichia coli donors. Broad host-range plasmids belonging to incompatibility groups P and Q could be maintained but X. campestris was unable to support replication of narrow host-range ColE1, pACYC184 and pBR325 replicons. Delivery systems based on E. coli donors of suicide plasmids and on X. campestris Hfrs were used to introduce Tn7 and Tn5 into X. campestris. Tn7 insertions were recovered at high frequency while Tn5 transposed at low frequency. Three auxotrophic Tn5 insertions were isolated but transposition of Tn7 into the X. campestris genome did not generate any auxotrophs. DNA hybridization analysis showed that Tn7 had inserted into the same hot spot(s) in all cases tested.  相似文献   

16.
Summary Plasmid pUC13 was used to clone DNA fragments of known sites from the chromosome of Escherichia coli. Each chimeric plasmid was introduced individually into the same dnaA46 mutant strain LC381 and suppressive integration (Sin) strains were selected. By means of cotransduction the null mutation recA56 was then introduced into each Sin strain and growth of each recA56 derivative at 42° C was scored. Strains that failed to grow at 42° C depended upon the recA gene for replication. Three factors were shown to limit the viability of LC381 harboring different chimeric plasmids and affect the degree of recA gene dependence of chromosome replication in the Sin strains at 42° C. It is suggested that these three constraints are the consequence of the organization of the E. coli chromosome, particularly the unique ability of terC to retard the progression of replication forks. Two classes of hypotheses concerning the function of the recA gene are considered.  相似文献   

17.
Summary Hybrid plasmids were constructed by combining in vitro the Escherichia coli plasmid pGA22, which carries the genes determining resistance to kanamycin, tetracycline, chloramphenicol and ampicillin, with the cryptic plasmids, pCG1 and pCG2, of Corynebacterium glutamicum. The hybrid plasmids were introduced into C. glutamicum and E. coli and replicated in both hosts. They expressed all the E. coli resistance phenotypes except ampicillin resistance in C. glutamicum. The levels of antibiotic inactivating enzymes encoded on these plasmids were about four to ten times lower in C. glutamicum than in E. coli. Despite the lack of expression of ampicillin resistance, -lactamase activity was detected in C. glutamicum carrying hybrid plasmids.  相似文献   

18.
The cloning vector pMK18 was developed through the fusion of the minimal replicative region from an indigenous plasmid of Thermus sp. ATCC27737, a gene cassette encoding a thermostable resistance to kanamycin, and the replicative origin and multiple cloning site of pUC18. Plasmid pMK18 showed transformation efficiencies from 108 to 109 per microgram of plasmid in Thermus thermophilus HB8 and HB27, both by natural competence and by electroporation. We also show that T. thermophilus HB27 can take pMK18 modified by the Escherichia coli methylation system with the same efficiency as its own DNA. To demonstrate its usefulness as a cloning vector, a gene encoding the β-subunit of a thermostable nitrate reductase was directly cloned in T. thermophilus HB27 from a gene library. Its further transfer to E. coli also proved its utility as a shuttle vector.  相似文献   

19.
The minicell-producing Escherichia coli strain P 678-54 was transformed with a series of defined PTY chimeric plasmids consisting of yeast 2-μm DNA and E. coli plasmid pCR1. In minicells the integrated 2-μm DNA from yeast directed specifically the synthesis of six polypeptides with apparent molecular weights of 15 000, 17 500, 20 000, 22 000, 37 000, and 48 000. The specificity of five other polypeptides, which cover a molecular weight range of 19 000 to 28 000, has not yet been established with certainty. Neither the orientation of the integrated DNA, nor the inversion which distinguishes the two structural forms of 2-μm DNA affected the polypeptides synthesized. However, integration at a given EcoRI site appeared to be correlated with the absence of one particular polypeptide band; this suggests that at least one of these sites is located in an expressed region of the DNA.  相似文献   

20.
Summary Hybrid plasmids containing the bacterial resistance-transfer factor pBR322 and the yeast leu2 +gene have been used to isolate DNA fragments of Physarum that are capable of initiating DNA replication in a yeast host. Five of forty hybrid plasmids containing Physarum sequences transform leu2 -yeast to Leu+ at high frequency. The resulting Leu+ transformants are characterized by phenotypic instability. Supercoiled plasmid molecules containing pBR322 sequences can be detected in the transformed yeast, indicating that the transforming DNA replicates autonomously. Plasmid DNA isolated from Leu+ yeast can transform leuB bacteria. The hybrid plasmid recovered from the Leu+ bacterial transformants is identical to the original plasmid, indicating structural integrity is maintained during passage through the yeast host. These hybrid plasmids containing Physarum sequences have the same characteristics as those containing autonomously replicating yeast chromosomal sequences. As the temporal sequence of DNA replication is particularly accessible to study in Physarum plasmodia, the functional significance of these segments should be amenable to study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号