首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Liver sinusoidal endothelial cells (LSECs), a type of endothelial cells with unique morphology and function, play an important role in the liver hemostasis, and LSECs dysfunction is involved in the development of nonalcoholic fatty liver disease (NAFLD). Here, we employed Raman imaging and chemometric data analysis in order to characterize the presence of lipid droplets (LDs) and their lipid content in primary murine LSECs, in comparison with hepatocytes, isolated from mice on high‐fat diet. On NAFLD development, LDs content in LSECs changed toward more unsaturated lipids, and this response was associated with an increased expression of stearylo‐CoA desaturase‐1. To the best of our knowledge, this is a first report characterizing LDs in LSECs, where their chemical composition is analyzed along the progression of NAFLD at the level of single LD using Raman imaging.   相似文献   

3.
目的:改进小鼠原代肝血窦内皮细胞的分离方法。方法:经过小鼠肝脏的原位灌洗、消化制备单细胞悬液、差速离心、密度梯度离心以及免疫磁珠分选等步骤,分离获得小鼠原代肝血窦内皮细胞,再通过流式细胞仪鉴定、细胞内吞功能染色以及对细胞超微结构的电子显微镜观察,对分离出的肝血窦内皮细胞进行鉴定。结果:肝血窦内皮细胞的平均得率为5.6×10~6个/只小鼠,细胞活性比率约为96%左右;细胞流式鉴定结果显示新鲜分离出的肝血窦内皮细胞VEGFR3阳性率达到95.8%,VEGFR2+CD31+双阳性细胞阳性率达到93.7%。分选出的LSECs能够有效吞噬FITC-FSA和Dil-Ac-LDL。培养1天后肝血窦内皮细胞的微观结构,可见其特征性的窗孔和筛板。结论:本文总结的分离方法可以稳定、高效地获得小鼠原代肝血窦内皮细胞。  相似文献   

4.
Although liver sinusoidal endothelial cells (LSECs) have long been known to contribute to liver regeneration following injury, the exact role of these cells in liver regeneration remains poorly understood. In this work, we performed lineage tracing of LSECs in mice carrying Tie2‐Cre or VE‐cadherin‐Cre constructs to facilitate fate‐mapping of LSECs in liver regeneration. Some YFP‐positive LSECs were observed to convert into hepatocytes following a two‐thirds partial hepatectomy (PH). Furthermore, human umbilical vein endothelial cells (HUVECs) could be triggered to convert into cells that closely resembled hepatocytes when cultured with serum from mice that underwent an extended PH. These findings suggest that mature non‐hepatocyte LSECs play an essential role in mammalian liver regeneration by converting to hepatocytes. The conversion of LSECs to hepatocyte‐like (iHep) cells may provide a new approach to tissue engineering.  相似文献   

5.
Liver sinusoidal endothelial cells (LSECs) form a semi-permeable barrier between parenchymal hepatocytes and the blood. LSECs participate in liver metabolism, clearance of pathological agents, immunological responses, architectural maintenance of the liver and synthesis of growth factors and cytokines. LSECs also play an important role in coagulation through the synthesis of Factor VIII (FVIII). Herein, we phenotypically define human LSECs isolated from fetal liver using flow cytometry and immunofluorescence microscopy. Isolated LSECs were cultured and shown to express endothelial markers and markers specific for the LSEC lineage. LSECs were also shown to engraft the liver when human fetal liver cells were transplanted into immunodeficient mice with liver specific expression of the urokinase-type plasminogen activator (uPA) transgene (uPA-NOG mice). Engrafted cells expressed human Factor VIII at levels approaching those found in human plasma. We also demonstrate engraftment of adult LSECs, as well as hepatocytes, transplanted into uPA-NOG mice. We propose that overexpression of uPA provides beneficial conditions for LSEC engraftment due to elevated expression of the angiogenic cytokine, vascular endothelial growth factor. This work provides a detailed characterization of human midgestation LSECs, thereby providing the means for their purification and culture based on their expression of CD14 and CD32 as well as a lack of CD45 expression. The uPA-NOG mouse is shown to be a permissive host for human LSECs and adult hepatocytes, but not fetal hepatoblasts. Thus, these mice provide a useful model system to study these cell types in vivo. Demonstration of human FVIII production by transplanted LSECs encourages further pursuit of LSEC transplantation as a cellular therapy for the treatment of hemophilia A.  相似文献   

6.
Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs) using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ), i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ) transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.  相似文献   

7.
Liver sinusoidal endothelial cells (LSECs) represent a highly differentiated cell type that lines hepatic sinusoids. LSECs form a discontinuous endothelium due to fenestrations under physiological conditions, which are reduced upon chronic liver injury. Cultivation of rodent LSECs associates with a rapid onset of stress-induced senescence a few days post isolation, which limits genetic and biochemical studies ex vivo. Here we show the establishment of LSECs isolated from p19ARF-/- mice which undergo more than 50 cell doublings in the absence of senescence. Isolated p19ARF-/- LSECs display a cobblestone-like morphology and show the ability of tube formation. Analysis of DNA content revealed a stable diploid phenotype after long-term passaging without a gain of aneuploidy. Notably, p19ARF-/- LSECs express the endothelial markers CD31, vascular endothelial growth factor receptor (VEGFR)-2, VE-cadherin, von Willebrand factor, stabilin-2 and CD146 suggesting that these cells harbor and maintain an endothelial phenotype. In line, treatment with small molecule inhibitors against VEGFR-2 caused cell death, demonstrating the sustained ability of p19ARF-/- LSECs to respond to anti-angiogenic therapeutics. From these data we conclude that loss of p19ARF overcomes senescence of LSECs, allowing immortalization of cells without losing endothelial characteristics. Thus, p19ARF-/- LSECs provide a novel cellular model to study endothelial cell biology.  相似文献   

8.
The balance between endothelial nitric oxide (NO) synthase (eNOS) activation and production of reactive oxygen species (ROS) is very important for NO homeostasis in liver sinusoidal endothelial cells (LSECs). Overexpression of cyclooxygenase-2 (COX-2), a major intravascular source of ROS production, has been observed in LSECs of cirrhotic liver. However, the links between low NO bioavailability and COX-2 overexpression in LSECs are unknown. This study has confirmed the link between low NO bioavailability and COX-2 overexpression by COX-2-dependent PGE2-EP2-ERK1/2-NOX1/NOX4 signalling pathway in LSECs in vivo and in vitro. In addition, the regulation of COX-2-independent LKB1-AMPK-NRF2-HO-1 signalling pathway on NO homeostasis in LSECs was also elucidated. The combinative effects of celecoxib on diminishment of ROS via COX-2-dependent and COX-2-independent signalling pathways greatly decreased NO scavenging. As a result, LSECs capillarisation was reduced, and endothelial dysfunction was corrected. Furthermore, portal hypertension of cirrhotic liver was ameliorated with substantial decreasing hepatic vascular resistance and great increase of portal blood flow. With the advance understanding of the mechanisms of LSECs protection, celecoxib may serve as a potential therapeutic candidate for patients with cirrhotic portal hypertension.  相似文献   

9.
Liver sinusoidal endothelial cells (LSECs) undergo capillarization, or loss of fenestrae, and produce basement membrane during liver fibrotic progression. DLL4, a ligand of the Notch signaling pathway, is predominantly expressed in endothelial cells and maintains liver sinusoidal homeostasis. The aim of this study was to explore the role of DLL4 in LSEC capillarization. The expression levels of DLL4 and the related genes, capillarization markers and basement membrane proteins were assessed by immunohistochemistry, immunofluorescence, RT-PCR and immunoblotting as appropriate. Fenestrae and basement membrane formation were examined by electron microscopy. We found DLL4 was up-regulated in the LSECs of human and CCl4-induced murine fibrotic liver, consistent with LSEC capillarization and liver fibrosis. Primary murine LSECs also underwent capillarization in vitro, with concomitant DLL4 overexpression. Bioinformatics analysis confirmed that DLL4 induced the production of basement membrane proteins in LSECs, which were also increased in the LSECs from 4 and 6-week CCl4-treated mice. DLL4 overexpression also increased the coverage of liver sinusoids by hepatic stellate cells (HSCs) through endothelin-1 (ET-1) synthesis. The hypoxic conditions that was instrumental in driving DLL4 overexpression in the LSECs. Consistent with the above findings, DLL4 silencing in vivo alleviated LSEC capillarization and CCl4-induced liver fibrosis. In conclusion, DLL4 mediates LSEC capillarization and the vicious circle between fibrosis and pathological sinusoidal remodeling.  相似文献   

10.
Autofluorescence spectroscopy is a promising and powerful approach for an in vivo, real time characterization of liver functional properties. In this work, preliminary results on the dependence of liver autofluorescence parameters on the nutritional status are reported, with particular attention to vitamin A and lipid accumulation in liver tissue. Normally fed and 24 h starving rats were used as animal models. Histochemical and autofluorescence analysis showed that lipids and vitamin A colocalize in the liver parenchyma. Fasting condition results in a parallel increase in both lipids and vitamin A. Autofluorescence imaging and microspectrofluorometric analysis carried out on unfixed, unstained tissue sections under 366 nm excitation, evidenced differences in both spectral shape and response to continuous irradiation between liver biopsies from fed and starving rats. As to photobleaching, in particular, fitting analysis evidenced a reduction of about 85% of the signal attributable solely to vitamin A during the first 10 s of irradiation. The tissue whole emission measured in fed and starving rat livers exhibited reductions of about 35% and 52%, respectively, that are closely related to vitamin A contents. The findings open interesting perspectives for the set up of an in situ, real time diagnostic procedure for the assessment of liver lipid accumulation, exploiting the photophysical properties of vitamin A.  相似文献   

11.
Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue.   总被引:19,自引:0,他引:19  
The fluorescent pigment lipofuscin accumulates with age in the cytoplasm of cells of the CNS. Because of its broad excitation and emission spectra, the presence of lipofuscin-like autofluorescence complicates the use of fluorescence microscopy (e.g., fluorescent retrograde tract tracing and fluorescence immunocytochemistry). In this study we examined several chemical treatments of tissue sections for their ability to reduce or eliminate lipofuscin-like autofluorescence without adversely affecting other fluorescent labels. We found that 1-10 mM CuSO4 in 50 mM ammonium acetate buffer (pH 5) or 1% Sudan Black B (SB) in 70% ethanol reduced or eliminated lipofuscin autofluorescence in sections of monkey, human, or rat neural tissue. These treatments also slightly reduced the intensity of immunofluorescent labeling and fluorescent retrograde tract tracers. However, the reduction of these fluorophores was far less dramatic than that for the lipofuscin-like compound. We conclude that treatment of tissue with CuSO4 or SB provides a reasonable compromise between reduction of lipofuscin-like fluorescence and maintenance of specific fluorescent labels.  相似文献   

12.
The contribution of endogenous fluorophores - such as proteins, bound and free NAD(P)H, flavins, vitamin A, arachidonic acid - to the liver autofluorescence was studied on tissue homogenate extracts and on isolated hepatocytes by means of spectrofluorometric analysis. Autofluorescence spectral analysis was then applied to investigate the response of single living hepatocytes to experimental conditions resembling the various phases of the organ transplantation. The following conditions were considered: 1 h after cells isolation (reference condition); cold hypoxia; rewarming-reoxygenation after cold preservation. The main alterations occurred for NAD(P)H and flavins, the coenzymes strictly involved in energetic metabolism. During cold hypoxia NAD(P)H, mainly the bound form, showed an increase followed by a slow decrease, in agreement with the inability of the respiratory chain to reoxidize the coenzyme, and a subsequent NADH reoxidation through alternative anaerobic metabolic pathways. Both bound/free NAD(P)H and total NAD(P)H/flavin ratio values were altered during cold hypoxia, but approached the reference condition values after rewarming-reoxygenation, indicating the cells capability to restore the basal redox equilibrium. A decrease of arachidonic acid and vitamin A contributions occurred after cold hypoxia: in the former case it may depend on the balance between deacylation and reacylation of fatty acids, in the latter it might be related to the vitamin A antioxidant role. An influence of physico-chemical status and microenvironment on the fluorescence efficiency of these fluorophores cannot be excluded. In general, all the changes observed for cell autofluorescence properties were consistent with the complex metabolic pathways providing for energy supply.  相似文献   

13.
Embryonic stem cells (ESCs) are a useful source for various cell lineages. So far, however, progress toward reconstitution of mature liver morphology and function has been limited. We have shown that knockout mice deficient in adrenomedullin (AM), a multifunctional endogenous peptide, or its receptor-activity modifying protein (RAMP2) die in utero due to poor vascular development and hemorrhage within the liver. In this study, using embryoid bodies (EBs)-culture system, we successfully induced liver sinusoidal endothelial-like cells by modulation of AM-RAMP2. In an EB differentiation system, we found that co-administration of AM and SB431542, an inhibitor of transforming growth factor β (TGFβ) receptor type 1, markedly enhanced differentiation of lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1)/stabilin-2-positive endothelial cells. These cells showed robust endocytosis of acetylated low-density lipoprotein (Ac-LDL) and upregulated expression of liver sinusoidal endothelial cells (LSECs)-specific markers, including factor 8 (F8), Fc-γ receptor 2b (Fcgr2b), and mannose receptor C type 1 (Mrc1), and also possessed fenestrae-like structure, a key morphological feature of LSECs. In RAMP2-null liver, by contrast, LYVE-1 was downregulated in LSECs, and the sinusoidal structure was disrupted. Our findings highlight the importance of AM-RAMP2 signaling for development of LSECs.  相似文献   

14.
Lipofuscin, an autofluorescent age pigment, occurs in enteric neurons. Due to its broad excitation and emission spectra, it overlaps with commonly used fluorophores in immunohistochemistry. We investigated the pattern of lipofuscin pigmentation in neurofilament (NF)-reactive nitrergic and non-nitrergic human myenteric neuron types. Subsequently, we tested two methods for reduction of lipofuscin-like autofluorescence. Myenteric plexus/longitudinal muscle wholemounts of small intestines of five patients undergoing surgery for carcinoma (aged between 18 and 69 years) were double stained for NF and neuronal nitric oxide synthase (nNOS). Lipofuscin pigmentation patterns were semiquantitatively evaluated by using confocal laser scanning microscopy with three different excitation wave lengths (one for undisturbed lipofuscin autofluorescence and two for specific labellings). Two pigmentation patterns could be detected in the five NF-reactive neuron types investigated. In nitrergic/spiny as well as in non-nitrergic/stubby neurons, coarse, intensely autofluorescent pigment granules were prominent. In non-nitrergic type II, III and V neurons, a fine granular, diffusely distributed and less intensely autofluorescent pigment was obvious. After incubation of wholemounts in either CuSO4 or Sudan black B solutions, unspecific autofluorescence could be substantially reduced whereas specific NF and nNOS fluorescence remained largely unaffected. We conclude that NF immunohistochemistry is useful for morphological representation of subpopulations of human myenteric neurons. The lipofuscin pigmentation in human myenteric neurons reveals at least two different patterns which can be related to distinct neuron types. Incubations of multiply stained whole mounts in both CuSO4 or Sudan black B are suitable methods for reducing autofluorescence thus facilitating discrimination between specific (immunohistochemical) and non-specific (lipofuscin) fluorescence.  相似文献   

15.
16.
The mechanism of elimination of blood borne heparin was studied. To this end unfractionated heparin (UFH) was tagged with FITC, which served as both a visual marker and a site of labeling with (125)I-iodine. UFH labeled in this manner did not alter the anticoagulant activity or binding specificity of the glycosaminoglycan. Labeled heparin administered intravenously to rats (0.1 IU/kg) had a circulatory t(1/2) of 1.7 min, which was increased to 16 min upon coinjection with unlabeled UFH (100 IU/kg). At 15 min after injection, 71% of recovered radioactivity was found in liver. Liver cell separation revealed the following relative uptake capacity, expressed per cell: liver sinusoidal endothelial cell (LSEC)-parenchymal cell-Kupffer cell = 15:3.6:1. Fluorescence microscopy on liver sections showed accumulation of FITC-UFH only in cells lining the liver sinusoids. No fluorescence was detected in parenchymal cells or endothelial cells lining the central vein. Fluorescence microscopy of cultured LSECs following binding of FITC-UFH at 4 degrees C and chasing at 37 degrees C, showed accumulation of the probe in vesicles located at the periphery of the cells after 10 min, with transfer to large, evenly stained vesicles in the perinuclear region after 2 h. Immunogold electron microscopy of LSECs to probe the presence of FITC following injection of FITC-UFH along with BSA-gold to mark lysosomes demonstrated colocalization of the probe with the gold particles in the lysosomal compartment. Receptor-ligand competition experiments in primary cultures of LSECs indicated the presence of a specific heparin receptor, functionally distinct from the hyaluronan/scavenger receptor (Stabilin2). The results suggest a major role for LSECs in heparin elimination.  相似文献   

17.

Background

The endothelium lines blood and lymph vessels and protects underlying tissues against external agents such as viruses, bacteria and parasites. Yet, microbes and particularly viruses have developed sophisticated ways to bypass the endothelium in order to gain access to inner organs. De novo infection of the liver parenchyma by many viruses and notably hepatitis viruses, is thought to occur through recruitment of virions on the sinusoidal endothelial surface and subsequent transfer to the epithelium. Furthermore, the liver endothelium undergoes profound changes with age and in inflammation or infection. However, primary human liver sinusoidal endothelial cells (LSECs) are difficult to obtain due to scarcity of liver resections. Relevant derived cell lines are needed in order to analyze in a standardized fashion the transfer of pathogens across the liver endothelium. By lentiviral transduction with hTERT only, we have immortalized human LSECs isolated from a hereditary hemorrhagic telangiectasia (HHT) patient and established the non-transformed cell line TRP3. TRP3 express mesenchymal, endothelial and liver sinusoidal markers. Functional assessment of TRP3 cells demonstrated a high capacity of endocytosis, tube formation and reactivity to immune stimulation. However, TRP3 displayed few fenestrae and expressed C-type lectins intracellularly. All these findings were confirmed in the original primary LSECs from which TRP3 were derived suggesting that these features were already present in the liver donor. We consider TRP3 as a model to investigate the functionality of the liver endothelium in hepatic inflammation in infection.  相似文献   

18.
Autofluorescence response to oxygen supply modulation has been investigated in livers of rats under the hypermetabolic state associated to a pathological condition-hyperthyroidism-that is known to enhance hepatocyte metabolic activities involving both NAD, i.e. oxidative pathways engaged in ATP synthesis, and NADP, i.e. reductive bio-synthesis and antioxidant functions. Experiments have been performed on rats in normal condition or submitted to long-term thyroxine (T(4)) administration. Histological inspection did not show any appreciable morphological alteration in liver parenchyma; biochemical analysis indicated an increase in both NADP(+) and NADPH contents. Autofluorescence properties have been monitored in vivo, via a fiber optic probe, on exposed livers both during induction of global ischemia and after restoration of blood circulation. Alteration of oxygen supply modulated liver autofluorescence properties, mainly as to NAD(P)H contribution, in dependence of changes in pyridine coenzymes redox state. With respect to euthyroid, hyperthyroid rat livers exhibited higher autofluorescence signals in all phases of the experiment, and a faster signal decay time upon reoxygenation. The results have been interpreted on the basis of a larger content of NADPH-the coenzyme not directly oxidized in respiratory processes and likely providing an almost constant autofluorescence background contribution-and of uncoupling effects facilitating the respiratory NADH oxidation, associated with the hyperthyroid condition. The results obtained in the liver hypermetabolic model provide interesting perspectives for a further improvement of the diagnostic implications of autofluorescence.  相似文献   

19.
Penetration of Allium cepa epidermal cells (white, yellow, and red varieties) by Botrytis allii induced a response by host protoplasts in normal tissue which was not observed when penetrations were made in protoplast-free host cell walls. Callose and auto-fluorescing substances (possibly phenolic compounds) were located at the penetration sites only in normal host cells containing protoplasts. Lignin tests were negative. Halos were clearly visible in both types of tissue. Autofluorescence was observed at penetration sites in normal cells of all cultivars but general wall background autofluorescence was not observed in white onions. Autofluorescence was generally yellow green and when treated with ammonium hydroxide became green. Treatment with sodium hydroxide abolished autofluorescence. No attempt was made to isolate the autofluorescing material.  相似文献   

20.
Although livers transplanted across MHC barriers in mice are normally accepted without recipient immune suppression, the underlying mechanisms remain to be clarified. To identify the cell type that contributes to induction of such a tolerance state, we established a mixed hepatic constituent cell-lymphocyte reaction (MHLR) assay. Irradiated C57BL/6 (B6) or BALB/c mouse hepatic constituent cells (HCs) and CFSE-labeled B6 splenocytes were cocultured. In allogeneic MHLR, whole HCs did not promote T cell proliferation. When liver sinusoidal endothelial cells (LSECs) were depleted from HC stimulators, allogeneic MHLR resulted in marked proliferation of reactive CD4(+) and CD8(+) T cells. To test the tolerizing capacity of the LSECs toward alloreactive T cells, B6 splenocytes that had transmigrated through monolayers of B6, BALB/c, or SJL/j LSECs were restimulated with irradiated BALB/c splenocytes. Nonresponsiveness of T cells that had transmigrated through allogeneic BALB/c LSECs and marked proliferation of T cells transmigrated through syngeneic B6 or third-party SJL/j LSECs were observed after the restimulation. Transmigration across the Fas ligand-deficient BALB/c LSECs failed to render CD4(+) T cells tolerant. Thus, we demonstrate that Fas ligand expressed on naive LSECs can impart tolerogenic potential upon alloantigen recognition via the direct pathway. This presents a novel relevant mechanism of liver allograft tolerance. In conclusion, LSECs are capable of regulating a polyclonal population of T cells with direct allospecificity, and the Fas/Fas ligand pathway is involved in such LSEC-mediated T cell regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号