首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Seminars in Virology》1997,8(2):101-111
Naturally occurring defective interfering RNAs have been found in 4 of 14 coronavirus species. They range in size from 2.2 kb to approximately 25 kb, or 80% of the 30-kb parent virus genome. The large DI RNAs do not in all cases appear to require helper virus for intracellular replication and it has been postulated that they may on their own function as agents of disease. Coronavirus DI RNAs appear to arise by internal deletions (through nonhomologous recombination events) on the virus genome or on DI RNAs of larger size by a polymerase strand-switching (copy-choice) mechanism. In addition to their use in the study of virus RNA replication and virus assembly, coronavirus DI RNAs are being used in a major way to study the mechanism of a high-frequency, site-specific RNA recombination event that leads to leader acquisition during virus replication (i.e., the leader fusion event that occurs during synthesis of subgenomic mRNAs, and the leader-switching event that can occur during DI RNA replication), a distinguishing feature of coronaviruses (and arteriviruses). Coronavirus DI RNAs are also being engineered as vehicles for the generation of targeted recombinants of the parent virus genome.  相似文献   

2.
Recombination is widespread among RNA viruses, but many molecular mechanisms of this phenomenon are still poorly understood. It was believed until recently that the only possible mechanism of RNA recombination is replicative template switching, with synthesis of a complementary strand starting on one viral RNA molecule and being completed on another. The newly synthesized RNA is a primary recombinant molecule in this case. Recent studies have revealed other mechanisms of replicative RNA recombination. In addition, recombination between the genomes of RNA viruses can be nonreplicative, resulting from a joining of preexisting parental molecules. Recombination is a potent tool providing for both the variation and conservation of the genome in RNA viruses. Replicative and nonreplicative mechanisms may contribute differently to each of these evolutionary processes. In the form of trans splicing, nonreplicative recombination of cell RNAs plays an important role in at least some organisms. It is conceivable that RNA recombination continues to contribute to the evolution of DNA genomes.__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 4, 2005, pp. 618–632.Original Russian Text Copyright © 2005 by Gmyl, Agol.  相似文献   

3.
In vivo RNA-RNA recombination of coronavirus in mouse brain.   总被引:13,自引:9,他引:4       下载免费PDF全文
RNA-RNA recombination between different strains of the murine coronavirus mouse hepatitis virus (MHV) occurs at a very high frequency in tissue culture. To demonstrate that RNA recombination may play a role in the evolution and pathogenesis of coronaviruses, we sought to determine whether MHV recombination could occur during replication in the animal host of the virus. By using two selectable markers, i.e., temperature sensitivity and monoclonal antibody neutralization, we isolated several recombinant viruses from the brains of mice infected with two different strains of MHV. The recombination frequency was very high, and recombination occurred at multiple sites on the viral RNA genome. This finding suggests that RNA-RNA recombination may play a significant role in natural evolution and neuropathogenesis of coronaviruses.  相似文献   

4.
C L Liao  M M Lai 《Journal of virology》1992,66(10):6117-6124
Mouse hepatitis virus (MHV), a coronavirus, has been shown to undergo a high frequency of RNA recombination both in tissue culture and in animal infection. So far, RNA recombination has been demonstrated only between genomic RNAs of two coinfecting viruses. To understand the mechanism of RNA recombination and to further explore the potential of RNA recombination, we studied whether recombination could occur between a replicating MHV RNA and transfected RNA fragments. We first used RNA fragments which represented the 5' end of genomic-sense sequences of MHV RNA for transfection. By using polymerase chain reaction amplification with two specific primers, we were able to detect recombinant RNAs which incorporated the transfected fragment into the 5' end of the viral RNA in the infected cells. Surprisingly, even the anti-genomic-sense RNA fragments complementary to the 5' end of MHV genomic RNA could also recombine with the MHV genomic RNAs. This observation suggests that RNA recombination can occur during both positive- and negative-strand RNA synthesis. Furthermore, the recombinant RNAs could be detected in the virion released from the infected cells even after several passages of virus in tissue culture cells, indicating that these recombinant RNAs represented functional virion RNAs. The crossover sites of these recombinants were detected throughout the transfected RNA fragments. However, when an RNA fragment with a nine-nucleotide (CUUUAUAAA) deletion immediately downstream of a pentanucleotide (UCUAA) repeat sequence in the leader RNA was transfected into MHV-infected cells, most of the recombinants between this RNA and the MHV genome contained crossover sites near this pentanucleotide repeat sequence. In contrast, when exogenous RNAs with the intact nine-nucleotide sequence were used in similar experiments, the crossover sites of recombinants in viral genomic RNA could be detected at more-downstream sites. This study demonstrated that recombination can occur between replicating MHV RNAs and RNA fragments which do not replicate, suggesting the potential of RNA recombination for genetic engineering.  相似文献   

5.
RNA recombination plays an important role in the diversification and evolution of RNA viruses. Most of these events are believed to be mediated by an actively copying viral replicase switching from a donor template to an acceptor template, where it resumes synthesis. In addition, intramolecular replicase-mediated events (i.e., rearrangements) can lead to the generation of replicable deleted forms of a viral genome, termed defective interfering (DI) RNAs. To gain further insight into the recombination process, the effect of various primary and secondary structures on recombination site selection in vivo was examined using plant RNA tombusviruses. The effect of sequence identity and complementarity on deletion events that generate DI RNAs was also investigated. Our results suggest that (1) 5' termini and strong hairpin structures in donor templates represent preferred sites for recombinations, (2) junction sites in acceptor templates do not occur in double-stranded regions, (3) nucleotide homology can shift donor and acceptor recombination sites closer to regions of identity and, (4) both sequence identity and complementarity can direct deletion sites in DI RNAs. These results further define RNA determinants of tombusvirus RNA recombination and rearrangement.  相似文献   

6.
Equine arteritis virus (EAV), the prototype arterivirus, is an enveloped plus-strand RNA virus with a genome of approximately 13 kb. Based on similarities in genome organization and protein expression, the arteriviruses have recently been grouped together with the coronaviruses and toroviruses in the newly established order Nidovirales. Previously, we reported the construction of pEDI, a full-length cDNA copy of EAV DI-b, a natural defective interfering (DI) RNA of 5.6 kb (R. Molenkamp et al., J. Virol. 74:3156-3165, 2000). EDI RNA consists of three noncontiguous parts of the EAV genome fused in frame with respect to the replicase gene. As a result, EDI RNA contains a truncated replicase open reading frame (EDI-ORF) and encodes a truncated replicase polyprotein. Since some coronavirus DI RNAs require the presence of an ORF for their efficient propagation, we have analyzed the importance of the EDI-ORF in EDI RNA replication. The EDI-ORF was disrupted at different positions by the introduction of frameshift mutations. These were found either to block DI RNA replication completely or to be removed within one virus passage, probably due to homologous recombination with the helper virus genome. Using recombination assays based on EDI RNA and full-length EAV genomes containing specific mutations, the rates of homologous RNA recombination in the 3'- and 5'-proximal regions of the EAV genome were studied. Remarkably, the recombination frequency in the 5'-proximal region was found to be approximately 100-fold lower than that in the 3'-proximal part of the genome.  相似文献   

7.
Total RNA was extracted from primary cultures of mouse macrophages isolated from 10-day-old mice 6 to 12 h postinfection with lactate dehydrogenase-elevating virus (LDV). Poly(A)+ RNA was extracted from spleens of 18-h LDV-infected mice. The RNAs were analyzed by Northern (RNA) blot hybridization with a number of LDV-specific cDNAs as probes. A cDNA representing the nucleocapsid protein (VP-1) gene located at the 3' terminus of the viral genome (E. K. Godeny, D. W. Speicher, and M. A. Brinton, Virology 177:768-771, 1990) hybridized to viral genomic RNA of about 13 kb plus seven subgenomic RNAs ranging in size from about 1 to about 3.6 kb. Two other cDNA clones hybridized only to the four or five largest subgenomic RNAs, respectively. In contrast, two cDNAs encoding continuous open reading frames with replicase and zinc finger motifs hybridized only to the genomic RNA. The replicase motif exhibited 75% amino acid identity to that of the 1b protein of equine arteritis virus (EAV) and 44% amino acid identity to those of the 1b proteins of coronaviruses and Berne virus. Combined, the results indicate that LDV replication involves formation of a 3'-coterminal-nested set of mRNAs as observed for coronaviruses and toroviruses as well as for EAV, with which LDV shares many other properties. Overall, LDV, like EAV, possesses a genome organization resembling that of the coronaviruses and toroviruses. However, EAV and LDV differ from the latter in the size of their genomes, virion size and structure, nature of the structural proteins, and symmetry of the nucleocapsids.  相似文献   

8.
Y J Lin  M M Lai 《Journal of virology》1993,67(10):6110-6118
All of the defective interfering (DI) RNAs of mouse hepatitis virus (MHV) contain both the 5' and 3' ends of the viral genomic RNA, which presumably include the cis sequences required for RNA replication. To define the replication signal of MHV RNA, we have used a vaccinia virus-T7 polymerase-transcribed MHV DI RNA to study the effects of sequence deletion on DI RNA replication. Following infection of susceptible cells with a recombinant vaccinia virus expressing T7 RNA polymerase, various cDNA clones derived from a DI RNA (DIssF) of the JHM strain of MHV, which is a 3.5-kb naturally occurring DI RNA, behind a T7 promoter were transfected. On superinfection with a helper MHV, the ability of various DI RNAs to replicate was determined. Serial deletions from the middle of the RNA toward both the 5' and 3' ends demonstrated that 859 nucleotides from the 5' end and 436 nucleotides from the 3' end of the MHV RNA genome were necessary for RNA replication. Surprisingly, an additional stretch of 135 nucleotides located at 3.1 to 3.3 kb from the 5' end of the genome was also required. This stretch is discontiguous from the 5'-end cis replication signal and is present in all of the naturally occurring DI RNAs studied so far. The requirement for a long stretch of 5'- and 3'-end sequences predicts that the subgenomic MHV mRNAs cannot replicate. The efficiency of RNA replication varied with different cDNA constructs, suggesting possible interaction between different regions of DI RNA. The identification of MHV RNA replication signals allowed the construction of an MHV DI-based expression vector, which can express foreign genes, such as the chloramphenicol acetyltransferase gene.  相似文献   

9.
The RNA genome of tobacco rattle virus (TRV) is bipartite. RNA 2 of the nematode-transmissible TRV isolate PPK20 encodes the viral coat protein (cp) and proteins with molecular weights of 29,400 and 32,800 (29.4K and 32.8K proteins). When this isolate was serially passaged in tobacco by using phenol-extracted RNA as the inoculum in each transfer, defective interfering (DI) RNAs rapidly accumulated. A number of these DI RNAs were cloned. Six DI RNAs had single internal deletions in RNA 2 that removed most of the cp gene, the 29.4K gene, and the 5' half of the 32.8K gene. The borders of the deletions in these DI RNAs were found to be flanked in the genomic RNA 2 by short nucleotide repeats or sequences resembling the 5' end of TRV genomic and subgenomic RNAs. Two DI RNAs were found to be recombinants containing a 5' sequence derived from RNA 2 and a 3' sequence derived from RNA 1. When serial passage of TRV isolate PPK20 was carried out by using leaf homogenates as inocula in each transfer, accumulation of a DI RNA (designated D7) with a functional cp gene was observed. The deletion in D7 covered the 3' end of the cp gene, the 29.4K gene, and the 5' half of the 32.8K gene. An infectious cDNA clone of D7 RNA was made. In mixed infections, D7 RNA rapidly outcompeted RNA 2 but did not compete with RNA 1. The deletion in D7 RNA abolished the nematode transmissibility of the PPK20 isolate. These results may explain the observation that many laboratory isolates of tobraviruses have lost their nematode transmissibility and contain RNA 2 molecules of widely different lengths.  相似文献   

10.
Three of six independently derived defective interfering (DI) particles of Sindbis virus generated by high-multiplicity passaging in cultured cells have tRNAAsp sequences at the 5' terminus of their RNAs (Monroe and Schlesinger, J. Virol. 49:865-872, 1984). In the present work, we found that the 5'-terminal sequences of the three tRNAAsp-negative DI RNAs were all derived from viral genomic RNA. One DI RNA sample had the same 5'-terminal sequence as the standard genome. The DI RNAs from another DI particle preparation were heterogeneous at the 5' terminus, with the sequence being either that of the standard 5' end or rearrangements of regions near the 5' end. The sequence of the 5' terminus of the third DI RNA sample consisted of the 5' terminus of the subgenomic 26S mRNA with a deletion from nucleotides 24 to 67 of the 26S RNA sequence. These data showed that the 5'-terminal nucleotides can undergo extensive variations and that the RNA is still replicated by virus-specific enzymes. DI RNAs of Sindbis virus evolve from larger to smaller species. In the two cases in which we followed the evolution of DI RNAs, the appearance of tRNAAsp-positive molecules occurred at the same time as did the emergence of the smaller species of DI RNAs. In pairwise competition experiments, one of the tRNAAsp-positive DI RNAs proved to be the most effective DI RNA, but under identical conditions, a second tRNAAsp-positive DI RNA was unable to compete with the tRNAAsp-negative DIs. Therefore, the tRNAAsp sequence at the 5' terminus of a Sindbis DI RNA is not the primary factor in determining which DI RNA becomes the predominant species in a population of DI RNA molecules.  相似文献   

11.
Li D  Lott WB  Lowry K  Jones A  Thu HM  Aaskov J 《PloS one》2011,6(4):e19447
While much of the genetic variation in RNA viruses arises because of the error-prone nature of their RNA-dependent RNA polymerases, much larger changes may occur as a result of recombination. An extreme example of genetic change is found in defective interfering (DI) viral particles, where large sections of the genome of a parental virus have been deleted and the residual sub-genome fragment is replicated by complementation by co-infecting functional viruses. While most reports of DI particles have referred to studies in vitro, there is some evidence for the presence of DI particles in chronic viral infections in vivo. In this study, short fragments of dengue virus (DENV) RNA containing only key regulatory elements at the 3' and 5' ends of the genome were recovered from the sera of patients infected with any of the four DENV serotypes. Identical RNA fragments were detected in the supernatant from cultures of Aedes mosquito cells that were infected by the addition of sera from dengue patients, suggesting that the sub-genomic RNA might be transmitted between human and mosquito hosts in defective interfering (DI) viral particles. In vitro transcribed sub-genomic RNA corresponding to that detected in vivo could be packaged in virus like particles in the presence of wild type virus and transmitted for at least three passages in cell culture. DENV preparations enriched for these putative DI particles reduced the yield of wild type dengue virus following co-infections of C6-36 cells. This is the first report of DI particles in an acute arboviral infection in nature. The internal genomic deletions described here are the most extensive defects observed in DENV and may be part of a much broader disease attenuating process that is mediated by defective viruses.  相似文献   

12.
Higher-order cis-acting RNA replication structures have been identified in the 3'- and 5'-terminal untranslated regions (UTRs) of a bovine coronavirus (BCoV) defective interfering (DI) RNA. The UTRs are identical to those in the viral genome, since the 2.2-kb DI RNA is composed of only the two ends of the genome fused between an internal site within the 738-nucleotide (nt) 5'-most coding region (the nsp1, or p28, coding region) and a site just 4 nt upstream of the 3'-most open reading frame (ORF) (the N gene). The joined ends of the viral genome in the DI RNA create a single continuous 1,635-nt ORF, 288 nt of which come from the 738-nt nsp1 coding region. Here, we have analyzed features of the 5'-terminal 288-nt portion of the nsp1 coding region within the continuous ORF that are required for DI RNA replication. We observed that (i) the 5'-terminal 186 nt of the nsp1 coding region are necessary and sufficient for DI RNA replication, (ii) two Mfold-predicted stem-loops within the 186-nt sequence, named SLV (nt 239 to 310) and SLVI (nt 311 to 340), are supported by RNase structure probing and by nucleotide covariation among closely related group 2 coronaviruses, and (iii) SLVI is a required higher-order structure for DI RNA replication based on mutation analyses. The function of SLV has not been evaluated. We conclude that SLVI within the BCoV nsp1 coding region is a higher-order cis-replication element for DI RNA and postulate that it functions similarly in the viral genome.  相似文献   

13.
Different tombusviruses were able to support the replication of either homologous or heterologous defective interfering (DI) RNAs, and those infected plants usually developed typical attenuated symptoms. However, in some helper virus-DI RNA combinations the inoculated plants were necrotized, although they contained a high level of DI RNA, suggesting that the accumulation of DI RNA and the resulting suppression of genomic RNA replication were not directly responsible for the symptom attenuation. Moreover, the 19-kDa protein product of ORF 5, which is known to play a crucial role in necrotic symptom development, accumulated at the same level in the infected plants in the presence of protective homologous DI RNA and in the presence of nonprotective heterologous DI RNA. It was also demonstrated, by chimeric helper viruses, that the ability of heterologous DI RNA to protect the virus-infected plants against systemic necrosis is determined by the 5′-proximal region of the helper virus genome. The results presented suggest that DI RNA-mediated protection did not operate via the specific inhibition of 19-kDa protein expression but, more likely, DI RNAs in protective DI-helper virus combinations specifically interacted with viral products, preventing the induction of necrotic symptoms.  相似文献   

14.
Cheng CP  Nagy PD 《Journal of virology》2003,77(22):12033-12047
RNA recombination occurs frequently during replication of tombusviruses and carmoviruses, which are related small plus-sense RNA viruses of plants. The most common recombinants generated by these viruses are either defective interfering (DI) RNAs or chimeric satellite RNAs, which are thought to be generated by template switching of the viral RNA-dependent RNA polymerase (RdRp) during the viral replication process. To test if RNA recombination is mediated by the viral RdRp, we used either a purified recombinant RdRp of Turnip crinkle carmovirus or a partially purified RdRp preparation of Cucumber necrosis tombusvirus. We demonstrated that these RdRp preparations generated RNA recombinants in vitro. The RdRp-driven template switching events occurred between either identical templates or two different RNA templates. The template containing a replication enhancer recombined more efficiently than templates containing artificial sequences. We also observed that AU-rich sequences promote recombination more efficiently than GC-rich sequences. Cloning and sequencing of the generated recombinants revealed that the junction sites were located frequently at the ends of the templates (end-to-end template switching). We also found several recombinants that were generated by template switching involving internal positions in the RNA templates. In contrast, RNA ligation-based RNA recombination was not detected in vitro. Demonstration of the ability of carmo- and tombusvirus RdRps to switch RNA templates in vitro supports the copy-choice models of RNA recombination and DI RNA formation for these viruses.  相似文献   

15.
Evidence for the intermolecular recombination between the RNA genomes of picornaviruses and coronaviruses as well as current models of the mechanisms of these phenomena are reviewed. Biological implications of the recombination between RNA genomes are briefly discussed. Examples of the recombinant analysis of the viral genome functions are given.  相似文献   

16.
The genomes of defective-interfering (DI) particles derived from the Sabin strain of type 1 poliovirus (PV1(Sab] were characterized by nuclease S1 mapping using complementary DNA (cDNA) copies of PV1(Sab) genome as probes. The results demonstrated variety in the size and location of the deletions, which were compatible with our previous prediction. The results further indicated that the locations of the deletions were limited within the internal genome region encoding viral capsid proteins and that the deletion sites were clustered in certain areas on the genome. Sequence analysis of a number of cloned cDNAs to the DI genomes revealed that every DI genome retained the correct reading frame for viral protein synthesis. These results strongly suggested that one or all of the viral non-structural proteins might be cis-acting at least at a certain stage in viral replication. A computer search for secondary structures with regard to the deletion sites provided a possible common structure from which, supported by sequences existing on the plus or minus RNA strand of PV1(Sab), deletion regions looped out from the remaining sequences. Replicase might, therefore, skip these transiently formed loop structures with certain frequencies, resulting in the generation of DI genomes. This model could also be considered as a model for genetic recombination in these RNA genomes. Possible "supporting sequences" were also found for every rearranged site on the RNAs of influenza virus and sindbis virus. Thus, we propose a new copy-choice model, designated the "supporting sequence-loop model", for the generation of rearrangements occurring on single-stranded RNA genomes.  相似文献   

17.
Cytopathogenic bovine viral diarrhea virus (BVDV) arises by RNA recombination in animals persistently infected with noncytopathogenic BVDV. Such animals develop fatal mucosal disease. In this report, the genome of a cytopathogenic BVDV isolate, termed CP9, is characterized. CP9-infected cells contained not only viral genomic RNA of 12.3 kb but also a BVDV-specific RNA of 8 kb. cDNA cloning and sequencing revealed that the 8-kb RNA is a BVDV genome with an internal deletion of 4.3 kb. The 8-kb RNA represents the genome of a typical defective interfering particle (DI), since its replication was strictly dependent on the presence of a helper virus and strongly interfered with the replication of the helper. Cell culture experiments demonstrated that the CP9 virus stock contains two viruses, namely, a helper virus and DI9. While the helper virus alone was noncytopathogenic, the presence of the DI conferred cytopathogenicity. Expression experiments demonstrated that p80, the marker protein of cytopathogenic BVDV, is translated from the defective genome. The occurrence of this cytopathogenic DI is linked to a fatal disease in cattle.  相似文献   

18.
The deletions in RNAs of three defective interfering (DI) particles of poliovirus type 1 have been located and their approximate extent determined by three methods. (1) Digestion with RNase III of DI RNAs yields the same 3′-terminal fragments as digestion with RNase III of standard virus RNA. The longest 3′-terminal fragment has a molecular weight of 1.55 × 106. This suggests that the deletions are located in the 5′-terminal half of the polio genome. (2) Fingerprints of RNase T1-resistant oligonucleotides of all three DI RNAs are identical and lack four large oligonucleotides as compared to the fingerprints of standard virus, an observation suggesting that the deletions in all three DI RNAs are located in the same region of the viral genome. The deletion-specific oligonucleotides have also been shown to be within the 5′-terminal half of the viral genome by alkali fragmentation of the RNA and fingerprinting poly (A)-linked (3′-terminal) fragments of decreasing size. (3) Virion RNA of DI(2) particles was annealed with denatured double-stranded RNA (RF) of standard virus and the hybrid heteroduplex molecules examined in the electron microscope. A single loop, approximately 900 nucleotides long and 20% from one end of the molecules, was observed. Both the size and extent of individual deletions is somewhat variable in different heteroduplex molecules, an observation suggesting heterogeneity in the size of the deletion in RNA of the DI(2) population. Our data show that the DI RNAs of poliovirus contain an internal deletion in that region of the viral genome known to specify the capsid polypeptides. This result provides an explanation as to why poliovirus DI particles are unable to synthesize viral coat proteins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号