首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cortical bone distributions in the femoral necks of apes and humans differ as a result of different loading environments caused by the realignment of the hip abductor apparatus. Femoral neck cortical bone in extant humans is very thin superiorly and thicker inferiorly, while the cortical bone in apes tends to be more uniformly thick. The unique internal anatomy of extant humans allows inferences to be made about primary locomotor function from incomplete femora. Here the differences in cortical bone distributions are quantified using moment coefficient of skewness. Skewness coefficients at two locations along the neck of the 6 million years old African femoral specimen BAR 1002’00 were compared to samples of 9 extant adult humans and 10 adult chimpanzees. The skewness coefficients of cortical bone in the femoral neck of BAR 1002’00 are more similar to those of chimpanzees than to humans, although the contrast is less pronounced in the region closer to the neck-shaft junction than more proximally toward the femoral head; this pattern indicates that in at least one respect this specimen attributed to Orrorin tugenensis manifests structural features suggesting influences of a hip abductor apparatus that had not yet evolved to the same extent as in extant humans.  相似文献   

2.
All early (Pliocene–Early Pleistocene) hominins exhibit some differences in proximal femoral morphology from modern humans, including a long femoral neck and a low neck‐shaft angle. In addition, australopiths (Au. afarensis, Au. africanus, Au. boisei, Paranthropus boisei), but not early Homo, have an “anteroposteriorly compressed” femoral neck and a small femoral head relative to femoral shaft breadth. Superoinferior asymmetry of cortical bone in the femoral neck has been claimed to be human‐like in australopiths. In this study, we measured superior and inferior cortical thicknesses at the middle and base of the femoral neck using computed tomography in six Au. africanus and two P. robustus specimens. Cortical asymmetry in the fossils is closer overall to that of modern humans than to apes, although many values are intermediate between humans and apes, or even more ape‐like in the midneck. Comparisons of external femoral neck and head dimensions were carried out for a more comprehensive sample of South and East African australopiths (n = 17) and two early Homo specimens. These show that compared with modern humans, femoral neck superoinferior, but not anteroposterior breadth, is larger relative to femoral head breadth in australopiths, but not in early Homo. Both internal and external characteristics of the australopith femoral neck indicate adaptation to relatively increased superoinferior bending loads, compared with both modern humans and early Homo. These observations, and a relatively small femoral head, are consistent with a slightly altered gait pattern in australopiths, involving more lateral deviation of the body center of mass over the stance limb. Am J Phys Anthropol, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
Assessments of temporal bone morphology have played an important role in taxonomic and phylogenetic evaluations of fossil taxa, and recent three‐dimensional analyses of this region have supported the utility of the temporal bone for testing taxonomic and phylogenetic hypotheses. But while clinical analyses have examined aspects of temporal bone ontogeny in humans, the ontogeny of the temporal bone in non‐human taxa is less well documented. This study examines ontogenetic allometry of the temporal bone in order to address several research questions related to the pattern and trajectory of temporal bone shape change during ontogeny in the African apes and humans. We further apply these data to a preliminary analysis of temporal bone ontogeny in Australopithecus afarensis. Three‐dimensional landmarks were digitized on an ontogenetic series of specimens of Homo sapiens, Pan troglodytes, Pan paniscus, and Gorilla gorilla. Data were analyzed using geometric morphometric methods, and shape changes throughout ontogeny in relation to size were compared. Results of these analyses indicate that, despite broadly similar patterns, African apes and humans show marked differences in development of the mandibular fossa and tympanic portions of the temporal bone. These findings indicate divergent, rather than parallel, postnatal ontogenetic allometric trajectories for temporal bone shape in these taxa. The pattern of temporal bone shape change with size exhibited by A. afarensis showed some affinities to that of humans, but was most similar to extant African apes, particularly Gorilla. Am J Phys Anthropol 151:630–642, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
The relationship between femoral neck superior and inferior cortical thickness in primates is related to locomotor behavior. This relationship has been employed to infer bipedalism in fossil hominins, although bipeds share the same pattern of generalized quadrupeds, where the superior cortex is thinner than the inferior one. In contrast, knuckle‐walkers and specialized suspensory taxa display a more homogeneous distribution of cortical bone. These different patterns, probably related to the range of movement at the hip joint and concomitant differences in the load stresses at the femoral neck, are very promising for making locomotor inferences in extinct primates. To evaluate the utility of this feature in the fossil record, we relied on computed tomography applied to the femur of the Late Miocene hominoid Hispanopithecus laietanus as a test‐case study. Both an orthograde body plan and orang‐like suspensory adaptations had been previously documented for this taxon on different anatomical grounds, leading to the hypothesis that this fossil ape should display a modern ape‐like distribution of femoral neck cortical thickness. This is confirmed by the results of this study, leading to the conclusion that Hispanopithecus represents the oldest evidence of a homogeneous cortical bone distribution in the hominoid fossil record. Our results therefore strengthen the utility of femoral neck cortical thickness for making paleobiological inferences on the locomotor repertoire of fossil primates. This feature would be particularly useful for assessing the degree of orthograde arboreal locomotor behaviors vs. terrestrial bipedalism in putative early hominins. Am J PhyAnthropol 2012. © Wiley Periodicals, Inc.  相似文献   

5.
The thickness of the inferior and superior cortices of the femoral neck was measured on X-rays of 181 strepsirhine primate femora representing 24 species. Neck length, neck depth and neck-shaft angle were also measured. The strength of the femoral neck in frontal bending was estimated by modeling the neck as a hollow cylinder, with neck depth as the outer diameter and cortical thickness representing the superior and inferior shell dimensions. Results indicate that the inferior cortex is always thicker than the superior cortex. The ratio of superior to inferior cortical thickness is highly variable but distinguishes two of the three locomotor groups in the sample. Vertical clingers and leapers have higher ratios (i.e., a more even distribution of cortical bone) than quadrupeds. The slow climbers tend to have the lowest ratios, although they do not differ significantly from the leapers and quadrupeds. These results do not confirm prior theoretical expectations and reported data for anthropoid primates that link greater asymmetry of the cortical shell to more stereotypical hip excursions. The ratio of superior to inferior cortical thickness is unrelated to body mass, femoral neck length, and neck-shaft angle, calling into question whether the short neck of strepsirhine primates acts as a cantilever beam in bending. On the other hand, the estimated section moduli are highly correlated with body mass and neck length, a correlation that is driven primarily by body mass. In conclusion, we believe that an alternative interpretation to the cantilever beam model is needed to explain the asymmetry in bone distribution in the femoral neck, at least in strepsirhine primates (e.g., a thicker inferior cortex is required to reinforce the strongly curved inferior surface). As in prior studies of cross-sectional geometry of long bones, we found slightly positive allometry of cortical dimensions with body mass.  相似文献   

6.
The external morphology of a fragmentary right proximal femur from southwestern Uganda is described here. Discovered in the Kikorongo Crater of Queen Elizabeth National Park in 1961, this specimen was informally assigned to Homo sapiens (although never described) and tentatively dated to the late Pleistocene. However, because aspects of the external morphology of the femur align the fossil with the African great apes, we suggest that the Kikorongo femur may be the first postcranial fossil of the genus Pan. Like the African apes, the Kikorongo specimen lacks both an obturator externus groove and an intertrochanteric line. It has a short femoral neck with a circular cross section, and a narrow and deep superior notch. Using resampling statistics and discriminant function analysis, the Kikorongo femur clustered with the genus Pan, as opposed to Gorilla or Homo. However, if the specimen is from Pan, it would be large for this taxon. Furthermore, features that clearly distinguish the external morphology of Plio-Pleistocene hominin proximal femora from African ape femora, such as the shape of the femoral neck in cross section and femoral neck length, have converged in Holocene humans and African apes. Unfortunately, the internal morphology of the femoral neck of the Kikorongo fossil was not discernable. Although we hypothesize that the Kikorongo femur is from the genus Pan, there is such variability in the proximal femora of modern humans that, although it would be an unusual human, it remains possible that this fossil represents H. sapiens.  相似文献   

7.
To understand the mechanical effects of different modes of locomotion on the femoral neck of chimpanzees, we investigated the cross-sectional morphology of the femoral neck of 4 chimpanzees (Pan troglodytes schweinfurthii) collected from the Mahale Mountains, Tanzania. We performed serial computed tomography (CT) scans of the neck from the femoral head to the base of the neck perpendicular to the long axis of the neck. We measured the cortical thickness of the serial 5 cross sections of the neck region every 45° around the circumference, i.e., 8 points per section, and examined the cross-sectional properties of the mid-section. When we compared the superior and inferior parts of the cortical thickness of the femoral neck, the inferior part exhibited the greatest cortical thickness whereas the superior part had the smallest values in every specimen. Researchers have also observed such regional differences between superior and inferior cortical thicknesses in bipedal humans and other primates, although these differences are not as large in the chimpanzee as in bipedal hominini. The present study differed from the past study on hominini and chimpanzees in that the superior anterior (SA) part exhibited greater cortical thickness in chimpanzees. We believe these observations reflect the structural strengthening of parts of the chimpanzee femoral neck that is needed to accommodate the mechanical loads imposed by arboreal vertical climbing and terrestrial quadrupedal and bipedal locomotion.  相似文献   

8.
Recent discussions of the pedal morphology of Australopithecus afarensis have led to conflicting interpretations of australopithecine locomotor behavior. We report the results of a study using computer aided design (CAD) software that provides a quantitative assessment of the functional morphology of australopithecine metatarsophalangeal joints. The sample includes A. afarensis, Homo sapiens, Pan troglodytes, Gorilla gorilla, and Pongo pygmaeus. Angular measurements of the articular surfaces relative to the long axes of the metatarsals and phalanges were taken to determine whether the articular surfaces are plantarly or dorsally oriented. Humans have the most dorsally oriented articular surfaces of the proximal pedal phalanges. This trait appears to be functionally associated with dorsiflexion during bipedal stride. Pongo has the most plantarly oriented articular surfaces of the proximal pedal phalanges, probably reflecting an emphasis on plantarflexion in arboreal positional behaviors, while the African hominoids are intermediate between Pongo and Homo for this characteristic. A. afarensis falls midway between the African apes and humans. Results from an analysis of metatarsal heads are inconclusive with regard to the functional morphology of A. afarensis. Overall, the results are consistent with other evidence indicating that A. afarensis was a capable climber. © 1994 Wiley-Liss, Inc.  相似文献   

9.
The crescent of foramina of the cerebral surface of the sphenoid bone (superior orbital fissure, foramen rotundum, foramen ovale, foramen spinosum) differs morphologically in the African great apes and modern humans. New discoveries of Australopithecus afarensis at Hadar, Ethiopia, draw attention to the similarity of the crescent, particularly the “foramen” shape of the superior orbital fissure and its close proximity to the foramen rotundum, in this species, the African apes, and many other primates. Australopithecus africanus also shows this primitive pattern, whereas “robust” australopiths and humans share a configuration in which a true, laterally extended superior orbital fissure intervenes between the greater and lesser wings of the sphenoid and a broad bridge of bone separates the fissure from the foramen rotundum. This shared morphology may be added to the list of putative “robust” australopith-Homo synapomorphies. © 1996 Wiley-Liss, Inc.  相似文献   

10.
Fully adult partial skeletons attributed to Australopithecus afarensis (AL 288-1, “Lucy”) and to Homo habilis (OH 62, “Lucy's child”), respectively, both include remains from upper and lower limbs. Relationships between various limb bone dimensions of these skeletons are compared to those of modern African apes and humans. Surprisingly, it emerges that OH 62 displays closer similarities to African apes than does AL 288-1. Yet A. afarensis, whose skeleton is dated more than 1 million years earlier, is commonly supposed to be the ancestor of Homo habilis. If OH 62, classified as Homo habilis by its discoverers, does indeed represent a stage intermediate between A. afarensis and later Homo, a revised interpretation of the course of human evolution would be necessary.  相似文献   

11.
There has been much debate as to the locomotor repertoire of Lucy (A.L. 288-1) and other specimens of Australopithecus afarensis, ranging from fully committed bipeds to species that spent a significant time in the trees as well as on the ground. We examined the bar–glenoid angle, a character purported to indicate arboreal propensities, and its implications for this specific debate and the more general challenge of extracting behavioral information from fossils. We examined the bar–glenoid angle in ontogenetic samples of Pan paniscus, Pan troglodytes, Gorilla gorilla gorilla, Gorilla gorilla beringei, Pongo pygmaeus, Homo sapiens, and A.L. 288-1 (Lucy). We found that there is no allometry in the bar–glenoid angle for the great apes, but a weak correlation for humans. Moreover, the data scatters for the African apes and humans converge at the smaller size ranges, and Lucy's value for bar–glenoid angle falls precisely in this area of overlap. Therefore, we conclude that the bar–glenoid angle is not tightly correlated with function and, as such, cannot be used as a morphological signal of arboreal behavior, especially in the smaller size ranges, at which arboreal and nonarboreal species overlap. Our work does not resolve issues concerning Lucy's precise locomotor repertoire but adds new information to consider. The total morphological pattern, plus an appreciation of the underlying variance in morphological and behavioral characters in extant species, is key for making functional inferences from the morphology of fossils.  相似文献   

12.
Ch. Berge 《Human Evolution》1991,6(5-6):365-376
Two multivariate methods — the logarithmic principal component analysis (LPCA), and the logarithmic factorial analysis (LFA) — have been used tocompare the hip bone proportions of hominoids biometrically. The results have shown that size effects among apes and hominids interact to a centain extent with locomotor specializations, which are related to the attainment of more or less terrestrial behaviors. The pelvic morphology of great apes (Pongo, Pan, Gorilla) has retained numerous morphological traits — such as a gracile and elongated hip bone —, which were inherited from common adaptations to arboreal locomotion. In spite of these common traits, the African pongids (Pan, Gorilla) present two very different pelvic morphologies corresponding to two adaptative modes of terrestrial quadrupedalism. The hip bone of humans is proportionnally short and robust, most particularly at the level of its axial part. These characteristics, as well as the whole pelvic proportions, clearly indicate that gravitational forces exert a strong pressure on the pelvic walls during bipedalism. Among hominids, the transition from an australopithecine-like pelvic pattern to a human-like one corresponds to an increase of loading constraints on the hip jiont. This seems to indicate an evident change in locomotor behavior. Progression apparently became exclusively terrestrial with the genusHomo.  相似文献   

13.
Examination of relative growth and allometry is important for our understanding of the African apes, as they represent a closely related group of species of increasing body size. This study presents a comparison of ontogenetic relative growth patterns of some postcranial dimensions in Pan paniscus, Pantroglodytes, and Gorilla gorilla. Interspecific proportion differences among the three species are also analyzed. It is stressed that reliable ontogenetic information can only be obtained if subadults are examined-growth data cannot be inferred from static adult scaling. Results indicate that some postcranial relative growth patterns are very similar in the three species, suggesting differential extrapolation of a common growth pattern, whereas for other proportion comparisons the growth trends differ markedly among the species, producing distinct shape differences in the adults Interspecific shape changes among the three species are characterized by positive allometry of chest girth and negative allometry of body height and leg length. It is suggested that relative decrease of leg length with increasing body size among the African pongids might be expected on biomechanical grounds, in order to maintain similar locomotor abilities of climbing arborealism and quadrupedal terrestrialism. Relative to body weight or trunk length, the limbs of the bonobo (Pan paniscus) are longer than in the common chimpanzee or the gorilla, with a lower intermembral index. This may most closely resemble the primitive condition for the African apes.  相似文献   

14.
The hands of the Hominoidea evidence four adaptive modes which distinguish the lesse apes (Hylobatidae), the orangutan (Pongo), the African apes (Pan), and man (Homo) from one another. The hands of the apes consist of compromises between manipulatory and locomotor functions because selection has operated for precision of grip as well as for special locomotor mechanisms. The human hand is almost totally devoted to manipulation. The hands of gibbons, orangutans and the African apes differ in many features that may be correlated with locomotion. The gibbons and siamang are specially adapted for ricochetal arm-swinging. The great apes possess morphological adaptations for arboreal foraging and climbing distinct from those of the hylobatids. In addition, the African apes have become secondarily adapted for terrestrial quadrupedal locomotion. Many features that distinguish the hands of chimpanzees and gorillas may be associated with the development of efficient knuckele-walking propulsive and support mechanisms.  相似文献   

15.
Molecular data suggest that humans are more closely related to chimpanzees than either is to the gorillas, yet one finds the closest similarity in craniofacial morphology to be among the great apes to the exclusion of humans. To clarify how and when these differences arise in ontogeny, we studied ontogenetic trajectories for Homo sapiens, Pan paniscus, Pan troglodytes, Gorilla gorilla and Pongo pygmaeus. A total of 96 traditional three-dimensional landmarks and semilandmarks on the face and cranial base were collected on 268 adult and sub-adult crania for a geometric morphometric analysis. The ontogenetic trajectories are compared by various techniques, including a new method, relative warps in size-shape space. We find that adult Homo sapiens specimens are clearly separated from the great apes in shape space and size-shape space. Around birth, Homo sapiens infants are already markedly different from the great apes, which overlap at this age but diverge among themselves postnatally. The results suggest that the small genetic differences between Homo and Pan affect early human ontogeny to induce the distinct adult human craniofacial morphology. Pure heterochrony does not sufficiently explain the human craniofacial morphology nor the differences among the African apes.  相似文献   

16.
The choice of a model taxon is crucial when investigating fossil hominids that clearly do not resemble any extant species (such as Australopithecus) or show significant differences from modern human proportions (such as Homo habilis OH 62). An “interhominoid” combination is not adequate either, as scaling with body weight is strongly divergent in African apes and humans for most skeletal predictors investigated here. Therefore, in relation to a study of seven long bone dimensions, a new taxon-“independent” approach is suggested. For a given predictor, its taxonomic “independence” is restricted to the size range over which the body weight-predictor relationship for African apes and humans converges. Different predictors produce converging body weight estimates (BWEs) for different size ranges: taxon-“independent” estimates can be calculated for small- and medium-sized hominids (e. g., for weights below 50 kg) using femoral and tibial dimensions, whereas upper limb bones provide converging results for large hominids (above 50 kg). If the remains of Australopithecus afarensis really belong to one species, the relationship of male (above 60 kg) to female body weight (approximately 30 kg) does not fall within the observed range of modern hominoids. Considering Sts 14 (22 kg) to represent a small-sized Australopithecus africanus, the level of encephalization lies well above that of extant apes. If OH 62 (approximately 25 kg), with limb proportions less human-like than those of australopithecines, indeed represents Homo habilis (which has been questioned previously), an increase in relative brain size would have occurred well before full bipedality, an assumption running counter to current assumptions concerning early human evolution. © 1993 Wiley-Liss, Inc.  相似文献   

17.
Serum samples from 245 apes (184 Pan troglodytes, five Pan paniscus, 28 Gorilla gorilla, 23 Pongo pygmaeus abelei, and five Pongo pygmaeus pygmaeus) were tested for G1m (1,2,3,17), G2m (23), and G3m (5,6,10,11,13,14,15,16,21,24,28) immunoglobulin allotypes by the classical method of inhibition of hemagglutination. Some phenotypes are species specific while a few are shared by man and African apes.  相似文献   

18.

Physical exercise induces spatially heterogeneous adaptation in bone. However, it remains unclear where the changes in BMD and geometry have the greatest impact on femoral neck strength. The aim of this study was to determine the principal BMD-and-geometry changes induced by exercise that have the greatest effect on femoral neck strength. Pre- and post-exercise 3D-DXA images of the proximal femur were collected of male participants from the LIFTMOR-M exercise intervention trial. Meshes with element-by-element correspondence were generated by morphing a template mesh to each bone to calculate changes in BMD and geometry. Finite element (FE) models predicted femoral neck strength changes under single-leg stance and sideways fall load. Partial least squares regression (PLSR) models were developed with BMD-only, geometry-only, and BMD-and-geometry changes to determine the principal modes that explained the greatest variation in neck strength changes. The PLSR models explained over 90% of the strength variation with 3 PLS components using BMD-only (R2 > 0.92, RMSE < 0.06 N) and 8 PLS components with geometry-only (R2 > 0.93, RMSE < 0.06 N). Changes in the superior neck and distal cortex were most important during single-leg stance while the superior neck, medial head, and lateral trochanter were most important during a sideways fall. Local changes in femoral neck and head geometry could differentiate the exercise groups from the control group. Exercise interventions may target BMD changes in the superior neck, inferior neck, and greater trochanter for improved femoral neck strength in single-leg stance and sideways fall.

  相似文献   

19.
Although quantitative variations exist between living Man ( Homo sapiens sapiens ) and the extant great apes ( Pongo, Pan, Gorilla ) in such features of the articular surface of the temporal bone (a part of the temporomandibular joint) as the proportionate development of the postglenoid tubercle, the relative prominence of the articular tubercle and the slope of its posterior face, these do not individually effect a clear differentiation between the four extant genera. But in multivariate combination of these features, although Pan and Pongo are relatively closely associated, Gorilla and Homo sapiens sapiens are distinct, and also clearly differentiated from each other. The differences between genera of extant apes are, on average, as great as those between extant Man and individual apes.
As portrayed by such multivariate compound, this anatomical region in four fossil groups displays a unique configuration differentiating Homo sapiens neanderthalensis, Homo erectus pekinensis, Australopithecus africanus and Australopithecus robustus both from one another and from extant types. The differences are such that the fossil species lie uniquely and not intermediate between extant groups.
Definable age changes in this multivariate compound occur in both Man and apes but neither these, nor overall differences between adults, appear to be associated with marked contrasts in the pattern of jaw movement. It would thus seem improbable that inferences can be made from these features about the type of jaw movement that characterized the several fossil groups.  相似文献   

20.
The structure and functions of the modern human hand are critical components of what distinguishes Homo sapiens from the great apes (Gorilla, Pan, and Pongo). In this study, attention is focused on the trapezium and trapezoid, the two most lateral bones of the distal carpal row, in the four extant hominid genera, representing the first time they have been quantified and analyzed together as a morphological-functional complex. Our objective is to quantify the relative articular and nonarticular surface areas of these two bones and to test whether modern humans exhibit significant shape differences from the great apes, as predicted by previous qualitative analyses and the functional demands of differing manipulative and locomotor strategies. Modern humans were predicted to show larger relative first metacarpal and scaphoid surfaces on the trapezium because of the regular recruitment of the thumb during manipulative behaviors; alternatively, great apes were predicted to show larger relative second metacarpal and scaphoid surfaces on the trapezoid because of the functional demands on the hands during locomotor behaviors. Modern humans were also expected to exhibit larger relative mutual joint surfaces between the trapezoid and adjacent carpals than do the great apes because of assumed transverse loads generated by the functional demands of the modern human power grip. Using 3D bone models acquired through laser digitizing, the relative articular and nonarticular areas on each bone are quantified and compared. Multivariate analyses of these data clearly distinguish modern humans from the great apes. In total, the observed differences between modern humans and the great apes support morphological predictions based on the fact that this region of the human wrist is no longer involved in weight-bearing during locomotor behavior and is instead recruited solely for manipulative behaviors. The results provide the beginnings of a 3D comparative standard against which further extant and fossil primate wrist bones can be compared within the contexts of manipulative and locomotor behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号