首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Endogenous small interfering RNAs in animals   总被引:1,自引:0,他引:1  
  相似文献   

3.
RNA interference and chemically modified small interfering RNAs   总被引:11,自引:0,他引:11  
RNA interference (RNAi) is a powerful biological process for specific silencing of gene expression in diversified eukaryotic cells and has tremendous potential for functional genomics, drug discovery through in vivo target validation, and development of novel gene-specific medicine. The future success of this technology relies on identifying appropriate chemical modifications to improve stability, potency and in vivo cellular delivery. The present review summarizes the role of the chemist's toolbox in this emerging technology.  相似文献   

4.
Rotavirus gene silencing by small interfering RNAs   总被引:11,自引:0,他引:11  
Déctor MA  Romero P  López S  Arias CF 《EMBO reports》2002,3(12):1175-1180
RNA interference is an evolutionarily conserved double-stranded RNA-triggered mechanism for suppressing gene expression. Rotaviruses, the leading cause of severe diarrhea in young children, are formed by three concentric layers of protein, from which the spike protein VP4 projects. Here, we show that a small interfering RNA corresponding to the VP4 gene efficiently inhibits the synthesis of this protein in virus-infected cells. A large proportion of infected cells had no detectable VP4 and the yield of viral progeny was reduced. Most of the virus particles purified from these cells were triple-layered, but lacked VP4, and were poorly infectious. We also show that VP4 might not be required for the last step of virus morphogenesis. The VP4 gene silencing was specific, since the synthesis of VP4 from rotavirus strains that differ in the target sequence was not affected. These findings offer the possibility of carrying out reverse genetics in rotaviruses.  相似文献   

5.
6.
Qiu W  Scholthof KB 《Journal of virology》2001,75(11):5429-5432
Panicum mosaic virus (PMV) is a recently molecularly characterized RNA virus with the unique feature of supporting the replication of two subviral RNAs in a few species of the family Gramineae. The subviral agents include a satellite RNA (satRNA) that is devoid of a coding region and the unrelated satellite panicum mosaic virus (SPMV) that encodes its own capsid protein. Here we report the association of this complex with a new entity in the RNA world, a defective-interfering RNA (DI) of a satellite virus. The specificity of interactions governing this four-component viral system is illustrated by the ability of the SPMV DIs to strongly interfere with the accumulation of the parental SPMV. The SPMV DIs do not interfere with PMV satRNA, but they do slightly enhance the rate of spread and titer of PMV. The SPMV-derived DIs provide an additional avenue by which to investigate fundamental biological questions, including the evolution and interactions of infectious RNAs.  相似文献   

7.
RNA interference is now considered to be the most powerful and promising tool for gene-targeted therapy. Several problems are still to be solved for its successful use in medicine. One of the main issues is efficient siRNA delivery. The review considers various types of nonviral siRNA delivery systems.  相似文献   

8.
9.
Gene silencing in mammals by small interfering RNAs   总被引:1,自引:0,他引:1  
Among the 3 billion base pairs of the human genome, there are approximately 30,000-40,000 protein-coding genes, but the function of at least half of them remains unknown. A new tool - short interfering RNAs (siRNAs) - has now been developed for systematically deciphering the functions and interactions of these thousands of genes. siRNAs are an intermediate of RNA interference, the process by which double-stranded RNA silences homologous genes. Although the use of siRNAs to silence genes in vertebrate cells was only reported a year ago, the emerging literature indicates that most vertebrate genes can be studied with this technology.  相似文献   

10.
Conditional gene knock-down by CRE-dependent short interfering RNAs   总被引:4,自引:0,他引:4       下载免费PDF全文
Short interfering RNAs (siRNAs) are short (21–23 nt) double-stranded RNAs that direct the sequence-specific degradation of corresponding mRNAs, resulting in suppression of gene activity. siRNAs are powerful tools for gene functional analysis in mammals. Chemically synthesized siRNAs permit transient gene repression but preclude inhibition of stable gene products as well as long-term phenotypic analyses. Permanent gene suppression can be achieved by transcribing siRNAs as stem–loop precursors from Pol III promoters. This approach, however, has a major limitation: inhibition cannot be controlled in a time- or tissue-specific manner. Thus, the approach cannot be applied to genes essential for cell survival or cell proliferation. To overcome these limitations, we have designed a CRE–lox-based strategy that allows one to repress gene activity in a time-dependent manner in cells, and in a time- or tissue-dependent manner in animals. Our approach promises to improve dramatically the procedures for functional genetics in mammals.  相似文献   

11.
12.
13.
14.
RNA silencing-mediated small interfering RNAs (siRNAs) and microRNAs (miRNAs) have diverse natural roles, ranging from regulation of gene expression and heterochromatin formation to genome defense against transposons and viruses. Unlike miRNAs, endogenous siRNAs are generally not conserved between species; consequently, their identification requires experimental approaches. Thus far, endogenous siRNAs have not been reported from rice, which is a model species for monocotyledonous plants. We identified a large set of putative endogenous siRNAs from root, shoot and inflorescence small RNA cDNA libraries of rice. Most of these siRNAs are from intergenic regions, although a substantial proportion (22%) originates from the introns and exons of protein-coding genes. Northern and RT–PCR analysis revealed that the expression of some of the siRNAs is tissue specific or developmental stage specific. A total of 25 transposons and 21 protein-coding genes were predicted to be cis-targets of some of the siRNAs. Based on sequence homology, we also predicted 111 putative trans-targets for 44 of the siRNAs. Interestingly, ~46% of the predicted trans-targets are transposable elements, which suggests that endogenous siRNAs may play an important role in the suppression of transposon proliferation. Using RNA ligase-mediated-5′ rapid amplification of cDNA end assays, we validated three of the predicted targets and provided evidence for both cis- and trans-silencing of target genes by siRNAs-guided mRNA cleavage.  相似文献   

15.
RNA interference (RNAi) has emerged as a powerful technique to downregulate gene expression. The use of polIII promoters to express small hairpin RNAs (shRNAs), combined with the versatility and robustness of lentiviral vector-mediated gene delivery to a wide range of cell types offers the possibility of long-term downregulation of specific target genes both in vitro and in vivo. The use of silencing lentivectors allows for a rapid and convenient way of establishing cell lines (or transgenic mice) that stably express shRNAs for analysis of phenotypes produced by knockdown of a gene product. Here we present two possible protocols describing the design and cloning of silencing lentiviral vectors. These protocols can be completed in less than 3 weeks.  相似文献   

16.
The multisubunit enzyme V-ATPase harbours isoforms of individual subunits. a3 is one of four 116 kDa subunit a isoforms, and it is crucial for bone resorption. We used small interfering RNA (siRNA) molecules to knock down a3 in rat osteoclast cultures. Labeled siRNA-molecules entered osteoclasts via endocytosis and knocked down the a3 mRNA. Bone resorption was decreased in siRNA-treated samples due to decreased acidification and osteoclast inactivation. Expression of a1 did not respond to decreased a3 levels, suggesting that a1 does not compensate for a3 in osteoclast cultures. Subunit a3 is thus an interesting target for novel nucleic acid therapy.  相似文献   

17.
Small interfering RNAs (siRNAs) are widely used for analyzing gene function and have the potential to be developed into human therapeutics. However, persistent siRNA expression in normal cells may cause toxic side effects. Therefore, the therapeutic applications of RNAi in cancer require either the specific delivery of synthetic siRNAs into cancer cells or the control of siRNA expression. Accordingly, we have developed a cancer-specific vector that expresses siRNAs from the human survivin promoter. A plasmid vector expressing siRNAs under this promoter enabled efficient gene silencing of gene expression in different cancer cell lines. The levels of inhibition were comparable to that obtained with the constitutively active U6 promoter. By contrast to U6 promoter, no significant gene silencing was obtained with the Survivin promoter in normal mammary epithelial cells. Collectively, these data indicate that the survivin promoter is suitable for directing siRNA expression in cancer cells, but not normal cells.  相似文献   

18.
Since the discovery of double-stranded (ds) RNA-mediated RNA interference (RNAi) phenomenon in Caenorhabditis elegans, specific gene silencing based upon RNAi mechanism has become a novel biomedical tool that has extended our understanding of cell biology and opened the door to an innovative class of therapeutic agents. To silence genes in mammalian cells, short dsRNA referred to as small interfering RNA (siRNA) is used as an RNAi trigger to avoid nonspecific interferon responses induced by long dsRNAs. An early structure-activity relationship study performed in Drosophila melanogaster embryonic extract suggested the existence of strict siRNA structural design rules to achieve optimal gene silencing. These rules include the presence of a 3' overhang, a fixed duplex length, and structural symmetry, which defined the structure of a classical siRNA. However, several recent studies performed in mammalian cells have hinted that the gene silencing siRNA structure could be much more flexible than that originally proposed. Moreover, many of the nonclassical siRNA structural variants reported improved features over the classical siRNAs, including increased potency, reduced nonspecific responses, and enhanced cellular delivery. In this review, we summarize the recent progress in the development of gene silencing siRNA structural variants and discuss these in light of the flexibility of the RNAi machinery in mammalian cells.  相似文献   

19.
RNA interference is mediated by small interfering RNAs (siRNAs) that upon incorporation into the RNA-induced silencing complex (RISC) can target complementary mRNA for degradation. Standard siRNA design usually feature a 19–27 base pair contiguous double-stranded region that is believed to be important for RISC incorporation. Here, we describe a novel siRNA design composed of an intact antisense strand complemented with two shorter 10–12 nt sense strands. This three-stranded construct, termed small internally segmented interfering RNA (sisiRNA), is highly functional demonstrating that an intact sense strand is not a prerequisite for RNA interference. Moreover, when using the sisiRNA design only the antisense strand is functional in activated RISC thereby completely eliminating unintended mRNA targeting by the sense strand. Interestingly, the sisiRNA design supports the function of chemically modified antisense strands, which are non-functional within the context of standard siRNA designs. This suggests that the sisiRNA design has a clear potential of improving the pharmacokinetic properties of siRNA in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号