首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ten eleven translocation (Tet) family-mediated DNA oxidation on 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) represents a novel epigenetic modification that regulates dynamic gene expression during embryonic stem cells (ESCs) differentiation. Through the role of Tet on 5hmC regulation in stem cell development is relatively defined, how the Tet family is regulated and impacts on ESCs lineage development remains elusive. In this study, we show non-coding RNA regulation on Tet family may contribute to epigenetic regulation during ESCs differentiation, which is suggested by microRNA-29b (miR-29b) binding sites on the Tet1 3′ untranslated region (3′ UTR). We demonstrate miR-29b increases sharply after embyoid body (EB) formation, which causes Tet1 repression and reduction of cellular 5hmC level during ESCs differentiation. Importantly, we show this miR-29b/Tet1 regulatory axis promotes the mesendoderm lineage formation both in vitro and in vivo by inducing the Nodal signaling pathway and repressing the key target of the active demethylation pathway, Tdg. Taken together, our findings underscore the contribution of small non-coding RNA mediated regulation on DNA demethylation dynamics and the differential expressions of key mesendoderm regulators during ESCs lineage specification. MiR-29b could potentially be applied to enrich production of mesoderm and endoderm derivatives and be further differentiated into desired organ-specific cells.  相似文献   

2.
Bipotent mesendoderm that can give rise to both endoderm and mesoderm is an established entity from C. elegans to zebrafish. Although previous studies in mouse embryo indicated the presence of bi-potent mesendoderm cells in the organizer region, characterization of mesendoderm and its differentiation processes are still unclear. As bi-potent mesendoderm is implicated as the major precursor of definitive endoderm, its identification is also essential for exploring the differentiation of definitive endoderm. In this study, we have established embryonic stem (ES) cell lines that carry GFP gene in the goosecoid (Gsc) gene locus and have investigated the differentiation course of mesendodermal cells using Gsc expression as a marker. Our results show that mesendoderm is represented as a Gsc-GFP+ E-cadherin(ECD)+ PDGFRalpha(alphaR)+ population and is selectively induced from ES cells under defined conditions containing either activin or nodal. Subsequently, it diverges to Gsc+ ECD+ alphaR- and Gsc+ ECD- alphaR+ intermediates that eventually differentiate into definitive endoderm and mesodermal lineages, respectively. The presence of mesendodermal cells in nascent Gsc+ ECD+ alphaR+ population was also confirmed by single cell analysis. Finally, we show that the defined culture condition and surface markers developed in this study are applicable for obtaining pure mesendodermal cells and their immediate progenies from genetically unmanipulated ES cells.  相似文献   

3.
4.
5.
Abstract Embryonic stem (ES) cells have the potential to differentiate into all cell types of the adult body, and could allow regeneration of damaged tissues. The challenge is to alter differentiation toward functional cell types or tissues by directing ES cells to a specific fate. Efforts have been made to understand the molecular mechanisms that are required for the formation of the different germ layers and tissues from ES cells, and these mechanisms appear to be very similar in the mouse embryo. Differentiation toward mesoderm and mesoderm derivatives such as cardiac tissue or hemangioblasts has been demonstrated; however, the roles of Activin A/Nodal, bone morphogenetic protein (BMP), and fibroblast growth factor (FGF) signaling in the early patterning of ES cell-derived pan-mesoderm and anterior visceral endoderm (aVE) have not been reported yet. We therefore analyzed the roles of Activin A/Nodal, BMP, and FGF signaling in the patterning of ES cell-derived mesoderm as well as specification of the aVE by using a dual ES cell differentiation system combining a loss-of-function with a gain-of-function approach. We found that Activin A or Nodal directed the nascent mesoderm toward axial mesoderm and mesendoderm, while Bmp4 was inducing posterior and extraembryonic mesoderm at the expense of anterior primitive streak cells. FGF signaling appeared to have an important role in mesoderm differentiation by allowing an epithelial-to-mesenchymal transition of the newly formed mesoderm cells that would lead to their further patterning. Moreover, inhibition of FGF signaling resulted in increased expression of axial mesoderm markers. Additionally, we revealed that the formation of aVE cells from ES cells requires FGF-dependent Activin A/Nodal signaling and the attenuation of Bmp4 signaling.  相似文献   

6.
The mechanisms by which human embryonic stem cells (hESC) differentiate to endodermal lineage have not been extensively studied. Mathematical models can aid in the identification of mechanistic information. In this work we use a population-based modeling approach to understand the mechanism of endoderm induction in hESC, performed experimentally with exposure to Activin A and Activin A supplemented with growth factors (basic fibroblast growth factor (FGF2) and bone morphogenetic protein 4 (BMP4)). The differentiating cell population is analyzed daily for cellular growth, cell death, and expression of the endoderm proteins Sox17 and CXCR4. The stochastic model starts with a population of undifferentiated cells, wherefrom it evolves in time by assigning each cell a propensity to proliferate, die and differentiate using certain user defined rules. Twelve alternate mechanisms which might describe the observed dynamics were simulated, and an ensemble parameter estimation was performed on each mechanism. A comparison of the quality of agreement of experimental data with simulations for several competing mechanisms led to the identification of one which adequately describes the observed dynamics under both induction conditions. The results indicate that hESC commitment to endoderm occurs through an intermediate mesendoderm germ layer which further differentiates into mesoderm and endoderm, and that during induction proliferation of the endoderm germ layer is promoted. Furthermore, our model suggests that CXCR4 is expressed in mesendoderm and endoderm, but is not expressed in mesoderm. Comparison between the two induction conditions indicates that supplementing FGF2 and BMP4 to Activin A enhances the kinetics of differentiation than Activin A alone. This mechanistic information can aid in the derivation of functional, mature cells from their progenitors. While applied to initial endoderm commitment of hESC, the model is general enough to be applicable either to a system of adult stem cells or later stages of ESC differentiation.  相似文献   

7.
8.
9.

Background  

FGF signalling regulates numerous aspects of early embryo development. During gastrulation in amniotes, epiblast cells undergo an epithelial to mesenchymal transition (EMT) in the primitive streak to form the mesoderm and endoderm. In mice lacking FGFR1, epiblast cells in the primitive streak fail to downregulate E-cadherin and undergo EMT, and cell migration is inhibited. This study investigated how FGF signalling regulates cell movement and gene expression in the primitive streak of chicken embryos.  相似文献   

10.
11.
《Autophagy》2013,9(4):690-691
The fibroblast growth factor (FGF) signaling axis plays important roles in heart development. Yet, the molecular mechanism by which the FGF regulates cardiogenesis is not fully understood. Using genetically engineered mouse and in vitro cultured embryoid body (EB) models, we demonstrate that FGF signaling suppresses premature differentiation of heart progenitor cells, as well as autophagy in outflow tract (OFT) myocardiac cells. The FGF also promotes mesoderm differentiation in embryonic stem cells (ESCs) but inhibits cardiomyocyte differentiation of the mesoderm cells at later stages. Furthermore, inhibition of FGF signaling increases myocardial differentiation and autophagy in both ex vivo cultured embryos and EBs, whereas activation of autophagy promotes myocardial differentiation. Thus, a link between FGF signals preventing premature differentiation of heart progenitor cells and suppression of autophagy has been established. These findings provide the first evidence that autophagy plays a role in heart progenitor differentiation, and suggest a new venue to regulate stem/progenitor cell differentiation.  相似文献   

12.
Zhang J  Liu J  Liu L  McKeehan WL  Wang F 《Autophagy》2012,8(4):690-691
The fibroblast growth factor (FGF) signaling axis plays important roles in heart development. Yet, the molecular mechanism by which the FGF regulates cardiogenesis is not fully understood. Using genetically engineered mouse and in vitro cultured embryoid body (EB) models, we demonstrate that FGF signaling suppresses premature differentiation of heart progenitor cells, as well as autophagy in outflow tract (OFT) myocardiac cells. The FGF also promotes mesoderm differentiation in embryonic stem cells (ESCs) but inhibits cardiomyocyte differentiation of the mesoderm cells at later stages. Furthermore, inhibition of FGF signaling increases myocardial differentiation and autophagy in both ex vivo cultured embryos and EBs, whereas activation of autophagy promotes myocardial differentiation. Thus, a link between FGF signals preventing premature differentiation of heart progenitor cells and suppression of autophagy has been established. These findings provide the first evidence that autophagy plays a role in heart progenitor differentiation, and suggest a new venue to regulate stem/progenitor cell differentiation.  相似文献   

13.
Snir M  Ofir R  Elias S  Frank D 《The EMBO journal》2006,25(15):3664-3674
Cellular competence is defined as a cell's ability to respond to signaling cues as a function of time. In Xenopus laevis, cellular responsiveness to fibroblast growth factor (FGF) changes during development. At blastula stages, FGF induces mesoderm, but at gastrula stages FGF regulates neuroectoderm formation. A Xenopus Oct3/4 homologue gene, XLPOU91, regulates mesoderm to neuroectoderm transitions. Ectopic XLPOU91 expression in Xenopus embryos inhibits FGF induction of Brachyury (Xbra), eliminating mesoderm, whereas neural induction is unaffected. XLPOU91 knockdown induces high levels of Xbra expression, with blastopore closure being delayed to later neurula stages. In morphant ectoderm explants, mesoderm responsiveness to FGF is extended from blastula to gastrula stages. The initial expression of mesoderm and endoderm markers is normal, but neural induction is abolished. Churchill (chch) and Sip1, two genes regulating neural competence, are not expressed in XLPOU91 morphant embryos. Ectopic Sip1 or chch expression rescues the morphant phenotype. Thus, XLPOU91 epistatically lies upstream of chch/Sip1 gene expression, regulating the competence transition that is critical for neural induction. In the absence of XLPOU91 activity, the cues driving proper embryonic cell fates are lost.  相似文献   

14.
Definitive endoderm differentiation is crucial for generating respiratory and gastrointestinal organs including pancreas and liver. However, whether epigenetic regulation contributes to this process is unknown. Here, we show that the H3K27me3 demethylases KDM6A and KDM6B play an important role in endoderm differentiation from human ESCs. Knockdown of KDM6A or KDM6B impairs endoderm differentiation, which can be rescued by sequential treatment with WNT agonist and antagonist. KDM6A and KDM6B contribute to the activation of WNT3 and DKK1 at different differentiation stages when WNT3 and DKK1 are required for mesendoderm and definitive endoderm differentiation, respectively. Our study not only uncovers an important role of the H3K27me3 demethylases in definitive endoderm differentiation, but also reveals that they achieve this through modulating the WNT signaling pathway.  相似文献   

15.
16.
The establishment of methods for directive differentiation from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) is important for regenerative medicine. Although Sry-related HMG box 17 (SOX17) overexpression in ESCs leads to differentiation of either extraembryonic or definitive endoderm cells, respectively, the mechanism of these distinct results remains unknown. Therefore, we utilized a transient adenovirus vector-mediated overexpression system to mimic the SOX17 expression pattern of embryogenesis. The number of alpha-fetoprotein-positive extraembryonic endoderm (ExEn) cells was increased by transient SOX17 transduction in human ESC- and iPSC-derived primitive endoderm cells. In contrast, the number of hematopoietically expressed homeobox (HEX)-positive definitive endoderm (DE) cells, which correspond to the anterior DE in vivo, was increased by transient adenovirus vector-mediated SOX17 expression in human ESC- and iPSC-derived mesendoderm cells. Moreover, hepatocyte-like cells were efficiently generated by sequential transduction of SOX17 and HEX. Our findings show that a stage-specific transduction of SOX17 in the primitive endoderm or mesendoderm promotes directive ExEn or DE differentiation by SOX17 transduction, respectively.  相似文献   

17.
Human pluripotent cells such as human embryonic stem cells (hESC) are a great potential source of cells for cell-based therapies; however, directing their differentiation into the desired cell types with high purity remains a challenge. The stem cell microenvironment plays a vital role in directing hESC fate and we have previously shown that manipulation of colony size in a serum- and cytokine-free environment controls self-renewal and differentiation toward the extraembryonic endoderm lineage. Here we show that, in the presence of bone morphogenetic protein 2 and activin A, control of colony size using a microcontact printing technology is able to direct hESC fate to either the mesoderm or the endoderm lineage. Large, 1200-μm-diameter colonies give rise to mesoderm, while small 200-μm colonies give rise to definitive endoderm. This study links, for the first time, cellular organization to pluripotent cell differentiation along the mesoderm and endoderm lineages.  相似文献   

18.
Yu P  Pan G  Yu J  Thomson JA 《Cell Stem Cell》2011,8(3):326-334
Here, we show that as human embryonic stem cells (ESCs) exit the pluripotent state, NANOG can play a key role in determining lineage outcome. It has previously been reported that BMPs induce differentiation of human ESCs into extraembryonic lineages. Here, we find that FGF2, acting through the MEK-ERK pathway, switches BMP4-induced human ESC differentiation outcome to mesendoderm, characterized by the uniform expression of T (brachyury) and other primitive streak markers. We also find that MEK-ERK signaling prolongs NANOG expression during BMP-induced differentiation, that forced NANOG expression results in FGF-independent BMP4 induction of mesendoderm, and that knockdown of NANOG greatly reduces T induction. Together, our results demonstrate that FGF2 signaling switches the outcome of BMP4-induced differentiation of human ESCs by maintaining NANOG levels through the MEK-ERK pathway.  相似文献   

19.
Nodal signals, a subclass of the TGFbeta superfamily of secreted factors, induce formation of mesoderm and endoderm in vertebrate embryos. We have examined the possible dorsoventral and animal-vegetal patterning roles for Nodal signals by using mutations in two zebrafish nodal-related genes, squint and cyclops, to manipulate genetically the levels and timing of Nodal activity. squint mutants lack dorsal mesendodermal gene expression at the late blastula stage, and fate mapping and gene expression studies in sqt(-/-); cyc(+/+) and sqt(-/-); cyc(+/-) mutants show that some dorsal marginal cells inappropriately form hindbrain and spinal cord instead of dorsal mesendodermal derivatives. The effects on ventrolateral mesendoderm are less severe, although the endoderm is reduced and muscle precursors are located nearer to the margin than in wild type. Our results support a role for Nodal signals in patterning the mesendoderm along the animal-vegetal axis and indicate that dorsal and ventrolateral mesoderm require different levels of squint and cyclops function. Dorsal marginal cells were not transformed toward more lateral fates in either sqt(-/-); cyc(+/-) or sqt(-/-); cyc(+/+) embryos, arguing against a role for the graded action of Nodal signals in dorsoventral patterning of the mesendoderm. Differential regulation of the cyclops gene in these cells contributes to the different requirements for nodal-related gene function in these cells. Dorsal expression of cyclops requires Nodal-dependent autoregulation, whereas other factors induce cyclops expression in ventrolateral cells. In addition, the differential timing of dorsal mesendoderm induction in squint and cyclops mutants suggests that dorsal marginal cells can respond to Nodal signals at stages ranging from the mid-blastula through the mid-gastrula.  相似文献   

20.
BMP is thought to induce hESC differentiation toward multiple lineages including mesoderm and trophoblast. The BMP-induced trophoblast phenotype is a long-standing paradox in stem cell biology. Here we readdressed BMP function in hESCs and mouse epiblast-derived cells. We found that BMP4 cooperates with FGF2 (via ERK) to induce mesoderm and to inhibit endoderm differentiation. These conditions induced cells with high levels of BRACHYURY (BRA) that coexpressed CDX2. BRA was necessary for and preceded CDX2 expression; both genes were essential for expression not only of mesodermal genes but also of trophoblast-associated genes. Maximal expression of the latter was seen in the absence of FGF but these cells coexpressed mesodermal genes and moreover they differed in cell surface and epigenetic properties from placental trophoblast. We conclude that BMP induces human and mouse pluripotent stem cells primarily to form mesoderm, rather than trophoblast, acting through BRA and CDX2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号