首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ag-specific T cell activation requires the engagement of T cell receptor (TCR) with antigen in the context of MHC, and the engagement of appropriate costimulatory molecules. It is well established that B7/CD28-CTLA4 costimulatory pathway plays an important role in the induction of T helper (Th) cells in T-cell dependent immune reactions. In this study, we evaluated the effects of blocking the costimulatory pathway by systemic administration of CTLA4-Ig during repeated nasal antigen challenges in systemically presensitized mouse. The antigen-induced early phase nasal symptoms, nasal hyperresponsiveness to histamine and nasal eosinophilia were significantly suppressed by CTLA4-Ig treatment. Elevation of serum level of antigen-specific IgE, but not IgG1 or IgG2a was inhibited by the treatment. In relation to cytokine levels in the tissue extracts of the nasal mucosa, an up-regulation of IL-4 was significantly inhibited, however, the levels of IL-5 and IFN-gamma were not affected by the treatment. These results suggest that B7/CD28-CTLA4 costimulatory pathway plays an important role in on-going Th2-related allergic reactions in the nose.  相似文献   

2.
T cell-mediated immunity is critical in resistance against Leishmania parasites, and T cell activation requires signals provided by costimulatory molecules. Herein we evaluated the role of costimulatory molecules on cytokine production and T cell surface molecule expression by peripheral blood mononuclear cells (PBMC) from cutaneous leishmaniasis (CL) patients. PBMC from CL patients were stimulated with soluble Leishmania antigen (SLA, 10 microg/ml), in the presence or absence of soluble CTLA4-Ig to block CD28-B7 interaction or in the presence or absence of anti-human CD40L to block CD40-CD40L interaction. Supernatants were harvested to evaluate tumor necrosis factor alpha (TNF-alpha), interleukin 10 (IL-10), transforming growth factor beta (TGF-beta) and interferon gamma (IFN-gamma) production by ELISA. Cells were harvested after 48 h of culture, stained for specific activation markers and analyzed by flow cytometry. Results show that the blockade of CD28-B7 interaction by CTLA4-Ig downmodulated IFN-gamma, IL-10, and TNF-alpha secretion by PBMC from CL patients. No alteration was detected on either TGF-beta production or the expression of CTLA44 or CD25 on CD4+ and CD8+ T cells. When the CD40-CD40L interaction was blockade using anti-CD40L, we did not observe changes in cytokine production or in surface molecule expression. The blockade of the CD28-B7 interactions by CTLA4-Ig also did not alter cytokine production in volunteers immunized against tetanus toxoid (TT). Taken together, these data suggest that the interaction of CTLA4 and CD28-B7 is a TGF-beta-independent mechanism that specifically downmodulates the immune response in cutaneous leishmaniasis patients.  相似文献   

3.
Costimulatory molecules play critical roles in the induction and effector function of T cells. More recent studies reveal that costimulatory molecules enhance clonal deletion of autoreactive T cells as well as generation and homeostasis of the CD25(+)CD4(+) regulatory T cells. However, it is unclear whether the costimulatory molecules play any role in the proliferation and differentiation of T cells before they acquire MHC-restricted TCR. In this study, we report that targeted mutations of B7-1 and B7-2 substantially reduce the proliferation and survival of CD4(-)CD8(-) (double-negative (DN)) T cells in the thymus. Perhaps as a result of reduced proliferation, the accumulation of RAG-2 protein in the DN thymocytes is increased in B7-deficient mice, which may explain the increased expression of TCR gene and accelerated transition of CD25(+)CD44(-) (DN3) to CD25(-)CD44(-) (DN4) stage. Qualitatively similar, but quantitatively less striking effects were observed in mice with a targeted mutation of CD28, but not CTLA4. Taken together, our results demonstrate that the development of DN in the thymus is subject to modulation by the B7-CD28 costimulatory pathway.  相似文献   

4.
Mouse AIDS (MAIDS) induced in C57BL/6 mice by infection with a replication-defective retrovirus (Du5H) combines extensive lymphoproliferation and profound immunodeficiency. Although B cells are the main target of viral infection, recent research has focused on CD4+ T cells, the activation of which is a key event in MAIDS induction and progression. A preliminary observation of increased expression of B7 molecules on B cells in MAIDS prompted us to address the possible involvement of the CD28/B7 costimulatory pathway in MAIDS. Mice infected with the MAIDS-inducing viral preparation were treated with murine fusion protein CTLA4Ig (3 × 50 μg/week given intraperitoneally), a competitive inhibitor of physiological CD28-B7 interactions. In CTLA4Ig-treated animals, the onset of the disease was delayed, lymphoproliferation progressed at a much slower rate than in untreated mice, and the loss of in vitro responsiveness to mitogens was reduced. Relative expression of Du5H did not differ between treated and untreated animals. These results suggest that the CD28/B7 costimulatory pathway contributes to MAIDS development.  相似文献   

5.
Despite increasing use of swine in transplantation research, the ability to block costimulation of allogeneic T cell responses has not been demonstrated in swine, and the effects of costimulatory blockade on xenogeneic human anti-porcine T cell responses are also not clear. We have compared the in vitro effects of anti-human CD154 mAb and human CTLA4IgG4 on allogeneic pig T cell responses and xenogeneic human anti-pig T cell responses. Both anti-CD154 mAb and CTLA4IgG4 cross-reacted on pig cells. While anti-CD154 mAb and CTLA4IgG4 both inhibited the primary allogeneic pig MLRs, CTLA4IgG4 (7.88 microg/ml) was considerably more inhibitory than anti-CD154 mAb (100 microg/ml) at optimal doses. Anti-CD154 mAb inhibited the production of IFN-gamma by 75%, but did not inhibit IL-10 production, while CTLA4IgG4 completely inhibited the production of both IFN-gamma and IL-10. In secondary allogeneic pig MLRs, CTLA4IgG4, but not anti-CD154 mAb, induced Ag-specific T cell anergy. CTLAIgG4 completely blocked the indirect pathway of allorecognition, while anti-CD154 mAb blocked the indirect response by approximately 50%. The generation of porcine CTLs was inhibited by CTLA4IgG4, but not by anti-CD154 mAb. Human anti-porcine xenogeneic MLRs were blocked by CTLA4IgG4, but only minimally by anti-CD154 mAb. Finally, CTLA4IgG4 prevented secondary xenogeneic human anti-porcine T cell responses. These data indicate that blockade of the B7-CD28 pathway was more effective than blockade of the CD40-CD154 pathway in inhibiting allogeneic pig T cell responses and xenogeneic human anti-pig T cell responses in vitro. These findings have implications for inhibiting cell-mediated immune responses in pig-to-human xenotransplantation.  相似文献   

6.
7.
Antiviral immune responses in CTLA4 transgenic mice.   总被引:3,自引:2,他引:1       下载免费PDF全文
The role of B7 binding CD28 in the regulation of T- and B-cell responses against viral antigens was assessed in transgenic mice expressing soluble CTLA4-Hgamma1 (CTLA4-Ig tg mice) that blocks B7-CD28 interactions. The results indicate that transgenic soluble CTLA4 does not significantly alter cytotoxic T-cell responses against replicating lymphocytic choriomeningitis virus (LCMV) or vaccinia virus but drastically impairs the induction of cytotoxic T-cell responses against abortively replicating vesicular stomatitis virus (VSV). While the T-independent neutralizing immunoglobulin M (IgM) responses were within normal ranges, the switch to IgG was reduced 4- to 16-fold after immunization with abortively replicating VSV and more than 30-fold after immunization with an inert VSV glycoprotein antigen in transgenic mice. IgG antibody responses to LCMV, as detected by enzyme-linked immunosorbent assay and by neutralizing action, were reduced about 3- to 20-fold and more than 50-fold, respectively. These results suggest that responses in CTLA4-Ig tg mice are mounted according to their independence of T help. While immune responses to nonreplicating or poorly replicating antigens are in general most dependent on T help and B7-CD28 interactions, they are most impaired in CTLA4-Ig tg mice. The results of the present experiments also indicate that highly replicating viruses, because of greater quantities of available antigens and by inducing as-yet-undefined factors and/or cell surface changes, are capable of compensating for the decrease in T help caused by the blocking effects of soluble CTLA4.  相似文献   

8.
In addition to TCR-derived signals, costimulatory signals derived from stimulation of the CD28 molecule by its natural ligand, B7, have been shown to be required for CD4+8- T cell activation. We investigate the ability of B7 to provide costimulatory signals necessary to drive proliferation and differentiation of virgin CD4-8+ T-cells that express a transgenic TCR specific for the male (H-Y) Ag presented by H-2Db class I MHC molecules. Virgin male-specific CD4-8+ T cells can be activated either with B7 transfected chinese hamster ovary (CHO) cells and T3.70, a mAb specific for the transgenic TCR-alpha chain that is associated with male-reactivity, or by male dendritic cells (DC). Activated CD4-8+ T cells proliferated in the absence of exogenously added IL-2. IL-2 activity was detected in supernatants of CD4-8+T3.70+ cells that were stimulated with T3.70 and B7+CHO cells. The response of CD4-8+T3.70+ cells to T3.70/B7+CHO or to male DC stimulation were inhibited by CTLA4Ig, a fusion protein comprising the extracellular portion of CTLA4 and human IgG C gamma 1. It has been previously shown that CTLA4Ig binds B7 with high affinity. Staining with CTLA4Ig revealed that DC express about 50 times more B7 than CD4-8+ T cells. CTLA4Ig also specifically blocked the proliferation of male-reactive cells in vivo. We have also used an in vitro deletion assay whereby immature CD4+8+ thymocytes expressing the transgenic male-specific TCR are deleted by overnight incubation with either immobilized T3.70 or male DC to investigate the participation of the CD28/B7 pathway in the negative selection of immature thymocytes. Staining with B7Ig established that both immature murine CD4+8+ and mature CD4-8+ thymocytes express a high level of CD28. However, despite the high expression of CD28 on CD4+8+ thymocytes, it was found that deletion of CD4+8+ thymocytes expressing the male-specific TCR by the T3.70 mAb was not inhibited by B7+CHO cells. Furthermore, the deletion of these thymocytes by DC also was not inhibited by CTLA4Ig. These findings provide evidence that although signaling through CD28 can costimulate a primary anti-male response in mature CD4-8+ T cells, the CD28/B7 pathway does not appear to participate in the negative selection of immature CD4+8+ thymocytes.  相似文献   

9.
Hypersensitivity pneumonitis (HP) is characterized by an influx of activated T cells in the lungs. The CD28/B7 system provides costimulatory signals essential for complete T cell activation and differentiation. We have previously demonstrated that alveolar macrophages from patients with HP have an up-regulated expression of B7 molecules. In the present study, we investigated the effect of i. p. administration of CTLA4-Ig, a CD28/B7 antagonist, on the lung inflammation of mice inoculated with Saccharoplyspora rectivirgula (SR), a major causative agent of HP. Five groups of C57BL/6 mice were intranasally instilled with SR or saline for 3 consecutive days per wk during 3 wk. CTLA4-Ig was administered starting either after 1 wk of SR challenge or 6 h before the first antigenic exposure and continued during the whole period of sensitization. A control-IgG was given similarly during the 3 wk of SR exposure. The groups included: 1, saline; 2, SR; 3, SR + control-Ig; 4, SR + CTLA4-Ig for the last 2 wk; and 5, SR + CTLA4-Ig for 3 wk. CTLA4-Ig treatment markedly decreased lung inflammation as shown by significantly fewer inflammatory cells in the bronchoalveolar lavage and in lung tissue and reduced SR-specific serum and bronchoalveolar lavage Ig levels. Production of IL-4, IL-10, and IFN-gamma by IL-2-stimulated pulmonary T cells was also decreased by CTLA4-Ig. Administration of CTLA4-Ig did not affect the SR-induced up-regulation of B7-2 expression. These results show that blockade of CD28/B7 interactions by CTLA4-Ig inhibits SR-induced lung inflammation and immune response to SR Ag in mice and may provide a novel approach in the treatment of HP.  相似文献   

10.
Theiler's murine encephalomyelitis virus (TMEV) is a natural mouse pathogen which causes a lifelong persistent infection of the central nervous system (CNS) accompanied by T-cell-mediated myelin destruction leading to chronic, progressive hind limb paralysis. TMEV-induced demyelinating disease (TMEV-IDD) is considered to be a highly relevant animal model for the human autoimmune disease multiple sclerosis (MS), which is thought to be initiated as a secondary consequence of a virus infection. Although TMEV-IDD is initiated by virus-specific CD4(+) T cells targeting CNS-persistent virus, CD4(+) T-cell responses against self myelin protein epitopes activated via epitope spreading contribute to chronic disease pathogenesis. We thus examined the ability of antibodies directed against B7 costimulatory molecules to regulate this chronic virus-induced immunopathologic process. Contrary to previous studies showing that blockade of B7-CD28 costimulatory interactions inhibit the initiation of experimental autoimmune encephalomyelitis, treatment of SJL mice at the time of TMEV infection with murine CTLA-4 immunoglobulin or a combination of anti-B7-1 and anti-B7-2 antibodies significantly enhanced clinical disease severity. Costimulatory blockade inhibited early TMEV-specific T-cell and antibody responses critical in clearing peripheral virus infection. The inhibition of virus-specific immune responses led to significantly increased CNS viral titers resulting in increased damage to myelin-producing oligodendrocytes. Following clearance of the costimulatory antagonists, epitope spreading to myelin epitopes was accelerated as a result of the increased availability of myelin epitopes leading to a more severe chronic disease course. Our results raise concern about the potential use of B7-CD28 costimulatory blockade to treat human autoimmune diseases potentially associated with acute or persistent virus infections.  相似文献   

11.
T-cell activation requires two signaling events. One is provided by the engagement of the T-cell antigen receptor, and the second represents a costimulatory signal provided by antigen-presenting cells. CD28 mediates a costimulatory signal by binding its ligands, B7-1 and B7-2, on antigen-presenting cells, but the signaling pathway activated by CD28 has not been identified. A homologous molecule, CTLA-4, expressed on activated T cells, also binds to B7-1 and B7-2, but whether it has a signaling function is not known. We performed a structure-function analysis of CD28 to identify the functional domain which activates signal transduction. Truncation of the 40-amino-acid CD28 cytoplasmic tail abrogated costimulatory signaling. Chimeric constructs containing the extracellular and transmembrane regions of CD8 linked to the cytoplasmic region of CD28 had a costimulatory signaling function. Similar chimeras containing the cytoplasmic tail of CTLA-4 did not signal. Thus, the cytoplasmic region of CD28, but not CTLA-4, is sufficient to mediate costimulatory signaling. In addition, after CD28 stimulation, the p85 subunit of phosphatidylinositol 3'-kinase and phosphatidylinositol 3'-kinase activity were found in CD28 immunoprecipitates. The CD8-CD28 chimera, which has a costimulatory signaling function, associates with p85, while the nonfunctioning CD8-CTLA-4 chimera and a CD8-zeta chimera do not associate with p85. These results suggest that phosphatidylinositol 3'-kinase is specifically activated by CD28 and may mediate proximal events in the costimulatory signaling pathway regulated by CD28.  相似文献   

12.
It has been reported that costimulatory molecules, CD80/86-CD28 and CD154-CD40, critically contribute to activation of CD1d-restricted invariant NKT (iNKT) cells. Here we have demonstrated that ICOS, a new member of the CD28 family, plays a substantial role in iNKT cell activation. iNKT cells constitutively expressed ICOS as well as CD28 independently, and ICOS expression was further up-regulated 2-3 days after alpha-galactosylceramide (alpha-GalCer) treatment. Blockade of ICOS-mediated costimulation by administration of anti-ICOS ligand (B7RP-1) mAb or by ICOS gene knockout substantially inhibited alpha-GalCer-induced IFN-gamma and IL-4 production, cytotoxic activity, and anti-metastatic effect. Moreover, blockade of both B7RP-1-ICOS and CD80/86-CD28 interactions mostly abolished the alpha-GalCer-induced immune responses. These findings indicate that iNKT cell activation is regulated by CD28 and IOCS independently.  相似文献   

13.
Effective activation of T cells requires engagement of two separate T-cell receptors. The antigen-specific T-cell receptor (TCR) binds foreign peptide antigen-MHC complexes, and the CD28 receptor binds to the B7 (CD80/CD86) costimulatory molecules expressed on the surface of antigen-presenting cells (APC). The simultaneous triggering of these T-cell surface receptors with their specific ligands results in an activation of this cell. In contrast, CTLA-4 (CD152) is a distinct T-cell receptor that, upon binding to B7 molecules, sends an inhibitory signal to T cell activation. Many in vitro and in vivo studies demonstrated that both CD80 and CD86 ligands have an identical role in the activation of T cells. Recently, functions of B7 costimulatory molecules in vivo have been investigated in B7-1 and/or B7-2 knockout mice, and the authors concluded that CD86 could be more important for initiating T-cell responses, while CD80 could be more significant for maintaining these immune responses. In this study, we directly compared the role of CD80 and CD86 in initiating and maintaining proliferation of resting CD4(+) T cells in an in vitro mode system that allowed to provide the first signal-to-effector cells through the use of suboptimal doses of PHA and the second costimulatory signal through cells expressing CD80 or CD86, but not any other costimulatory molecules. Using this experimental system we demonstrate that the CD80 and CD86 molecules can substitute for each other in the initial activation of resting CD4(+) T cells and in the maintenance of their proliferative response.  相似文献   

14.
The effect of blocking the CD28/B7 costimulatory pathway on intestinal allograft rejection was examined in mice. Murine CTLA4Ig failed to prevent the rejection of allografts transplanted into wild-type or CD4 knockout (KO) mice but did inhibit allograft rejection by CD8 KO recipients. This effect was associated with decreased intragraft mRNA for IFN-gamma and TNF-alpha and increased mRNA for IL-4 and IL-5. This altered pattern of cytokine production was not observed in allografts from murine CTLA4Ig-treated CD4 KO mice. These data demonstrate that blockade of the CD28/B7 pathway has different effects on intestinal allograft rejection mediated by CD4+ and CD8+ T cells and suggest that these T cell subsets have different costimulatory requirements in vivo. The results also suggest that the inhibition of CD4+ T cell-mediated allograft rejection by CTLA4Ig may be related to down-regulation of Th1 cytokines and/or up-regulation of Th2 cytokines.  相似文献   

15.
Cognate interactions between immune effector cells and antigen-presenting cells (APCs) govern immune responses. Specific signals occur between the T-cell receptor peptide and APCs and nonspecific signals between pairs of costimulatory molecules. Costimulation signals are required for full T-cell activation and are assumed to regulate T-cell responses as well as other aspects of the immune system. As new discoveries are made, it is becoming clear how important these costimulation interactions are for immune responses. Costimulation requirements for T-cell regulation have been extensively studied as a way to control many autoimmune diseases and downregulate inflammatory reactions. The CD28:B7 and the CD40:CD40L families of molecules are considered to be critical costimulatory molecules and have been studied extensively. Blocking the interaction between these molecules results in a state of immune unresponsiveness termed 'anergy'. Several different strategies for blockade of these interactions are explored including monoclonal antibodies (mAbs), Fab fragments, chimeric, and/or fusion proteins. We developed novel, immune-specific approaches that interfere with these interactions. Using experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis mediated by central nervous system (CNS)-specific T-cells, we developed a multi-targeted approach that utilizes peptides for blockade of costimulatory molecules. We designed blocking peptide mimics that retain the functional binding area of the parent protein while reducing the overall size and are thus capable of blocking signal transduction. In this paper, we review the role of costimulatory molecules in autoimmune diseases, two of the most well-studied costimulatory pathways (CD28/CTLA-4:B7 and CD40:CD40L), and the advantages of peptidomimetic approaches. We present data showing the ability of peptide mimics of costimulatory molecules to suppress autoimmune disease and propose a mechanism for disease suppression.  相似文献   

16.
The CD80/86-CD28 and CD40-CD40 ligand costimulatory pathways are essential for Th cell-dependent B cell responses that generate high-affinity, class-switched Ab in vivo. Disruption of either costimulatory pathway results in defective in vivo humoral immune responses, but it remains unclear to what extent this is due to deficient activation of Th cells and/or of B cells. To address this issue, we generated mixed chimeras in which CD80/86- or CD40-deficient bone marrow-derived cells coexist with wild-type (WT) cells, thereby providing the functional T cell help and accessory cell functions required for fully competent B cell responses. We were then able to assess the requirement for CD80/86 or CD40 expression on B cells producing class-switched Ig in response to a T-dependent Ag. In CD80/86 WT plus CD80/86 double-knockout mixed chimeras, both WT- and CD80/86-deficient B cells produced IgG1 and IgE responses, indicating that direct signaling by CD80/86 is not essential for efficient B cell activation. In marked contrast, only WT IgG1 and IgE responses were detected in the chimeras containing CD40-deficient cells, demonstrating that CD40 expression on B cells is essential for class switching by those B cells. Thus, while disrupting either the CD80/86-CD28 or the CD40-CD40 ligand costimulatory pathway abrogates T-dependent B cell immune responses, the two pathways are nonredundant and mediated by distinct mechanisms.  相似文献   

17.
Blockade of the CD28/CTLA4/B7 costimulatory pathway using CTLA4-Ig has great therapeutic potential, and has been shown to prolong allograft survival in a variety of animal models. To gain further insight into the mechanism by which costimulatory blockade prevents allograft rejection, we studied cardiac allograft survival in the complete absence of B7 costimulation using mice lacking B7-1 and B7-2 (B7-1/B7-2-/- mice). To determine the role of B7 on donor vs recipient cells, we used B7-1/B7-2-/- mice as either donors or recipients of allografts. Wild-type (WT) recipients acutely reject fully allogeneic hearts from both WT and B7-1/B7-2-/- mice. In contrast, B7-1/B7-2-/- recipients allow long-term survival of grafts from both WT and B7-1/B7-2-/- mice, with minimal histologic evidence of either acute or chronic rejection in grafts harvested after 90 days. The B7-1/B7-2-/- mice acutely reject B7-1/B7-2-/- allografts if CD28 stimulation is restored by the administration of Ab to CD28 and can mount an alloresponse in mixed lymphocyte reactions. Therefore, B7-1/B7-2-/- mice are capable of generating alloresponses both in vivo and in vitro. Our results demonstrate that in the alloresponse to mouse heterotopic cardiac transplantation, B7 molecules on recipient cells rather than donor cells provide the critical costimulatory signals. The indefinite survival of allografts into B7-1/B7-2-/- recipients further shows that the absence of B7 costimulation alone is sufficient to prevent rejection.  相似文献   

18.
B7 molecules expressed on classic APC play a critical role in the regulation of immune responses by providing activation or inhibitory signals to T cells, through the ligation with CD28 or CTLA4 receptors, respectively. We have recently described the expression of B7 molecules by the salivary gland epithelial cells (SGEC) of patients with Sj?gren's syndrome (also termed autoimmune epithelitis). The role of such expression needs to be clarified. Thus, in the present study, we sought to address the existence and function of B7.2 proteins on cultured nonneoplastic SGEC lines derived from Sj?gren's syndrome patients. The occurrence of B7.2 proteins on SGEC was verified by flow cytometry, immunocytochemistry, immunoprecipitation, and immunoblotting. The assessment of several cell lines in costimulation assays had revealed that the constitutive expression of B7.2 molecules is sufficient to provide costimulatory signals to anti-CD3-stimulated T cells. SGEC-derived costimulation induced IL-2-dependent proliferation of CD4(+) T cells, which was associated with low production of IL-2, but probably also with the secretion of yet undefined autocrine T cell growth factor(s). B7.2 proteins expressed by SGEC were found to display distinctive binding properties denoted by the functional interaction with CD28 receptor and reduced binding to CTLA4. Finally, the detection of a functional soluble form of B7.2 protein in cell-free culture supernatants of both SGEC and EBV-transformed B cell lines is demonstrated. These findings imply a critical role for epithelial cells in the regulation of local immune responses in the salivary glands.  相似文献   

19.
The B7-1/B7-2-CD28/CTLA-4 pathway is crucial in regulating T-cell activation and tolerance. New B7 and CD28 molecules have recently been discovered and new pathways have been delineated that seem to be important for regulating the responses of previously activated T cells. Several B7 homologues are expressed on cells other than professional antigen-presenting cells, indicating new mechanisms for regulating T-cell responses in peripheral tissues. Some B7 homologues have unknown receptors, indicating that other immunoregulatory pathways remain to be described. Here, we summarize our current understanding of the new members of the B7 and CD28 families, and discuss their therapeutic potential.  相似文献   

20.
Interaction between cytotoxic T lymphocyte-associated antigen-4(CTLA4,CD152) and B7 molecules (B7-1 and B7-2) is of importance in the cellular events of lymphocyte,including antigen-specific T-cell activation and induction of autoreactive T-cell.We describe haere the first introduction of a murine soluble CTLA4 gene,CTLA4Ig,to Mm1 cells,a macrophagic cell line.CTLA4Ig was successfully expressed on Mm1 cells and the expressed CTLA4Ig was found to be functionally active in their binding to B7 molecules by flow cytometry and immunofluorescence studies.The biological activity of CTLA4Ig from the transfected Mm1 cells was studied and showed inhibitory activity on mixed lymphocyte culture.A high CTLA4Ig producing macrophagic cell line was obtained.As Mm1 cells were regarded as difficult for gene transfection and there has so far been no report on expression of CTLA4Ig gene on Mm1 cells,these results suggested that the CELA4Ig expressing Mm1 cells could be useful for analysis of CTLA4 and B8 molecule interaction in both macrophage and T-cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号