首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
MIKC‐type MADS domain proteins are key regulators of flower development in angiosperms. Bsister genes constitute a clade with a close relationship to class B floral homeotic genes, and have been conserved for more than 300 million years. The loss‐of‐function phenotype of the A. thaliana Bsister gene ABS is mild: mutants show reduced seed coloration and defects in endothelium development. This study focuses on GORDITA (GOA, formerly known as AGL63), the most closely related paralog of ABS in A. thaliana, which is thought to act redundantly with ABS. Phylogenetic trees reveal that the duplication leading to ABS and GOA occurred during diversification of the Brassicaceae, and further analyses show that GOA has evolved under relaxed selection pressure. The knockdown phenotype of GOA suggests a role for this gene in fruit longitudinal growth, while over‐expression of GOA results in disorganized floral structure and addition of carpel‐like features to sepals. Given the phylogeny and function of other Bsister genes, our data suggest that GOA has evolved a new function as compared to ABS. Protein analysis reveals that the GOA‐specific ‘deviant’ domain is required for protein dimerization, in contrast to other MIKC‐type proteins that require the K domain for dimerization. Moreover, no shared protein interaction partners for ABS and GOA could be identified. Our experiments indicate that modification of a protein domain and a shift in expression pattern can lead to a novel gene function in a relatively short time, and highlight the molecular mechanism by which neofunctionalization following gene duplication can be achieved.  相似文献   

3.
Anincreasingnumberofhomeoticgenescontrollingplantflowerdevelopmenthasbeenclonedinrecentyears.Thesestudieshavebeenfacilitatingourunderstandingofmolecularmechanismofplantdevelopment[1].Ithasbeenknownthatdifferenttypesofgenesareinvolvedininflorescencemeri…  相似文献   

4.
5.
CaMADS1, a MADS box gene expressed in the carpel of hazelnut   总被引:4,自引:0,他引:4  
Hazelnut (Corylus avellana L.) is a species of economic interest that shows a peculiar floral biology. Unlike most of the angiosperms, which produce ovules during floral development such that they are ready for pollen at anthesis, hazelnut ovary development is delayed and triggered by compatible pollination. In order to elucidate the mechanisms regulating this unusual process and the role of the MADS box genes in ovary development, a cDNA library from pollinated styles of hazelnut was screened with a mixture of MADS box genes from different plant species. CaMADS1 (Corylus avellana MADS box), a floral-specific MADS box gene, was isolated, and characterized as belonging to the sub-family of the AGAMOUS genes. Northern blot, RT-PCR analyses and in situ hybridization experiments show a precise correlation between ovary development and CaMADS1 expression, indicating a role of this MADS box gene in the processes of floral organogenesis.  相似文献   

6.
Nucleotide sequence of a flower-specific MADS box cDNA clone from orchid   总被引:6,自引:0,他引:6  
An orchid (Aranda deborah) mature flower cDNA library was screened with an agamous cDNA probe from Arabidopsis. One positive clone for agamous gene was isolated, cloned and sequenced. This cDNA clone (om1) has a full length open reading frame of 750 bp corresponding to 250 amino acid residues. Comparison of om1 MADS box with that of its counterparts in tomato and Arabidopisis reveals significantly high homology (>95%). Northern analysis indicated this gene is expressed in mature flowers and not in young developing inflorescences or young floral buds. In the mature flowers, it is only expressed in petals and weakly in sepals but not in the column (gynostemium).  相似文献   

7.
8.
The ectopic expression of a MADS box gene FOREVER YOUNG FLOWER (FYF) caused a significant delay of senescence and a deficiency of abscission in flowers of transgenic Arabidopsis. The defect in floral abscission was found to be due to a deficiency in the timing of cell separation of the abscission zone cells. Down-regulation of INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) may contribute to the delay of the floral abscission in 35S:FYF flowers. FYF was found to be highly expressed in young flowers prior to pollination and was significantly decreased after pollination, a pattern that correlated with its function. Ethylene insensitivity in senescence/abscission and the down-regulation of ETHYLENE RESPONSE DNA-BINDING FACTOR 1 (EDF1) and EDF2, downstream genes in the ethylene response, in 35S:FYF Arabidopsis suggested a role for FYF in regulating senescence/abscission by suppressing the ethylene response. This role was further supported by the fact that 35S:FYF enhanced the delay of flower senescence/abscission in ethylene response 1 (etr1), ethylene-insensitive 2 (ein2) and constitutive triple response 1 (ctr1) mutants, which have defects in upstream genes of the ethylene signaling pathway. The presence of a repressor domain in the C-terminus of FYF and the enhancement of the delay of senescence/abscission in FYF+SRDX (containing a suppression motif) transgenic plants suggested that FYF acts as a repressor. Indeed, in FYF-DR+VP16 transgenic dominant-negative mutant plants, in which FYF was converted to a potent activator by fusion to a VP16-AD motif, the senescence/abscission of the flower organs was significantly promoted, and the expression of BOP2, IDA and EDF1/2 was up-regulated. Our data suggest a role for FYF in controlling floral senescence/abscission by repressing ethylene responses and regulating the expression of BOP2 and IDA in Arabidopsis.  相似文献   

9.
A T Branco  Y Tao  D L Hartl  B Lemos 《Heredity》2013,111(1):8-15
X-linked sex-ratio distorters that disrupt spermatogenesis can cause a deficiency in functional Y-bearing sperm and a female-biased sex ratio. Y-linked modifiers that restore a normal sex ratio might be abundant and favored when a X-linked distorter is present. Here we investigated natural variation of Y-linked suppressors of sex-ratio in the Winters systems and the ability of these chromosomes to modulate gene expression in Drosophila simulans. Seventy-eight Y chromosomes of worldwide origin were assayed for their resistance to the X-linked sex-ratio distorter gene Dox. Y chromosome diversity caused males to sire ∼63% to ∼98% female progeny. Genome-wide gene expression analysis revealed hundreds of genes differentially expressed between isogenic males with sensitive (high sex ratio) and resistant (low sex ratio) Y chromosomes from the same population. Although the expression of about 75% of all testis-specific genes remained unchanged across Y chromosomes, a subset of post-meiotic genes was upregulated by resistant Y chromosomes. Conversely, a set of accessory gland-specific genes and mitochondrial genes were downregulated in males with resistant Y chromosomes. The D. simulans Y chromosome also modulated gene expression in XXY females in which the Y-linked protein-coding genes are not transcribed. The data suggest that the Y chromosome might exert its regulatory functions through epigenetic mechanisms that do not require the expression of protein-coding genes. The gene network that modulates sex ratio distortion by the Y chromosome is poorly understood, other than that it might include interactions with mitochondria and enriched for genes expressed in post-meiotic stages of spermatogenesis.  相似文献   

10.
11.
12.
 MADS box genes are likely involved in many different steps of plant development, since their RNAs accumulate in a wide variety of tissues, including roots, stems, leaves, flowers and embryos. In flowers, MADS box genes regulate the early step of specifying floral meristem identity as well as the later step of determining the fate of floral organ primordia. Here we describe the isolation and characterization of a new MADS box gene from Arabidopsis, AGL9. Sequence analyses indicate that AGL9 represents the putative ortholog of the FBP2 and TM5 genes from petunia and tomato, respectively. In situ hybridization analyses show that AGL9 RNA begins to accumulate after the onset of expression of the floral meristem identity genes, but before the activation of the organ identity genes. These data indicate that AGL9 functions early in flower development to mediate between the interaction of these two classes of genes. Later in flower development, AGL9 RNA accumulates in petals, stamens, and carpels, suggesting a role for AGL9 in controlling the development of these organs. Received: 4 May 1997 / Accepted: 14 July 1997  相似文献   

13.
14.
Duplicated APETALA1/FRUITFULL (AP1/FUL) genes show distinct but overlapping patterns of expression within rice (Oryza sativa) and within ryegrass (Lolium temulentum), suggesting discrete functional roles in the transition to flowering, specification of spikelet meristem identity, and specification of floral organ identity. In this study, we analyzed the expression of the AP1/FUL paralogues FUL1 and FUL2 across phylogenetically disparate grasses to test hypotheses of gene function. In combination with other studies, our data support similar roles for both genes in spikelet meristem identity, a general role for FUL1 in floral organ identity, and a more specific role for FUL2 in outer floral whorl identity. In contrast to Arabidopsis AP1/FUL genes, expression of FUL1 and FUL2 is consistent with an early role in the transition to flowering. In general, FUL1 has a wider expression pattern in all spikelet organs than FUL2, but both genes are expressed in all spikelet organs in some cereals. FUL1 and FUL2 appear to have multiple redundant functions in early inflorescence development. We hypothesize that sub-functionalization of FUL2 and interaction of FUL2 with LHS1 could specify lemma and palea identity in the grass floret.  相似文献   

15.
《Cell》2023,186(14):3125-3136.e11
  1. Download : Download high-res image (162KB)
  2. Download : Download full-size image
  相似文献   

16.
MADS box proteins play an important role in floral development. To find genes involved in the floral transition of Prunus species, cDNAs for two MADS box genes, PpMADS1 and PpMADS10, were cloned using degenerate primers and 5'- and 3'- RACE based on the sequence database of P. persica and P. dulcis. The full length of PpMADS1 eDNA is 1, 071bp containing an open reading frame (ORF) of 717bp and coding for a polypeptide of 238 amino acid residues. The full length of PpMADS10 cDNA is 937bp containing an ORF of 633bp and coding for a polypeptide of 210 amino acid residues. Sequence comparison revealed that PpMADS1 and PpMADS10 were highly homologous to genes AP1 and PI in Arabidopsis, respectively. Phylogenetic analysis indicated that PpMADS1 belongs to the euAP1 clade of class A, and PpMADS10 is a member of GLO/PI clade of class B. RT-PCR analysis showed that PpMADS1 was expressed in sepal, petal, carpel, and fruit, which was slightly different from the expression pattern of AP1; PpMADS10 was expressed in petal and stamen, which shared the same expression pattern as PI. Using selective mapping strategy, PpMADS1 was assigned onto the Bin 1:50 on the G1 linkage group between the markers MCO44 and TSA2, and PpMADS10 onto the Bin 1:73 on the same linkage group between the markers Lap-1 and FGA8. Our results provided the basis for further dissection of the two MADS box gene function.  相似文献   

17.
MADS box genes expressed in developing inflorescences of rice and sorghum   总被引:16,自引:0,他引:16  
With the aim of elucidating the complex genetic system controlling flower morphogenesis in cereals, we have characterized two rice and two sorghum MADS box genes isolated from cDNA libraries made from developing inflorescences. The rice clones OsMADS24 and OsMADS45, which share high homology with the Arabidopsis AGL2 and AGL4 MADS box genes, are expressed in the floral meristem, in all the primordia, and in mature floral organs. High expression levels have also been found in developing kernels. The sorghum clone SbMADS1 is also homologous to AGL2 and AGL4: expression analysis and mapping data suggest that it is the ortholog of OsMADS24. The pattern of expression of SbMADS2, the other sorghum MADS box gene, suggests that it may play a role as a meristem identity gene, as does AP1 in Arabidopsis, to which it shows considerable homology. The four genes have been mapped on a rice RFLP genetic map: the results are discussed in terms of synteny among cereals. Received: 25 April 1996 / Accepted: 29 August 1996  相似文献   

18.
19.
Melandrium album (Silene alba) is a dioecious species showing a clear-cut correlation between the phenotypic sex and the presence of heteromorphic sex chromosomes. The paper reviews basic aspects on taxonomy and flowering, concentrating on classical and more recent experiments on sex conversion: hormonal balance in planta or in vitro, interactions with the fungus Ustilago violacea, haploid production from anthers, induction of sex chromosomal aberrations via crosses between polyploids and interspecific crosses, isolation of sexual mutants through pollen irradiation, etc. The experimental data is used to discuss the current understanding of sex determination in this species. The phenotypic and genetic characteristics of Melandrium are underlined and enable alternative and complementary cloning strategies for genes involved in sex determination and differentiation.  相似文献   

20.
The haploid generation of flowering plants develops within the sporophytic tissues of the ovule. After fertilization, the maternal seed coat develops in a coordinated manner with formation of the embryo and endosperm. In the arabidopsis bsister (abs) mutant, the endothelium, which is the most inner cell layer of the integuments that surround the haploid embryo sac, does not accumulate proanthocyanidins and the cells have an abnormal morphology. However, fertility is not affected in abs single mutants. SEEDSTICK regulates ovule identity redundantly with SHATTERPROOF 1 (SHP1) and SHP2 while a role in the control of fertility was not reported previously. Here we describe the characterization of the abs stk double mutant. This double mutant develops very few seeds due to both a reduced number of fertilized ovules and seed abortions later during development. Morphological analysis revealed a total absence of endothelium in this double mutant. Additionally, massive starch accumulation was observed in the embryo sac. The phenotype of the abs stk double mutant highlights the importance of the maternal-derived tissues, particularly the endothelium, for the development of the next generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号