首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The molecular species of triacylglycerol and monogalactosyl diacylglycerol from the marine eustigmatophyte Nannochloropsis were analyzed by high-performance liquid chromatography with a flame ionization detector. Four major molecular species of triacylglycerol composed of C 14:0, C 16:0, and C 16:1 fatty acids at different combinations were identified. Six molecular species of monogalactosyl diacylglycerol were detected. Three of them contained C 20:5 fatty acid in the sn-1 position, and one component accommodated C 20:5 fatty acid in both the sn-1 and sn-2 positions. Variations in the relative distribution of the molecular species were further monitored in Nannochloropsis cultures grown under different irradiance levels and temperatures. The relative distribution of 16: 0/16:1/16:0 triacylglycerol increased in cells grown in high light and in high temperature. Variations in cellular fatty acid composition in Nannochloropsis grown under different environmental conditions of irradiance level and temperature were attributed to alterations in relative cellular content of lipid classes as well as in the relative composition of lipid class molecular species.  相似文献   

2.
The effects of inclusion of different fatty acids in the medium on the rate of esterification of palmitic acid and its stereospecific distribution among the three positions of the triacyl-sn-glycerols by preparations of rat adipocytes in vitro have been determined. Myristic acid, stearic acid, oleic acid and linoleic acid were used as diluents and the concentration of the combined unesterified fatty acids in the medium was held constant; only the proportion of palmitic acid was varied. The amount of palmitic acid esterified was always linearly related to its relative concentration in the medium and was not significantly affected by the nature of the diluent fatty acid chosen. Constant relative proportions were recovered in triacylglycerols and in intermediates in each instance. The amount of palmitic acid esterified to each of the positions of the triacyl-sn-glycerols was linearly dependent on the relative proportion in the medium but the nature of the relationship was markedly influenced by which fatty acid was present. When stearic acid was present, simple relationships were found over the whole range tested. When either myristic acid, oleic acid or linoleic acid was present, abrupt changes in the manner of esterification of palmitic acid were observed in position sn-1 when the relative concentrations of palmitic acid and the diluent reached critical values, which differed with each fatty acid. In position sn-2 when oleic acid or linoleic acid was present, a similar change was observed, and in position sn-3 it was obtained with myristic acid as diluent. The results are discussed in terms of changes in the relative affinities of the acyltransferases for palmitic acid. Palmitic acid was esterified into various molecular species in proportions that indicated acylation with non-correlative specificity at higher relative concentrations but not at lower.  相似文献   

3.
In the course of the study of the biosynthesis of the fatty acid eicosapentaenoic acid (EPA) in the microalga Porphyridium cruentum, cells were pulse-labeled with various radiolabeled fatty acid precursors. Our data show that the major end products of the biosynthesis are EPA-containing galactolipids of a eukaryotic and prokaryotic nature. The prokaryotic molecular species contain EPA and arachidonic acid at the sn-1 position and C16 fatty acids, mainly 16:0, at the sn-2 positions, whereas in the eukaryotic species both positions are occupied by EPA or arachidonic acid. However, we suggest that both the eukaryotic and prokaryotic molecular species are formed in two pathways, [omega]6 and [omega]3, which involve cytoplasmic and chloroplastic lipids. In the [omega]6 pathway, cytoplasmic 18:2-phosphatidylcholine (PC) is converted to 20:4[omega]6-PC by a sequence that includes a [delta]6 desaturase, an elongation step, and a [delta]5 desaturase. In the minor [omega]3 pathway, 18:2-PC is presumably desaturated to 18:3[omega]3, which is sequentially converted by the enzymatic sequence of the [omega]6 pathway to 20:5[omega]3-PC. The products of both pathways are exported, as their diacylglycerol moieties, to the chloroplast to be galactosylated into their respective monogalactosyldiacylglycerol molecular species. The 20:4[omega]6 in both eukaryotic and prokaryotic monogalactosyldiacylglycerol can be further desaturated to EPA by a chloroplastic [delta]17 ([omega]3) desaturase.  相似文献   

4.
Photosynthetically active chloroplasts retaining high rates of fatty acid synthesis from [1-14C]acetate were purified from leaves of both 16:3 (Solanum nodiflorum, Chenopodium album) and 18:3 plants (Amaranthus lividus, Pisum sativum). A comparison of lipids into which newly synthesized fatty acids were incorporated revealed that, in 18:3 chloroplasts, enzymic activities catalyzing the conversion of phosphatidate to diacylglycerol and of diacylglycerol to monogalactosyl diacylglycerol (MGD) were significantly less active than in 16:3 chloroplasts. In contrast, labeling rates of MGD from UDP-[14C]gal were similar for both types of chloroplasts.

The composition and positional distribution of labeled fatty acids within the glycerides synthesized by isolated 16:3 and 18:3 chloroplasts were similar and in each case only a C18/C16 diacylglycerol backbone was synthesized. In nodiflorum chloroplasts, C18:1/C16:0 MGD assembled de novo was completely desaturated to the C18:3/C16:3 stage.

Whereas newly synthesized C18/C18 MGD could not be detected in any of these chloroplasts if incubated with [14C]acetate after isolation, chloroplasts isolated from acetate-labeled leaves contained MGD with labeled C18 fatty acids at both sn-1 and sn-2 positions. Taken together, these results provide further evidence on an organellar level for the operation of pro- and eucaryotic pathways in the biosynthesis of MGD in different groups of plants.

  相似文献   

5.
In an attempt to elucidate the biosynthesis of the polyunsaturated fatty acid eicosapentaenoic acid (20:5ω3, EPA), we treated cultures of the eustigmatophyte Monodus subterraneus Peterson with either salicylhydroxamic acid or the herbicide SAN 9785. Labeled linoleic acid was incorporated into the cultures in the presence and absence of the latter inhibitor, and the redistribution of label was followed. Our results suggest that the major biosynthetic pathway leading to EPA involves fatty acids of the ω6 family. In the early stages of the biosynthesis, 18:1 is predominantly incorporated to the sn‐2 position of phosphatidylcholine, where it is stepwise desaturated by the Δ12 and Δ6 desaturases to 18:3ω6. The latter is released from the lipid, elongated to 20:3ω6 and reincorporated to both positions of phosphatidylethanolamine (PE) where it is further desaturated by the Δ5 and ω3 desaturases to EPA. We suggest that PE is the donor of the 20:5/20:5 diacylglycerol that is imported to the chloroplast to form the eukaryotic‐like molecular species of monogalactosyldiacylglycerol. Likewise, 20:3ω6 can be also incorporated into diacylglyceryltrimethylhomoserine, mostly to the sn‐2 position and similarly desaturated to 20:4ω6 and 20:5ω3. These fatty acids can be exported and incorporated into the sn‐1 position of the prokaryotic‐like molecular species of the chloroplastic lipids. We thus suggest that both the eukaryotic‐like and the prokaryotic‐like molecular species are biosynthesized by different extraplastidial lipids.  相似文献   

6.
Lysophospholipid acyltransferases (LPLATs) incorporate a fatty acid into the hydroxyl group of lysophospholipids (LPLs) and are critical for determining the fatty acid composition of phospholipids. Previous studies have focused mainly on their molecular identification and their substrate specificity regarding the polar head groups and acyl-CoAs. However, little is known about the positional specificity of the hydroxyl group of the glycerol backbone (sn-2 or sn-1) at which LPLATs introduce a fatty acid. This is mainly due to the instability of LPLs used as an acceptor, especially for LPLs with a fatty acid at the sn-2 position of the glycerol backbone (sn-2-LPLs), which are essential for the enzymatic assay to determine the positional specificity. In this study, we established a method to determine the positional specificity of LPLAT by preparing stable sn-2-LPLs in combination with PLA2 digestion, and applied the method for determining the positional specificity of several LPLATs including LPCAT1, LYCAT and LPCAT3. We found that LPCAT1 introduced palmitic acid both at the sn-1 and sn-2 positions of palmitoyl-LPC, while LYCAT and LPCAT3 specifically introduced stearic acid at the sn-1 position of LPG and arachidonic acid at the sn-2 position of LPC, respectively. The present method for evaluating the positional specificity could also be used for biochemical characterization of other LPLATs.  相似文献   

7.
Lipid and Fatty-acid Composition of Diatoms   总被引:2,自引:0,他引:2  
The lipids and fatty acids of two freshwater diatoms Nitzschiapalea Kutz, Navicula muralis Lewin, and one marine species,Navicula incerta Grun. have been studied. The major lipid components in all species were triglycerides,monogalactosyl, digalactosyl and sulphoquinovosyl diglycerides,phosphatidyl glycerol, phosphatidyl choline (lecithin), andphosphatidyl ethanolamine; while palmitoleic, palmitic, eicosapentaenoicand eicosate-traenoic acids were the major fatty acid constituents.The two galactolipids, monogalactosyl and digalactosyl diglyceridescontained large amounts of C16 and C20 polyunsaturated fattyacids. Lipids of diatoms, whether grown in the light or in the dark,were the same apart from quantitative differences. More storagelipids such as triglycerides were synthesized in the light thanin the dark.  相似文献   

8.
《Phytochemistry》1987,26(9):2573-2576
The composition of fatty acids and lipids in the marine diatom, Phaeodactylum tricornutum was determined. The Lipids consisted of monogalactosyldiacylglycerol, digalactosyldiacylglycerol, sulphoquinovosyldiacylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphtidylinositol, triacylglycerol and minor unidentified ones. At the early stationary phase of growth, the total fatty acids were mainly 20:5, 16:1, 16:0 and 16:3. 20:5 was distributed in polar lipids, particularly in monogalactosyldiacylglycerol, phosphatidylcholine and phosphatidylglycerol. This fatty acid was exclusively located at the sn-1 position of the glycerol moiety in all polar lipids except for phosphatidylcholine. In phosphatidylcholine 20:5 was distributed at both the sn-1 and sn-2 positions. 16:3 was concentrated at the sn2 position of monogalactosyldiacylglycerol and trans-16:1 (n-13) was dominant at the sn-2 position of phosphatidylglycerol. C18 fatty acids, the minor fatty acids in P. tricornutum, were confined to the sn-2 position of phosphatidylcholine.  相似文献   

9.
The main glycerolipids (monogalactosyl-, digalactosyl-, sulphoquinovosyl diacylglycerol, phosphatidylglycerol) from five blue-green algae (Microcystis, Anabaena, Nostoc, Oscillatoria, Tolypothrix) were analyzed for fatty acid composition, occurrence of diglyceride species and positional distribution of fatty acids between thesn-1- andsn-2-position of glycerol. In contrast to eucaryotic plants biosynthetically closely related lipids (monogalactosyl-, digalactosyl-, trigalactosyl diacylglycerol) show nearly identical diglyceride moieties, whereas sulphoquinovosyl diacylglycerol and phosphatidylglycerol are separated from galactolipids by composition as well as occurrence of fatty acids. On the other hand the positional distribution of fatty acids in all lipids is controlled exclusively by chain length and not by degree of unsaturation with C18-fatty acids at thesn-1- and C16-fatty acids at thesn-2-position. These results show that in procaryotic organisms the diversity in diglyceride portions of lipids is reduced as compared to eucaryotic organisms, but nevertheless does exist.Abbreviations MGD, DGD, TGD, SQD monogalactosyl-, digalactosyl-, trigalactosyl-, sulphoquinovosyl diacylglycerol - PG phosphatidyl glycerol  相似文献   

10.
Fatty acid composition, especially the distribution of eicosapolyenoic acids in several species of Gracilaria, was analyzed in relation to their taxonomy. The species have been grouped into two types based on distribution of these polyenoic acids: Type 1, which contains palmitic, oleic and arachidonic acids as the major components, and Type II, which contains eicosapentaenoic acid in addition to Type I fatty acids. Octadecapolyenoic acids were detected only in trace amounts in each Type. A similar remarkable difference also was observed in the fatty acid composition of lipid classes. The major component of eicosapolyenoic acids in Type I was arachidonic acid in all lipid classes. In Type II, eicosapentaenoic acid was the major component in monogalactosyl diacylglycerol, digalactosyl diacylglycerol, sulfoquinovosyl diacylglycerol and phosphatidylglycerol. Arachidonic and eicosapentaenoic acids were contained in large amounts in Type II phosphatidylcholine. Grouping of Gracilaria species into Type I and Type II is not entirely consistent with morphological and taxonomic features, but the difference in fatty acid composition is likely due to genetic rather than to environmental factors.  相似文献   

11.
The main fatty acids at the sn-1 position of phospholipids (PLs) are saturated or monounsaturated fatty acids such as palmitic acid (C16:0), stearic acid (C18:0), and oleic acid (C18:1) and are constantly replaced, like unsaturated fatty acids at the sn-2 position. However, little is known about the molecular mechanism underlying the replacement of fatty acids at the sn-1 position, i.e., the sn-1 remodeling. Previously, we established a method to evaluate the incorporation of fatty acids into the sn-1 position of lysophospholipids (lyso-PLs). Here, we used this method to identify the enzymes capable of incorporating fatty acids into the sn-1 position of lyso-PLs (sn-1 lysophospholipid acyltransferase [LPLAT]). Screenings using siRNA knockdown and recombinant proteins for 14 LPLATs identified LPLAT7/lysophosphatidylglycerol acyltransferase 1 (LPGAT1) as a candidate. In vitro, we found LPLAT7 mainly incorporated several fatty acids into the sn-1 position of lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), with weak activities toward other lyso-PLs. Interestingly, however, only C18:0-containing phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were specifically reduced in the LPLAT7-mutant cells and tissues from knockout mice, with a concomitant increase in the level of C16:0- and C18:1-containing PC and PE. Consistent with this, the incorporation of deuterium-labeled C18:0 into PLs dramatically decreased in the mutant cells, while deuterium-labeled C16:0 and C18:1 showed the opposite dynamic. Identifying LPLAT7 as an sn-1 LPLAT facilitates understanding the biological significance of sn-1 fatty acid remodeling of PLs. We also propose to use the new nomenclature, LPLAT7, for LPGAT1 since the newly assigned enzymatic activities are quite different from the LPGAT1s previously reported.  相似文献   

12.
The fatty acid distributions at the sn-1 and sn-2 positions in major chloroplast lipids of Chlorella kessleri 11h, monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG), were determined to show the coexistence of both C16 and C18 acids at the sn-2 position, i.e. of prokaryotic and eukaryotic types in these galactolipids. For investigation of the biosynthetic pathway for glycerolipids in C. kessleri 11h, cells were fed with [14C]acetate for 30 min, and then the distribution of the radioactivity among glycerolipids and their constituent fatty acids during the subsequent chase period was determined. MGDG and DGDG were labeled predominantly as the sn-1-C18-sn-2-C16 (C18/C16) species as early as by the start of the chase, which suggested the synthesis of these lipids within chloroplasts via a prokaryotic pathway. On the other hand, the sn-1-C18-sn-2-C18 (C18/C18) species of these galactolipids gradually gained radioactivity at later times, concomitant with a decrease in the radioactivity of the C18/C18 species of phosphatidylcholine (PC). The change at later times can be explained by the conversion of the C18/C18 species of PC into galactolipids through a eukaryotic pathway. The results showed that C. kessleri 11h, distinct from most of other green algal species that were postulated mainly to use a prokaryotic pathway for the synthesis of chloroplast lipids, is similar to a group of higher plants designated as 16:3 plants in terms of the cooperation of prokaryotic and eukaryotic pathways to synthesize chloroplast lipids. We propose that the physiological function of the eukaryotic pathway in C. kessleri 11h is to supply chloroplast membranes with 18:3/18:3-MGDG for their functioning, and that the acquisition of a eukaryotic pathway by green algae was favorable for evolution into land plants.  相似文献   

13.
Viet nam is known as an endemic area of melioidosis but its etiologic agent originated in Viet nam was not extensively studied. For the first time, we analyzed the cellular lipid and fatty acid compositions of 15 Vietnamese isolates of Burkholderia pseudomallei, 10 from humans and 5 from the environment. Cellular lipid compositions were analyzed by two-dimensional thin-layer chromatography on silica gel G plates. Cellular fatty acid methyl esters were analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). The major lipids in all the isolates were phosphatidylglycerol (PG), two forms of phosphatidylethanolamine (PE-1 and PE-2), and two forms of ornithine-containing lipid (OL-1 and OL-2). PE-1 contained non-hydroxy fatty acids at both sn-1 and ?2 positions, while PE-2 possessed 2-hydroxy fatty acids and non-hydroxy fatty acids in a ratio of 1: 1. Since snake venom phospholipase A2 digestion of PE-2 liberated 2-hydroxy fatty acids, it was confirmed that these acids are at the sn-2 position of glycerol moiety. In both OL-1 and OL-2, amide-linked fatty acid was 3-hydroxy palmitic acid (3-OH-C16: 0), while ester-linked fatty acids were non-hydroxy acids in OL-1 and 2-hydroxy acids in OL-2. The total cellular fatty acid compositions of the test strains were characterized by the presence of 2-hydroxy palmitic (2-OH-C16: 0), 2-hydroxy hexadecenoic (2-OH-C16: 1), 2-hydroxy octadecenoic (2-OH-C18: 1), 2-hydroxy methylene octadecanoic (2-OH-C19CPA), 3-hydroxy myristic (3-OH-C14: 0) and 3-hydroxy palmitic (3-OH-C16: 0) acids. There were significant differences in the concentration of hexadecenoic (C16: 1), methylene hexadecanoic (C17CPA), octadecenoic (C18: 1) and methylene octadecanoic (C19CPA) acids among the Vietnamese isolates of B. pseudomallei. However, no significant difference was observed in cellular lipid and fatty acid components between strains of human and environmental origins.  相似文献   

14.
Analysis of fatty acids from the cyanobacterium Cyanothece sp. PCC 8801 revealed that this species contained high levels of myristic acid (14:0) and linoleic acid in its glycerolipids, with minor contributions from palmitic acid (16:0), stearic acid, and oleic acid. The level of 14:0 relative to total fatty acids reached nearly 50%. This 14:0 fatty acid was esterified primarily to the sn-2 position of the glycerol moiety of glycerolipids. This characteristic is unique because, in most of the cyanobacterial strains, the sn-2 position is esterified exclusively with C16 fatty acids, generally 16:0. Transformation of Synechocystis sp. PCC 6803 with the PCC8801_1274 gene for lysophosphatidic acid acyltransferase (1-acyl-sn-glycerol-3-phosphate acyltransferase) from Cyanothece sp. PCC 8801 increased the level of 14:0 from 2% to 17% in total lipids and the increase in the 14:0 content was observed in all lipid classes. These findings suggest that the high content of 14:0 in Cyanothece sp. PCC 8801 might be a result of the high specificity of this acyltransferase toward the 14:0-acyl-carrier protein.  相似文献   

15.
Phosphatidylglycerol (PG) in thylakoid membrane is essential for growth and photosynthesis of photosynthetic organisms. Although the sn-2 position of PG in thylakoid membrane is exclusively esterified with C16 fatty acids, the functional importance of the C16 fatty-acyl chains at the sn-2 position has not been clarified. In this study, we chemically synthesized non-metabolizable PG molecules: we introduced linoleic acid (18:2, fatty acid containing 18 carbons with 2 double bonds) and one of the saturated fatty acids with different chain length (12:0, 14:0, 16:0, 18:0 and 20:0) by ether linkage to the sn-1 and sn-2 positions, respectively. With the synthesized ether-linked PG molecules, we checked whether they could complement the growth and photosynthesis of pgsA mutant cells of Synechocystis sp. PCC 6803 to understand the importance of length of fatty chains at the sn-2 position of PG. The pgsA mutant is incapable of synthesizing PG, so it requires exogenous PG added to medium for growth. The growth rate and photosynthetic activity of mutant cells depended on the length of fatty chains: the PG molecular species binding 16:0 most effectively complemented the growth and photosynthesis of mutant cells, and other PG molecular species with fatty chains shorter or longer than 16:0 were less effective; especially, those binding 12:0 inhibited the growth and photosynthetic activity of the mutant cells. These data demonstrate that length of fatty chains bound to the sn-2 position of PG is critical for PG performance in growth and photosynthesis.  相似文献   

16.
Surface pressure-area measurements of purified chlorophyll a and monogalactosyl diacylglycerol in mixed monolayers were performed at 20°C with an automatic recording surface film balance at a constant compression rate. In addition structural parts of the chlorophyll and the monogalactosyl diacylglycerol as phytol and geranylgeraniol on one hand and different fatty acids on the other were studied pure and in mixed films. All components studied formed stable monomolecular films. Chlorophyll a and monogalactosyl diacylglycerol showed miscibility. Phytol was immiscible with synthetized monogalactosyl diacylglycerol containing only stearic acid. Mixed monolayers of phytol and monogalactosyl diacylglycerol isolated from barley containing 83 mol % a-linolenic acid showed a strong interaction. An increased miscibility and association were found between phytol and fatty acids with increasing unsaturation. The results are discussed as a model for the localization of part of chlorophyll a in the thylakoid membrane.  相似文献   

17.
In contrast to what happens in higher plants and eukaryotic algae, a nitrogen deficiency during growth causes a change in pigment composition but no significant changes in whole cell lipid and fatty acid composition of the two Cyanobacteria, Pseudanabaena sp. (strain M2) and Oscillatoria splendida (strain L3). Nitrogen deficiency does not affect the cellular content in chlorophyll a, but it causes a selective loss in phycobiliproteins; carotenoid content increases with phycocyanin depletion. The major cellular lipids in both Cyanobacteria studied are monogalactosyl diacylglycerol, digalactosyl diacylglycerol, sulfoquinovosyl diacylglycerol, and phosphatidylglycerol. The fatty acid composition is particularly interesting as both these filamentous Oscillatoriaceae show important contents in α- and γ-linolenic (18:3) and parinaric (18:4) acids. This seems to be very unusual in Cyanobacteria.  相似文献   

18.
Adipose triglyceride lipase (ATGL) is rate-limiting for the initial step of triacylglycerol (TAG) hydrolysis, generating diacylglycerol (DAG) and fatty acids. DAG exists in three stereochemical isoforms. Here we show that ATGL exhibits a strong preference for the hydrolysis of long-chain fatty acid esters at the sn-2 position of the glycerol backbone. The selectivity of ATGL broadens to the sn-1 position upon stimulation of the enzyme by its co-activator CGI-58. sn-1,3 DAG is the preferred substrate for the consecutive hydrolysis by hormone-sensitive lipase. Interestingly, diacylglycerol-O-acyltransferase 2, present at the endoplasmic reticulum and on lipid droplets, preferentially esterifies sn-1,3 DAG. This suggests that ATGL and diacylglycerol-O-acyltransferase 2 act coordinately in the hydrolysis/re-esterification cycle of TAGs on lipid droplets. Because ATGL preferentially generates sn-1,3 and sn-2,3, it suggests that TAG-derived DAG cannot directly enter phospholipid synthesis or activate protein kinase C without prior isomerization.  相似文献   

19.
The fatty acid composition of two motile (strains WH 8113 and WH 8103) and one nonmotile (strain WH 7803) marine cyanobacteria has been determined and compared with two freshwater unicellular Synechocystis species (strain PCC 6308 and PCC 6803). The fatty acid composition of lipid extracts of isolated membranes from Synechocystis PCC 6803 was found to be identical to that of whole cells. All the marine strains contained myristic acid (14:0) as the major fatty acid, with only traces of polyunsaturated fatty acids. This composition is similar to Synechocystis PCC 6308. The major lipid classes of the nonmotile marine strain were identified as digalactosyl diacylglycerol, monogalactosyl diacylglycerol, phosphatidylglycerol, and sulfoquinovosyl diacylglycerol, identical to those found in other cyanobacteria.Abbreviations DGDG Digalactosyl diacylglycerol - MGDG Monogalactosyldiacylglycerol - PG Phosphatidylglycerol - SGDG sulfoquinovosyl diacylglycerol - gc gas chromatography - ms mass spectrometry  相似文献   

20.
Synthesis of unsaturated monogalactosyldiacylglycerol (MGDG) was examined in a mutant of Arabidopsis thaliana (L.) Heynh. containing reduced levels of hexadecatrienoic (16:3) and linolenic (18:3) acids in leaf lipids. Molecular species composition and labeling kinetics following the incorporation of exogenous [14C]fatty acids suggest that at least two pathways and multiple substrates are involved in desaturation of linoleic acid (18:2) to 18:3 for production of unsaturated galactolipids. A reduction in 18:3/16:3 MGDG and an increase in 18:2/16:2 MGDG, together with labeling kinetics of these molecular species following the incorporation of exogenous [14C]12:0 fatty acids, suggests that a chloroplastic pathway for production of 18:3 at the sn-1 position of MGDG utilizes 18:2/16:2 MGDG as a substrate. This chloroplastic (prokaryotic) pathway is deficient in the mutant. When exogenous [14C]18:1 was supplied, a eukaryotic (cytoplasmic) pathway involving the desaturation of 18:2 to 18:3 on phosphatidylcholine serves as the source of 18:3 for the sn-2 position of MGDG. This eucaryotic pathway predominates in the mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号