首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 662 毫秒
1.
Polymorphonuclear neutrophils (PMN) generate 5-HETE which can be retained within cells as free metabolites or esterified into cellular lipids. Since this metabolite has been shown to have certain inflammatory properties, we compared the generation and distribution profile of 5-HETE in A 23187-stimulated PMN from asthmatic patients (AP) and normal subjects (NS). 5-HETE was analyzed using RP-HPLC. After 5 min, total 5 HETE generation was similar in the two populations. However, esterified 5-HETE was significantly enhanced in AP (72 +/- 3% versus 47 +/- 2% of the total synthesis, p less than 0.005), whereas intracellular free 5-HETE was decreased (13 +/- 3% versus 37 +/- 4%, p less than 0.005) and similar low release was observed. Kinetic studies showed that PMN from AP esterified 5-HETE more rapidly and to a greater extent than PMN from NS. By contrast, more intracellular free 5-HETE was recovered in PMN from NS. Esterification seems to be the major pathway of 5-HETE metabolism in PMN from AP. Moreover, we showed that most of the 5-HETE added exogenously was esterified into cellular lipids. In these experimental conditions, PAF-induced migration of PMN was increased. The enhanced ability of PMN to migrate could be due to the increase of 5-HETE esterification process.  相似文献   

2.
In stable state asthmatic patients (AP) without any airway obstruction, the capacity of peripheral blood polymorphonuclear neutrophils (PMN) to produce 5-lipoxygenase metabolites and to migrate, was investigated and compared with the response in healthy subjects (HS). After calcium-ionophore A23187 stimulation, PMN from AP and HS produced LTB4, its hydroxylated derivatives: omega-OH-and omega-CO2H-LTB4) (omega-LTB4, i.e 6-trans-LTB4 and 5,6-diHETE isomers, and 5-HETE. We found an increase in LTB4 (+59%), omega-LTB4 (+39%), 6-trans-LTB4 (+128%), and free 5-HETE (+63%) generation of AP as compared with HS. Unstimulated migration was enhanced in AP (122 +/- 27 PMN/10 high power fields (hpf) in AP versus 74 +/- 25 PMN/10 hpf in HS, p less than 0.025) and suggested a greater capacity of PMN from AP to migrate. This was confirmed by the PAF-induced chemotaxis studies which showed, in AP, a greater PAF-sensitivity of PMN (10(-6) M versus 10(-5) M in HS) and a greater chemotaxis response (600 +/- 50 PMN versus 200 +/- 35 PMN in HS). In AP, we compared the capacity of PMN to generate LTB4 and 5-HETE with their capacity to migrate. We found an inverse correlation (r = 0.86, p less than 0.007) of intracellular free 5-HETE with chemotaxis to PAF.  相似文献   

3.
The cellular and extracellular distribution of leukotriene B4 (LTB4) generated in human neutrophilic polymorphonuclear leukocytes (PMN) stimulated with unopsonized zymosan has been compared with that generated in PMN activated by the calcium ionophore. The amounts of extracellular and intracellular LTB4 were quantitated by radioimmunoassay. The authenticity of the immunoreactive LTB4 was confirmed by the elution of a single immunoreactive peak after reverse phase-high performance liquid chromatography (RP-HPLC) at the retention time of synthetic LTB4, by the identical elution time of a peak of radiolabeled product derived from [3H]arachidonic acid-labeled PMN with the immunoreactive product, and by the comparable chemotactic activity on a weight basis of immunoreactive LTB4 and synthetic LTB4 standard. Under optimal conditions of stimulation by unopsonized zymosan, more than 78% of the generated immunoreactive LTB4 remained intracellular, whereas with optimal activation by the ionophore, less than 8.6% of immunoreactive LTB4 was retained. Resolution by RP-HPLC of the products from the supernatants and cell extracts of [3H]arachidonic acid-labeled PMN stimulated with unopsonized zymosan and those stimulated with calcium ionophore allowed identification and measurement of 5-hydroxyeicosatetraenoic acid (5-HETE), 6-trans-LTB4, LTB4, and omega oxidation products of LTB4 by radioactivity. With zymosan stimulation of PMN, 5-HETE and the 6-trans-LTB4 diastereoisomers were not released, LTB4 was partially released, and the omega oxidation products of LTB4 were preferentially extracellular in distribution. In contrast, with ionophore stimulation, only 5-HETE had any duration of intracellular residence being equally distributed intra- and extracellularly throughout the 30-min period of observation; 6-trans-LTB4, LTB4, and the omega oxidation products of LTB4 were retained at less than 19%. The respective distributions of 5-HETE after zymosan and ionophore stimulation were not altered by the introduction of albumin to the reaction mixtures to prevent reacylation, or by hydrolysis of the cell extract to uncover any product that had been reacylated. The finding that stimulation of PMN with unopsonized zymosan results in the cellular retention of 5-lipoxygenase products suggests that release of these metabolites may be an event that is regulated separately from their generation.  相似文献   

4.
Stimulus-activated polymorphonuclear neutrophils (PMN) produce leukotriene B4 (LTB4), 5-hydroxyeicosatetraenoate (5-HETE), and platelet-activating factor (PAF). Each of these lipids promotes PMN degranulation; in combination they have additive and potentiating effects that result in prominent degranulation responses at relatively low concentrations. Thus, the combined interactions of LTB4, 5-HETE, and PAF may mediate responses in PMN activated by other stimuli. This possibility was examined by measuring the responses of PMN made insensitive to one or more of these lipids. Cells were pretreated with LTB4, 5-HETE, and/or PAF for 8 min; exposed for 2 min to cytochalasin B (which is required for lipid-induced degranulation); and then challenged. PMN challenged with only buffer released minimal amounts of granule-bound enzymes. Furthermore, the lipid-pretreated cells were hyporesponsive to challenge with 1) various combinations of these same lipids or 2) ionophore A23187. The relative potencies of the lipids in producing hyporesponsiveness to themselves or A23187 were: 5-HETE less than PAF less than or equal to LTB4 less than PAF + LTB4 less than PAF + LTB4 + 5-HETE. For both types of challenge, reduced responsiveness occurred in cells pretreated with greater than 0.1 nM LTB4 and/or greater than 0.2 nM PAF, persisted in cells washed after lipid pretreatment, and did not develop in cells pretreated with various combinations of bioinactive structural analogues of the lipids. Thus, PAF, LTB4, and 5-HETE interacted to desensitize PMN, and the degranulating actions of A23187 required cells that were fully responsive to each of the three lipids. This supports the concept that the lipids act together in mediating certain of the ionophore's effects. However, lipid-desensitized PMN degranulated fully when challenged with C5a, a formylated oligopeptide, or phorbol myristate acetate. Degranulation responses, therefore, may proceed through various pathways, only some of which involve the lipid products studied here.  相似文献   

5.
Leukocyte trapping in the pulmonary circulation may be an important component of the lung vascular injury response to endotoxin, but mediators of the pulmonary leukostasis and increased lung vascular permeability are unknown. The leukocyte 5-lipoxygenation pathway of arachidonic acid metabolism yields highly biologically active products including leukotrienes C4 and D4 (formerly slow reacting substance of anaphylaxis) and the potent chemotaxin, leukotriene B4. A major product of 5-lipoxygenation is 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE), for which a sensitive, stable isotope dilution assay employing combined gas chromatography-mass spectrometry is available. This assay was used to test the hypothesis that 5-lipoxygenation products might participate in pulmonary vascular responses to endotoxin. We measured 5-HETE concentrations in lung lymph at three intervals during endotoxemia in unanesthetized sheep. Concentrations of 5-HETE in lung lymph exceeded those in aortic blood plasma. Lymph 5-HETE concentrations increased from 1.7±0.3 (mean ± SEM, N = 7) ng/ml during baseline to peak values of 6.1±1.8 ng/ml (p < 0.05) during the hours after endotoxemia and preceeding the steady state increased lung vascular permeability response. During the increased permeability steady state from 240 to 270 minutes after endotoxin, lymph 5-HETE concentrations (1.4±0.3 ng/ml) and lymph 5-HETE flow (i.e., 5-HETE concentration x lung lynph flow rate) returned to baseline values. Although these observations are consistent with the hypothesis that 5-lipoxygenation products participate in the pulmonary vascular injury response to endotoxin, lymph 5-HETE concentrations did not correlate with any of the other experimental measurements. It may be only coincidence that the increase in lymph 5-HETE concentrations appeared contemporaneous with the onset of lung vascular injury.  相似文献   

6.
Bovine aortic endothelial cells take up 12-hydroxyeicosatetraenoic acid (12-HETE), a lipoxygenase product formed from arachidonic acid. The uptake of [3H]12-HETE reached a maximum in 2 to 4 h. At this time, from 75 to 80% of the incorporated radioactivity was contained in phospholipids, about 85% of the esterified radioactivity remained in the form of 12-HETE, and at least 90% of the phospholipid radioactivity was present in the sn-2-position. Subcellular fractionation on Percoll and sucrose gradients demonstrated that 65 to 74% of the radioactivity was present in membranes enriched in NADPH-cytochrome c reductase and UDP-galactosyl transferase. The specific radioactivity relative to protein of these intracellular membranes was 2.9-times higher than in a plasma membrane fraction enriched in 5'-nucleotidase. A similar intracellular localization was observed when [3H]5-HETE or [3H]arachidonic acid were taken up. The 12-HETE was contained primarily in the choline glycerophospholipids of the microsomal membranes. After incorporation, [3H]12-HETE was removed from the cell lipids much more rapidly than [3H]arachidonic acid, and 80% of the radioactivity released into the medium during the first hour remained as 12-HETE. Because it accumulates in microsomal membranes, 12-HETE uptake may perturb certain intracellular processes and thereby lead to endothelial dysfunction. The relatively rapid removal of the newly incorporated 12-HETE may be an important protective mechanism that prevents excessive accumulation and more extensive endothelial damage.  相似文献   

7.
Metabolites of arachidonic acid appear to be involved in the regulation of aldosterone secretion. Adrenal cells metabolize arachidonic acid to several products including hydroxyeicosatetraenoic acids (HETEs). Since HETEs may be incorporated into the membrane lipids in some cells, we investigated whether HETEs were incorporated into lipids of adrenal glomerulosa cells and tested the influence of incorporation on aldosterone secretion. Cells were incubated with [3H] -arachidonic acid, -5-HETE, -12-HETE, -15-HETE or -LTB4. The cellular lipids were extracted and analyzed by TLC. Arachidonic acid was incorporated into all of the cell lipids with greatest accumulations in phospholipids (22%), cholesterol esters (50%), and triglycerides (21%). Uptake was maximal by 30 min. 5-HETE was incorporated into diglycerides and monoglycerides but not into phospholipids or other neutral lipids. The uptake followed a similar temporal pattern as arachidonic acid. 12-HETE was incorporated to a small extent into phospholipids, predominantly phosphatidylcholine. Neither 15-HETE or LTB4 were associated with cellular lipids. Angiotensin increased the uptake of 5-HETE and arachidonic acid into phosphatidylinositol/phosphatidylserine without altering uptake into the other lipids. When cells were pretreated with 5-HETE and washed to remove the unesterified HETE, basal aldosterone release as well as release stimulated by angiotensin, potassium and ACTH were significantly reduced. 15-HETE, which is not incorporated into cellular lipids, was without effect on aldosterone secretion. These studies indicate that 5-HETE may be incorporated into the cellular lipids of adrenal cells and may modulate steroidogenesis.  相似文献   

8.
5(S)-hydroxy-6 trans-8-11,14 cis-eicosatetraenoic acid (5-HETE) is the major product of arachidonic acid metabolism via the 5-lipoxygenase pathway. A limiting factor in the quatitation of 5-HETE by GC-MS analysis is the availability of a stable isotope analog for use as an internal standard. In this report, we detail procedures for selective chemical synthesis of multimilligram quantities of octadeuterated (±)-5-HETE from octadeuterated arachidonic acid. The octadeuterated (±)-5-HETE is suitable for use as an internal standard for GC-MS quantitation of 5-HETE. Preparation of the octadeuterated analog of 5-HETE can be readily performed in most laboratory settings.  相似文献   

9.
In view of the likely production of monohydroxyeicosatetraenoic acid (HETE's) in bronchial asthma, the role of these lipoxygenase products in the development of a classical clinical element of airway disease, namely airway hyperreactivity, has been investigated. Tracheas removed from guinea-pigs actively sensitized to ovalbumin produced, upon antigenic challenge (0.01 μg/ml), a 17-fold increase (0.97 ± 0.34 ng/ml to 16.73 ± 1.58 ng/ml) in the amount of 5-hydroxyeicosatetraenoic acid (5-HETE) as measured by radioimmunoassay of the tissue-bath fluid, indicating that this tissue is capable of producing 5-HETE. While 5-HETE alone, at concentrations equal to or greater than those found during the above antigenic response (0.001 to 1.0 μM), failed to produce intrinsic contractions of normal, nonsensitized guinea-pig trachea, a 30 min pretreatment with 5-HETE (1.0 μM) enhanced subsequent LTD4-induced contractions. Pretreatment with either 12- or 15-HETE, at similar concentrations and conditions, failed to potentiate LTD4 concentration-response curves. The effect of 5-HETE was time-dependent, since pretreatment for either 15 or 60 min had little or no effect on subsequent LTD4 responses. Also, the 5-HETE-induced enhancement seemed specific fot LTD4, since contractions to LTC4 (in the presence of l-serine borate), acetylcholine, histamine, PGD2 or U-46619 were unaffected by 5-HETE. Therefore, 5-HETE may have a role in the development of airway hyperreactivity by interacting with released LTD4 to exacerbate airway smooth muscle contraction in asthma.  相似文献   

10.
Effects of topical application of 15-HETE on pial arteriolar diameter and cortical perirachnoid cerebrospinal fluid (CSF) prostanoid concentrations were investigated in chloralose-anesthetized newborn pigs. Pial arteriolar diameters were measured using a closed cranial window, and CSF samples from under the window were collected for prostanoid analysis after applying artificial CSF without drug and CSF containing 15-HETE (1, 10, 100, 1000 ng/ml). 15-HETE caused significant dose-related constriction from 162 ± 17.0 μm (control diameter) to 136 ± 14.5 and 129 ± 18.7 μm (100 and 1000 ng/ml, respectively). The concentration of PGE2 (but not of PGF or 6-keto-PGF increased in CSF at 100 and 1000 ng/ml of 15-HETE. Pial arteriolar responses to 15-HETE were determined before and after indomethacin treatment (5 mg/kg, i.v.). 15-HETE (100 ng/ml) constricted pial arterioles before indomethacin (diameter change, −15 ± 10%); after indomethacin, constriction was potentiated in response to the same dose (diameter change, −26 ± 7%). These data support the hypothesis thet, in newborn piglets, 15-HETE exerts a vasoconstrictor effect on pial arterioles, which appears to be attenuated by 15-HETE-induced stimulation of dilator prostanoids.  相似文献   

11.
Cells of a mouse macrophage-like tumor cell line, J774.2, were incubated with 0.6μM radiolabeled mono- and di-hydroxyfatty acids. Monohydroxyfatty acid products of the neutrophil and platelet lipoxygenase pathways (5-HETE, 15-HETE, and 12-HETE) were rapidly taken up (42–64% of the counts cell associated at 1 min) and esterified into triglycerides and phospholipids. 5-HETE and 12-HETE were found in triglycerides and distributed among phospholipid classes while 50% of added 15-HETE was esterified into phosphatidyl inositol. Treatment of phospholipids from cells incubated with 5-HETE, 12-HETE, and 15-HETE with phospholipase A2 resulted in release of the respective monohydroxyfatty acid. HHT, a monohydroxyfatty acid product of the cyclooxygenase pathway, was taken up and esterified more slowly than the lipoxygenase products. In addition, HHT was not released when the phospholipids from cells incubated with HHT were treated with phospholipase A2. LTB4, a dihydroxyfatty acid product of neutrophil lipoxyegnase, was not taken up by J774.2 cells. The unique patterns of uptake and intracellular distribution of the different monohydroxyfatty acids suggests that the enzymes involved in the esterification of these compounds have substrate specificity and may also relate to the specific biologic effects of the compounds.  相似文献   

12.
Lipoxygenase (LO) products generated by human PMN were examined utilizing a gradient-HPLC and rapid spectral detector which permitted continuous UV-spectral monitoring of leukotrienes, lipoxins and related oxygenated products of arachidonic acid. When exposed to the ionophore A23187, PMN generated LTB4 and its omega-oxidation products as well as LXA4, LXB4, and 7-cis-11-trans-LXA4 from endogenous sources. Addition of 15-HETE changed the profile of products generated by activated PMN and led to a time- and dose-dependent increase in lipoxins and related compounds while the production of LTB4 and its omega-oxidation products was inhibited. Results of time-course and radiolabel studies revealed that 15-HETE is rapidly transformed within 15 s to 5,15-DHETE and conjugated tetraene-containing products, and that the inhibition of leukotriene formation followed a similar time-course. In contrast, PMN did not generate either lipoxins or related products from 5-[3H]HETE, nor did 5-HETE block leukotriene formation. Stimulated PMN generated 5,15-DHETE from exogenous 5-HETE, while in the absence of ionophore, 5-HETE was transformed to 5,20-HETE. These results indicate that PMN can generate lipoxins and related products from endogenous sources and that 15-HETE and 5-HETE are transformed by different routes.  相似文献   

13.
We hypothesized that lipoxygenase metabolites of arachidonic acid might be produced during endotoxin-induced acute respiratory failure (ARF) observed in young pigs. We used radioimmunoassay (RIA) to determine the presence of 5-hydroxyeicosatetraenoic acid (5-HETE), 12-HETE, and 15-HETE in bronchoalveolar lavage fluid (BALF) of saline (n=12)- and endotoxin (n=18)- treated pigs. Endotoxin, infused at 5 μg/kg for 1 hr followed by 2 μg/kg/hr for an average of 3 hrs, caused pulmonary hypertension, a biphasic increase in pulmonary vascular resistance, hypoxemia, bronchoconstriction, leukopenia, and thrombocytopenia. Relative to saline controls, the levels of immunoreactive (i)-5-HETE (816 ± 209 pg/ml), i-12-HETE (1589 ± 517 pg/ml), and i-15-HETE (448 ± 78 pg/ml) were significantly ) increased in BALF recovered from endotoxemic pigs at postmortem. Relative to control BALF i-HETE concentrations, the endotoxin values were 3.5x, 5.1x, and 2.8x higher for i-5-HETE, i-12-HETE, and i-15-HETE, respectively. We conclude that during porcine endotoxemia, the 5-, 12-, and 15-lipoxygenase pathways are activated and that HETES might be involved in the pathophysiology of endotoxin-induced ARF.  相似文献   

14.
Here, a group of specific lipids, comprising phosphatidylethanolamine (PE)- or phosphatidylcholine (PC)-esterified 12S-hydroxyeicosatetraenoic acid (12S-HETE), generated by 12-lipoxygenase was identified and characterized. 12S-HETE-PE/PCs were formed within 5 min of activation by thrombin, ionophore, or collagen. Esterified HETE levels generated in response to thrombin were 5.85 ± 1.42 (PE) or 18.35 ± 4.61 (PC), whereas free was 65.5 ± 17.6 ng/4 × 107 cells (n = 5 separate donors, mean ± S.E.). Their generation was stimulated by triggering protease-activated receptors-1 and -4 and signaling via Ca2+ mobilization secretory phospholipase A2, platelet-activating factor-acetylhydrolase, src tyrosine kinases, and protein kinase C. Stable isotope labeling showed that they form predominantly by esterification that occurs on the same time scale as free acid generation. Unlike free 12S-HETE that is secreted, esterified HETEs remain cell-associated, with HETE-PEs migrating to the outside of the plasma membrane. 12-Lipoxygenase inhibition attenuated externalization of native PE and phosphatidylserine and HETE-PEs. Platelets from a patient with the bleeding disorder, Scott syndrome, did not externalize HETE-PEs, and liposomes supplemented with HETE-PC dose-dependently enhanced tissue factor-dependent thrombin generation in vitro. This suggests a role for these novel lipids in promoting coagulation. Thus, oxidized phospholipids form by receptor/agonist mechanisms, not merely as an undesirable consequence of vascular and inflammatory disease.  相似文献   

15.
In human airways, extracellular adenosine regulates epithelial functions supporting mucociliary clearance, an important airway defense mechanism against bacterial infection. Thus, defining the mechanisms of adenosine generation is critical for elucidating the role of this nucleoside in airway homeostasis. In this study, we identified the source of adenosine on the mucosal surface of human airway epithelia. Polarized primary cultures of human nasal or bronchial epithelial cells were assayed for transepithelial transport, cytosolic and cell surface adenosine production. Ussing chamber experiments indicated that serosal 1 microM [(3)H]adenosine was not transported to the mucosal compartment. Messenger RNA for the cytosolic AMP-specific 5'-nucleotidase (CN-I) was not detected in human bronchial epithelial cells, suggesting that mucosal adenosine did not originate from intracellular pools. In contrast, extracellular 0.1 mm ATP was rapidly dephosphorylated into adenosine on the mucosal epithelial surface. We identified two ectonucleotidases that mediated the conversion of AMP to adenosine: ecto 5'-nucleotidase (ecto 5'-NT, CD73) and alkaline phosphatase (AP). Both mucosal and serosal epithelial surfaces displayed ecto 5'-NT activity (K(m) = 14 microM, V(max) = 0.5 nmol x min(-1) x cm(-2)), whereas AP activity was restricted to the mucosal surface (K(m,)(high) = 36 microM, V(max) = 1.2 nmol x min(-1) x cm(-2); K(m,)(low) = 717 microM, V(max) = 2.8 nmol x min(-1) x cm(-2)). In bronchial cultures and tissues, ecto 5'-NT accounted for >80% of total activity toward 0.01 mm AMP, compared with <15% for 5 mm AMP. The proximal airway AP isoform was identified as nonspecific AP (NS AP) by levamisole sensitivity and mRNA expression. The two ectoenzymes presented opposite airway distributions, ecto 5'-NT and NS AP mRNA dominating in higher and lower airways, respectively. Collectively, these experiments support a major role for extracellular nucleotide catalysis and for ecto 5'-NT and NS AP in the regulation of adenosine concentrations on airway surfaces.  相似文献   

16.
The oxygenation of arachidonic acid (AA) by guinea-pig neutrophil 5-lipoxygenase terminates prematurely at a substrate utilization of only 50%. In the presence of dithiothreitol (DTT), reaction progress continues longer but still terminates prematurely, at about 70% substrate turnover. The addition of more substrate during the first 60 seconds of the initial reaction resulted in continued product formation. However, at times after 120 seconds, the addition of more AA could not produce additional product formation. Together, these results indicate a time-dependent ( ), irreversible loss of enzyme activity. To determine if the product 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE) mediates the inactivation, it was tested for its ability to irreversibly inhibit the enzyme and found to inactivate 5-lipoxygenase with Ki = 0.05 ± 0.01 μM and ki = 1.4 ± 0.4 min. DTT changed the apparent affinity of 5-HPETE (Ki = 0.33 ± 0.09 μM) but had no effect on the rate of inactivation (ki = 1.26 ± 0.62 min−1). In contrast, the hydroxy derivative of 5-HPETE, 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE), is a reversible, time-independent inhibitor with K = 6.3 ± 0.9 μM regardless of DTT. The ability of thiols to protect 5-lipoxygenase from production inactivation is due, at least in part, to a non-enzymatic reaction between DTT and 5-HPETE that converts the hydroperoxy acid to a material that can no longer inactivate the enzyme.  相似文献   

17.
We characterized the release of arachidonic acid (AA) metabolites in lung effluent following lung ischemia-reperfusion since they may contribute to the pathophysiology of reperfusion lung injury. The left pulmonary artery of rabbits (N = 5) was occluded for 24 hrs with a surgically implanted vascular clip. At 24 hrs, the heart and lungs were removed en bloc and perfused with Ringers-albumin (0.5 gm%) at 60 ml/min while statically inflated with 95% O2-5% CO2. The lipid fraction of the lung effluent was concentrated using the Bligh-Dyer extraction and analyzed by gradient RP-HPLC. Samples obtained in the first minute of reperfusion showed significant increases in LTB4 (+180%), LTC4 (+3600%), 15-HETE (+370%), 5-HPETE (+270%), PGE2 (+140%), 6-keto-PGF1 alpha (+110%) and 12-HHT (+160%) compared to the effluent from the right control lung. The reperfusion-induced increases in LTB4, LTC4, LTD4 and 15-HETE were inhibited greater than or equal to 70% by pretreatment with the 5-LO inhibitors L663,536 or L651,392. The increases in lipid concentrations corresponded to significantly increased pulmonary arterial pressure from a baseline value of 9.5 +/- 0.3 to 29.3 +/- 2.9 (cmH2O) during the first min of reperfusion. The pulmonary arterial pressure remained elevated for at least 20 min of reperfusion. Reperfusion also resulted in PMN uptake (assessed by lung tissue myeloperoxidase content) in the reperfused lung versus control lung (25.0 +/- 2.4 vs. 10.5 +/- 2.5 units). The generation of lipoxygenase metabolites during the initial phase of reperfusion may contribute to post-reperfusion PMN uptake and pulmonary vasoconstriction.  相似文献   

18.
Both 1,2-diacyl- and 1-O-alkyl-2-acylglycerols are formed during stimulation of human neutrophils (PMN), and both can prime respiratory burst responses for stimulation by the chemotactic peptide, N-formyl-Met-Leu-Phe (fMLP); however, mechanisms of priming are unknown. Arachidonic acid (AA) release through phospholipase A2 activation and metabolism by 5-lipoxygenase are important activities of PMN during inflammation and could be involved in the process of primed stimulation. Therefore, we have examined the ability of diacyl- and alkylacylglycerols to act as priming agents for AA release and metabolism in human neutrophils. After prelabeling PMN phospholipids with [3H]AA, priming was tested by incubating human PMN with the diacylglycerol, 1-oleoyl-2-acetylglycerol (OAG), or its alkylacyl analog, 1-O-delta 9-octadecenyl-2-acetylglycerol (EAG) before stimulating with fMLP. fMLP (1 microM), OAG (20 microM), or EAG (20 microM) individually caused little or no release of labeled AA. However, after priming PMN with the same concentrations of either OAG or EAG, stimulation with 1 microM fMLP caused rapid (peak after 1 min) release of 6-8% of [3H]AA from cellular phospholipids; total release was similar with either diglyceride. Priming cells with OAG also enhanced conversion of released AA to leukotriene B4 (LTB4) and 5-hydroxyeicosatetraenoic acid (5-HETE) upon subsequent fMLP stimulation, but AA metabolites were not increased in EAG-primed PMN. If fMLP was replaced with the calcium ionophore A23187 (which directly causes release of AA and production of LTB4 and 5-HETE), priming by both diglycerides again enhanced release of [3H]AA, but only OAG priming increased lipoxygenase activity. Indeed, EAG pretreatment markedly reduced LTB4 and 5-HETE production. Thus, both diglycerides prime release of AA from membrane phospholipids but have opposite actions on the subsequent metabolism of AA.  相似文献   

19.
Activation of peroxisome proliferator activated receptor (PPAR)α and its protective role in cardiovascular function has been reported but the exact mechanism(s) involved is not clear. As we have shown that PPARα ligands increased nitric oxide (NO) production and cardiovascular function is controlled by a balance between NO and free radicals, we hypothesize that PPARα activation tilts the balance between NO and free radicals and that this mechanism defines the protective effects of PPARα ligands on cardiovascular system. Systolic blood pressure (SBP) was greater in PPARα knockout (KO) mice compared with its wild type (WT) litter mates (130 ± 10 mmHg versus 107 ± 4 mmHg). l-NAME (100 mg/L p.o.), the inhibitor of NO production abolished the difference between PPARα KO and WT mice. In kidney homogenates, tissue lipid hydroperoxide generation was greater in KO mice (11.8 ± 1.4 pM/mg versus 8.3 ± 0.6 pM/mg protein). This was accompanied by a higher total NOS activity (46 ± 6%, p < 0.05) and a 3 fold greater Ca2+-dependent NOS activity in kidney homogenates of untreated PPARα WT compared with the KO mice. Clofibrate, a PPARα ligand, increased NOS activity in WT but not KO mice. Bezafibrate (30 mg/kg) reduced SBP in conscious rats (19 ± 4%, p < 0.05), increased urinary NO excretion (4.06 ± 0.53–7.07 ± 1.59 μM/24 h; p < 0.05) and reduced plasma 8-isoprostane level (45.8 ± 15 μM versus 31.4 ± 8 μM), and NADP(H) oxidase activity (16 ± 5%). Implantation of DOCA pellet (20 mg s.c.) in uninephrectomized mice placed on 1% NaCl drinking water increased SBP by a margin that was markedly greater in KO mice (193 ± 13 mmHg versus 130 ± 12 mmHg). In the rat, DOCA increased SBP and NAD(P)H oxidase activity and both effects were diminished by clofibrate. In addition, clofibrate reduced ET-1 production in DOCA/salt hypertensive rats. Thus, apart from inhibition of ET-1 production, PPARα activation exerts protective actions in hypertension via a mechanism that involves NO production and/or inhibition of NAD(P)H oxidase activity.  相似文献   

20.
Analysis of 20-hydroxyeicosatetraenoic acid (20-HETE), a potent vasoconstrictor produced by the cytochrome P450 pathway, presently requires high-performance liquid chromatography (HPLC) and gas chromatography/ mass spectrometry (GC/MS). To simplify 20-HETE analysis, competitive ELISAs were developed using polyclonal anti-20-HETE coated ELISA plates to which free 20-HETE and 20-HETE conjugated to horseradish peroxidase (HRP) or alkaline phosphatase (AP) were added. Assays were developed with and without a pro prietary enhancer solution which allows for the extraction-free measurement of 20-HETE in urine samples. The bound 20-HETE-HRP or 20-HETE-AP was detected using 3,3 ,5,5, -tetramethylbenzidine and p-nitrophenyl phosphate, respectively. Sensitivities expressed as 80% B/B0, were 0.1 ng/ml for the HRP assay, and 0 5 ng/ml for the AP assay, with r2 = 0 99 for both formats. Of the 17 lipids tested for cross-reactivity, arachidonic acid showed the highest (0.32%) followed by racemic 5-HETE (0.07%) and 8,9-dihydroxyeicosatrienoic acid (DHET) (0.04%). Preliminary validation experiments examining serum and urine concentrations of 20-HETE yield values that fall within the ranges established by GC/MS in the literature. These ELISAs provide simple and inexpensive methods for the analysis of 20-HETE in biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号