首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Simultaneous ripples (sudden changes in rate) in CO2 dependent O2 evolution and associated chlorophyll a fluorescence were followed in isolated, largely intact, spinach chloroplasts. These ripples could only be observed under conditions in which the supply of inorganic phosphate was limiting. This limitation was achieved either by 1) omission of phosphate in the assay medium, 2) use of inhibitors of the phosphate translocator, or 3) the addition of triose phosphate, a competitive inhibitor of Pi for the same translocator.The possible relation of these ripples to the dampening oscillations that can be observed in leaves, leaf pieces, isolated cells and protoplasts, is discussed.Abbreviations Pi orthophosphate - PPi: inorganic pyrophosphate - BSA bovine serum albumin - EDTA sodium ethylene-diaminetetraacetate - Hepes 4-(2-hydroxyethyl)-1-piperazine-ethane-sulphonic acid - DHAP dihydroxyacetone phosphate - PGA 3-phosphoglycerate  相似文献   

2.
Summary The authors studied the dependence between the ability of systems regulating the level of peripheral leucocytes to damp the fluctuations of this level, occurring under conditions of repeated stressing of the organism by non-specific stress factors (isolation, starvation, handling for blood withdrawal) and the tolerance of the organism to the action of ionizing radiation (summary exposure to X-rays leading to death at repeated irradiation). This regulatory ability was expressed with the aid of the slope (coefficientb) of regression between the leucocytary valuesx i, fluctuating in time, and the subsequent differences i ( i =x i+1x i ). The highest tolerance to lethal action of radiation is correlated to such a regulatory behaviour of the organism at which the time necessary for adaptation of the system is shortest. The authors point out the suitability of the employed regulatory characteristic for the quantitative study of adaptability and resistance of the organism and its relatedness to the damping ratio, used in the automatic control theory.  相似文献   

3.
In this paper we report studies on photosynthetic formation of inorganic pyrophosphate (PPi) in three phototrophic bacteria. Formation of PPi was found in chromatophores from Rhodopseudomonas viridis but not in chromatophores from Rhodopseudomonas blastica and Rhodobacter capsulatus. The maximal rate of PPi synthesis in Rps. viridis was 0.15 mol PPi formed/(min*mol Bacteriochlorophyll) at 23°C. The synthesis of PPi was inhibited by electron transport inhibitors, uncouplers and fluoride, but was insensitive to oligomycin and venturicidin. The steady state rate of PPi synthesis under continuous illumination was about 15% of the steady-state rate of ATP synthesis. The synthesis of PPi after short light flashes was also studied. The yield of PPi after a single 1 ms flash was equivalent to approximately 1 mol PPi/500 mol Bacteriochlorophyll. In Rps. viridis chromatophores, PPi was also found to induce a membrane potential, which was sensitive to carbonyl cyanide p-trifluoromethoxyphenylhydrazone and NaF.Abbreviations BChl Bacteriochlorophyll - F0F1-ATPase Membrane bound proton translocating ATP synthase - FCCP Carbonyl cyanide p-trifluoromethoxyphenylhydrazone - H+-PPase Membrane bound proton translocating PPi synthase - TPP+ Tetraphenyl phosphonium ion - TPB- Tetraphenyl boron ion - Transmembrane electrical potential difference  相似文献   

4.
The functional significance of the apical vacuolar-type proton pump (V-ATPase) in Drosophila Malpighian tubules was studied by measuring the intracellular pH (pHi) and luminal pH (pHlu) with double-barrelled pH-microelectrodes in proximal segments of the larval anterior tubule immersed in nominally bicarbonate-free solutions (pHo 6.9). In proximal segments both pHi (7.43±0.20) and pHlu (7.10±0.24) were significantly lower than in distal segments (pHi 7.70±0.29, pHlu 8.09±0.15). Steady-state pHi of proximal segments was much less sensitive to changes in pHo than pH of the luminal fluid (pHlu/pHo was 0.49 while pHi/pHo was 0.18; pHo 6.50–7.20). Re-alkaliniziation from an NH4Cl-induced intracellular acid load (initial pHi recovery rate 0.55±0.34 pH·min-1) was nearly totally inhibited by 1 mmol·l-1 KCN (96% inhibition) and to a large degree (79%) by 1 mol·l-1 bafilomycin A1. In contrast, both vanadate (1 mmol·l-1) and amiloride (1 mmol·l-1) inhibited pHi recovery by 38% and 33%, respectively. Unlike amiloride, removal of Na+ from the bathing saline had no effect on pHi recovery, indicating that a Na+/H+ exchange is not significantly involved in pHi regulation. Instead pHi regulation apparently depended largely on the availability of ATP and on the activity of the bafilomycin-sensitive proton pump.Abbreviations DMSO dimethylsulphoxide - DNP 2,4-dinitrophenol - NMDG N-methyl-D-glucamine - pHi intracellular pH - pHlu pH of the luminal fluid - pHo pH of the superfusion medium - I intrinsic intracellular buffer capacity  相似文献   

5.
Summary When N. crassa is starved for phosphate the rate of synthesis of total RNA, as measured by the incorporation of uridine, rapidly dclines, attaining a value of 2% of the control after 4 h. Synthesis of ribosomal RNA (rRNA), measured by direct hybridization to ribosomal DNA covalently coupled to diazobenzyloxymethyl (DBM) paper, also declines to a value 3%–4% that of the control after 4 h of phosphate starvation. Measurement of rRNA synthesis in regulatory mutant strains expressing phosphorus-family enzymes indicates that two of these mutant strains, pgov c12 and nuc-1, respond differently to phosphate starvation from the response in wild-type or the other five mutant strains. The results suggest that the wild-type products of the regulatory loci, pgov + and nuc-1 + may have a role in regulating rRNA synthesis as well as phosphorus family enzymes.  相似文献   

6.
Polyunsaturated fatty acid (PUFA) deficiency affects respiratory rate both in isolated mitochondria and in hepatocytes, an effect that is normally ascribed to major changes in membrane composition causing, in turn, protonophoriclike effects. In this study, we have compared the properties of hepatocytes isolated from PUFA-deficient rats with those from control animals treated with concentrations of the protonophoric uncoupler 2,4-dinitrophenol (DNP). Despite identical respiratory rate and in situ mitochondrial membrane potential (), mitochondrial and cytosolic ATP/ADP–Pi ratios were significantly higher in PUFA-deficient cells than in control cells treated with DNP. We show that PUFA-deficient cells display an increase of phosphorylation efficiency, a higher mitochondrial ATP/ADP–Pi ratio being maintained despite the lower . This is achieved by (1) decreasing mitochondrial Pi accumulation, (2) increasing ATP synthase activity, and (3) by increasing the flux control coefficient of adenine nucleotide translocation. As a consequence, oxidative phosphorylation efficiency was only slightly affected in PUFA-deficient animals as compared to protonophoric uncoupling (DNP). Thus, the energy waste induced by PUFA deficiency on the processes that generate the proton motive force (pmf) is compensated in vivo by powerful adaptive mechanisms that act on the processes that use the pmf to synthesize ATP.  相似文献   

7.
Enzyme activities conceivably involved in the activation of sulfate were studied with Desulfotomaculum ruminis, D. acetoxidans, D. nigrificans, D. orientis, and Desulfovibrio vulgaris. Cell lysates of these species revealed activities of at least 8 nkat/mg protein (i.e., 480 nmol per min and mg protein) of ATP sulfurylase, acetate kinase, phosphotransacetylase and adenylate kinase. ADP sulfurylase was not detected. Pyrophosphatase activity was high (73 to 97 nkat/mg protein) in Desulfotomaculum orientis and Desulfovibrio vulgaris. In these strains pyrophosphatase was activated by addition of a reductant (dithionite). In Desulfotomaculum ruminis, D. acetoxidans, and D. nigrificans, only low pyrophosphatase activity (2.5 to 6.3 nkat/mg protein) was measured, which was not reductant-activated. Some hints indicated a membrane association of the pyrophosphatase in D. ruminis, and possibly also in D. acetoxidans and D. nigrificans. Activities of a pyrophosphate-dependent acetate kinase (PPi:acetate kinase), a PPi:AMP kinase or a polyphosphate:AMP kinase were not detected or negligible. The results are not in favour of the assumption that pyrophosphate formed by ATP sulfurylase during sulfate activation might be utilized to form acetyl phosphate in Desulfotomaculum species. Contrary results of other authors were shown to be artefacts caused by chemical hydrolysis of acetyl phosphate in the molybdate-sulfuric acid reagent used for phosphate determination.Abbreviations Pi orthophosphate - PPi pyrophosphate - APS adenosine phosphosulfate - AP5A, P1 P5-di(adenosine-5-)pentaphosphate - CTAB cetyltrimethylammonium bromide - MOPS 3-(N-morpholino)propanesulfonic acid - HEPES N(-2-hydroxyethyl)piperazine-N-2-ethanesulfonic acid  相似文献   

8.
Uptake, assimilation and compartmentation of phosphate were studied in the opportunist green macroalgaUlva lactucaand the estuarine red algal epiphyteCatenella nipae. The Michaelis–Menten model was used to describe uptake rates of inorganic phosphate (Pi) at different concentrations. Maximum uptake rates (V max) of P-starved material exceededV maxof P-enriched material; this difference was greater forC. nipae. Uptake and allocation of phosphorus (P) to internal pools was measured using trichloroacetic acid (TCA) extracts and32P. Both species demonstrated similar assimilation paths: when P-enriched, most32P accumulated as free phosphate. When unenriched,32P was rapidly assimilated into the TCA-insoluble pool.C. nipaeconsistently assimilated more32P into this pool thanU. lactuca, indicatingC. nipaehas a greater P-storage capacity. In both species,32P release data showed two internal compartments with very different biological half-lives. The rapidly exchanging compartment had a short half-life of 2 to 12 min, while the slowly exchanging compartment had a much longer half-life of 12 days in P-starvedC. nipaeor 4 days in P-starvedU. lactuca. In both species, the slowly exchanging compartment accounted for more than 90% of total tissue.U. lactucaandC. nipaeresponded differently to high external Pi.U. lactucarapidly took up Pi, transferring this Piinto tissue phosphate and TCA-soluble P in a few hours (90% of total P).C. nipaetook up Piat lower rates and stored much of this P in less mobile TCA-insoluble forms. Long-term storage of refractory forms of P makesC. nipaea useful bioindicator of the prevailing conditions of Piavailability over at least the previous 7 days, whereas the P-status ofU.lactucamay reflect conditions over no more than the previous few hours or days.C. nipaeis a more useful bioindicator for P status of estuarine and marine waters thanU. lactuca.  相似文献   

9.
Diel vertical migration by Heterosigma akashiwo (Hada) Hada (Raphidophyceae) was monitored in a 1.5 in tall microcosm. Vertical stratification, with low salinity and low orthophosphate (Pi) concentration in the upper layer and high salinity and high Pi concentration in the lower layer, was simulated in the tank, analogous to summer stratification in the Seto Inland Sea. The phosphate metabolism of H. akashiwo during this vertical migration was studied using 31P-NMR spectroscopy. At night this species migrated to the lower phosphate-rich layer and took up inorganic phosphate (Pi) which then was accumulated as polyphosphate (PPi) by an increase in the chain length of PPi During the daytime this species migrated to the phosphate-depleted surface water and utilized the accumulated PPi for photophosphorylation by decreasing the chain length of PPi During the first night after the phosphorus was introduced to the previously impoverished waters, the cells took up inorganic phosphate, accumulating the new phosphorus nutrient internally as Pi But the cells did not convert Pi to PPi presumably due to their lack of ATP. After the second day of the experiment, conversion of Pi to PPi at night was much more rapid than on the first day, presumably due to increased ATP availability. Then the cycle continued, with uptake of Pi and conversion to PPi at night at the bottom and its utilization during the day at the surface. These data suggest that the role of PPi in the metabolism of this species appears to be as a phosphate pool which regulates the level of Pi and ATP in the cell. Diel vertical migration allows this red tide species to shuttle between the phosphate-rich lower layer and the photic upper layer in stratified waters. 31P-NMR is shown to be a valuable tool in studying the phosphorus metabolism in migrating organisms.  相似文献   

10.
Summary An endogenous thermostable activator of Protein kinase III (PKIII) was purified from 100000 × g supernatants of Neurospora crassa mycelial extracts. This 38 000 dalton polypeptide, clearly separable from calmodulin on P-60 gel filtration, specifically stimulated N. crassa PKIII activity on casein or phosvitin in vitro phosphorylation.The factor was only present in the initial growth phase of the fungus. The mechanism of PKIII activation and its possible regulatory role are discussed.Abbreviations PK protein kinase - MES 2-N-Morpholino ethane-sulfonic acid - PMSF phenylmethylsulfonyl fluoride - S100 100000 × g Supernatant  相似文献   

11.
Summary The Ca2– entry pathways in the basolateral plasma membrane of the isolated, nonperfused proximal straight tubule (PST) of rabbit kidney were investigated using fura-2 fluorescence microscopy. Under isotonic conditions, reduction of bath [Ca2–] from 1 mM to 1 M caused intracellular free calcium concentration ([Ca2+]i) to fall close to zero. Treatment with 10 M verapamil, a calcium channel blocker, had a similar effect. Treatment with verapamil or low Ca2+ also induced fluctuations in cell volume. However, isotonic treatment with 10 M nifedipine, a dihydropyridine (DHP)-type calcium channel blocker, did not affect [Ca2+]i or cell volume, indicating that the endogenous Ca2+ entry pathway is verapamil-sensitive but DHP-insensitive. When cells were exposed to hypotonic solutions in the presence of 1 mM Ca2+, they swelled and underwent normal RVD while [Ca2+]i increased transiently to a peak before decreasing to a late phase plateau level above the baseline level (see McCarty, N.A., O'Neil, R.G. 1991.J. Membrane Biol. 123:149–160). When cells were swollen in the presence of verapamil or low bath [Ca2+], RVD was abolished and [Ca2+]i fell well below the baseline during the late phase response. In contrast, when cells were swollen in the presence of nifedipine, RVD and the late phase rise in [Ca2+]i were abolished, but [Ca2+]i did not fall below the baseline level in the late phase, indicating that nifedipine inhibited the swelling-induced Ca2+ entry but that Ca2+ entry by another pathway was undisturbed. It was concluded that PST cells are characterized by two Ca2+ permeability pathways in the basolateral membrane. Under both isotonic and hypotonic conditions, Ca2+ entry occurs at a slow rate via a verapamil-sensitive, DHP-insensitive baseline Ca2+ entry pathway. Cell swelling activates a separate DHP-sensitive, verapamil-sensitive Ca2+ entry pathway, which is responsible for the supply of Ca ions to the Ca2+-dependent mechanism by which cell volume regulation is achieved.  相似文献   

12.
ABSTRACT. Acidocalcisomes are acidic organelles with a high concentration of phosphorus present as pyrophosphate (PPi) and polyphosphate (poly P) complexed with calcium and other cations. The acidocalcisome membrane contains a number of pumps (Ca2+‐ATPase, V‐H+‐ATPase, H+‐PPase), exchangers (Na+/H+, Ca2+/H+), and channels (aquaporins), while its matrix contains enzymes related to PPi and poly P metabolism. Acidocalcisomes have been observed in pathogenic, as well as non‐pathogenic prokaryotes and eukaryotes, e.g. Chlamydomonas reinhardtii, and Dictyostelium discoideum. Some of the potential functions of the acidocalcisome are the storage of cations and phosphorus, the participation of phosphorus in PPi and poly P metabolism, calcium homeostasis, maintenance of intracellular pH homeostasis, and osmoregulation. In addition, acidocalcisomes resemble lysosome‐related organelles (LRO) from mammalian cells in many of their properties. For example, we found that platelet dense granules, which are LROs, are very similar to acidocalcisomes. They share a similar size, acidic properties, and both contain PPi, poly P, and calcium. Recent work that indicates that they also share the system for targeting of their membrane proteins through adaptor protein 3 reinforces this concept. The fact that acidocalcisomes interact with other organelles in parasitic protists, e.g. the contractile vacuole in Trypanosoma cruzi, and other vacuoles observed in Toxoplasma gondii, suggests that these cellular compartments may be associated with the endosomal/lysosomal pathway.  相似文献   

13.
Flux into the glycolytic pathway of most cells is controlled via allosteric regulation of the irreversible, committing step catalyzed by ATP-dependent phosphofructokinase (PFK) (ATP-PFK; EC 2.7.1.11), the key enzyme of glycolysis. In some organisms, the step is catalyzed by PPi-dependent PFK (PPi-PFK; EC 2.7.1.90), which uses PPi instead of ATP as the phosphoryl donor, conserving ATP and rendering the reaction reversible under physiological conditions. We have determined the enzymic properties of PPi-PFK from the anaerobic, hyperthermophilic archaeon Thermoproteus tenax, purified the enzyme to homogeneity, and sequenced the gene. The ∼100-kDa PPi-PFK from T. tenax consists of 37-kDa subunits; is not regulated by classical effectors of ATP-PFKs such as ATP, ADP, fructose 2,6-bisphosphate, or metabolic intermediates; and shares 20 to 50% sequence identity with known PFK enzymes. Phylogenetic analyses of biochemically characterized PFKs grouped the enzymes into three monophyletic clusters: PFK group I represents only classical ATP-PFKs from Bacteria and Eucarya; PFK group II contains only PPi-PFKs from the genus Propionibacterium, plants, and amitochondriate protists; whereas group III consists of PFKs with either cosubstrate specificity, i.e., the PPi-dependent enzymes from T. tenax and Amycolatopsis methanolica and the ATP-PFK from Streptomyces coelicolor. Comparative analyses of the pattern of conserved active-site residues strongly suggest that the group III PFKs originally bound PPi as a cosubstrate.As first discovered in Entamoeba histolytica (27), in some members of all three domains of life (Bacteria, Eucarya, and Archaea), the first committing step of glycolysis, the phosphorylation of fructose 6-phosphate (Fru 6-P), is catalyzed not by common ATP-dependent phosphofructokinase (PFK) (ATP-PFK; EC 2.7.1.11) but by an enzyme which uses PPi as a phosphoryl donor (PPi-PFK; EC 2.7.1.90) (2234). The only archaeal PPi-PFK described so far is the enzyme of Thermoproteus tenax, a hyperthermophilic, anaerobic archaeon which is able to grow chemolithotrophically with CO2, H2, and S0, as well as chemo-organothrophically in the presence of S0 and carbohydrates (11, 41). As shown by enzymatic and in vivo studies (pulse-labeling experiments), T. tenax metabolizes glucose mainly via a variation of the Embden-Meyerhof-Parnas pathway distinguished by the reversible PPi-PFK reaction (34, 35).In contrast to the virtually irreversible reaction catalyzed by the ATP-PFK, the phosphorylation by PPi is reversible. Thus, for thermodynamic reasons, the PPi-PFK should be able to replace the enzymes of both the forward (ATP-PFK) and reverse (fructose-bisphosphatase [FBPase]) reactions. Consistent with the presumed bivalent function of the PPi-dependent enzyme, in prokaryotes and parasitic protists which possess PPi-PFK, little, if any, ATP-PFK or FBPase activity is present. Strikingly, the PPi-PFKs of these organisms proved to be nonallosteric, suggesting that the control of the carbon flux through the pathway is no longer exerted by the PFK in these organisms. A considerably different situation has been described for higher plants and the green alga Euglena gracilis, showing comparable ATP-PFK, FBPase, and PPi-PFK activities and allosteric regulation of their PPi-dependent enzyme by fructose 2,6-bisphosphate (12, 22). However, in most cases it is not obvious which physiological role PPi-PFK performs: reversible catalysis of glycolysis/gluconeogenesis, increase of the energy yield of glycolysis under certain conditions in which the energy charge is low, or ATP-conservation in obligately fermentative organisms (22).Closely related to questions concerning the biological function of PPi-PFKs is the matter of their evolutionary origin: are these enzymes the result of a secondary adaptation from ATP-PFKs, or do they represent an original phenotype, as suggested by their specificity for PPi, which is thought to be an ancient source of metabolic energy (9, 18, 19, 26). Indicated by sequence similarity (3, 4), all known PPi- and ATP-PFKs are homologous and therefore originated from a common ancestral root. From more recent studies of Streptomyces coelicolor PFK (4), the previous assumption of a single event which separated PPi- and ATP-PFKs had to be revised in favor of a multiple differentiation, leaving open, however, the question of the primary or secondary origin of PPi-PFK.Understanding of PFK evolution has been impaired by a lack of knowledge concerning archaeal PFK, although the existence of ATP-PFK (31), PPi-PFK (34), and also ADP-dependent PFK (16, 31) in Archaea has been described. To address the evolution of PFK, we describe the PPi-PFK from T. tenax and compare its sequence and structure to those of known bacterial and eucaryal PFK enzymes.  相似文献   

14.
Five principle monoterpenoid and other constituent volatile chemicals of sunflower heads were combined to resemble two lines of sunflower (Helianthus annuus L.): one U.S.D.A. standard line and one French line which was poorly visited by insects (Etievant et al., 1984). Field trials of attraction to red sunflower seed weevils (Smicronyx fulvus Le Conte, Coleoptera: Curculionidae) showed that one was clearly preferred over the other. The more attractive mixture contained -pinene, -pinene, limonene, camphene and bornyl acetate in a ratio resembling that of Flath et al. (1985) rather than that described by Etievant et al. (1984). One or two volatiles were deleted from the optimal blend but only mixtures of five volatiles showed the highest attraction. Substitution of sabinene, another volatile prominent in sunflower, for one of the five in the optimal blend also decreased attraction of seed weevils. When the monoterpenoid components and green leaf volatiles in the traps resembled the ratios of most of the prominent volatiles of sunflower, attraction was significantly greater than controls.  相似文献   

15.
The kinetic parameters of inhibition of camel retinal acetylcholinesterase (AChE) activity by cycloheximide (CH) were investigated. For the control system, the Michaelis–Menten constant (K m)for the hydrolysis of acetylthiocholine iodide was found to be 0.076 mmol/L and the V max was 0.547 mol/min per mg protein. In contrast, these parameters were decreased in the CH-treated systems. Dixon and Lineweaver–Burk plots, and their secondary replots, indicated that the inhibition was of the linear mixed type, which seems to be a combination of partial competitive and pure noncompetitive inhibition. The values of Ki(slope) and K I(intercept) were estimated to be 3.50 and 5.68 mmol/L, respectively. K i was greater than Ki, indicating that CH has a greater binding affinity for the peripheral site than the active site.  相似文献   

16.
George  T.S.  Gregory  P.J.  Robinson  J.S.  Buresh  R.J. 《Plant and Soil》2002,246(1):65-73
The aim of this work was to assess whether agroforestry species have the ability to acquire P from pools unavailable to maize. Tithonia diversifolia(Hemsley) A. Gray, Tephrosia vogelii Hook f., Zea mays and Lupinus albusL. were grown in rhizopots and pH change and depletion of inorganic and organic P pools measured in the rhizosphere. Plants were harvested at the same growth stage, after 56 days for maize and white lupin and 70 days for tithonia and tephrosia, and the rhizosphere sampled. The rhizosphere was acidified by tithonia (pH change –0.3 units to pH 4.8) and lupins (–0.2 units to 4.9), alkalinised by tephrosia (+0.4 units to pH 5.4), and remained unchanged with maize growth. Concurrent with acidification in the rhizosphere of tithonia there was a decline in resin-P (0.8 g P g–1). However, there was also a decline in NaOH extractable inorganic P (NaOH-Pi) (5.6 g P g–1 at the root surface) and organic P pools (NaOH-Po) (15.4 g P g–1 at 1.5 mm from the root), which would not be expected without specific P acquisition mechanisms. Alkalinisation of tephrosia rhizosphere was accompanied by changes in all measured pools, although the large depletion of organic P (21.6 g P g–1 at 5 mm from the root) suggests that mineralisation, as well as desorption of organic P, was stimulated. The size of changes of both pH and P pools varied with distance away from the rhizoplane. Decline of more recalcitrant P pools with the growth of the agroforestry species contrasted with the effect of maize growth, which was negligible on resin-P and NaOH-Pi, but led to an accumulation of P as NaOH-Po (14.2 g P g–1 at 5 mm from the root). Overall the depletion of recalcitrant P pools, particularly Po, suggests that the growth of tithonia and tephrosia enhance desorption and dissolution of P, while also enhancing organic P mineralisation. Both species appear to have potential for agroforestry technologies designed to enhance the availability of P to crops, at least in the short term.  相似文献   

17.
In a previous article (8) a geometrical study of the five-membered ring showed that: a) for the case of the 20 symmetrical C2 and Cs conformations, the pseudorotation formulae for the torsion angles are a geometrical property of the ring; b) geometrical considerations alone are unable to define the puckering amplitude, the bond angle values, and the pathway between two symmetrical conformations. Here we examine how the energy equations enable us to define the deformation amplitude m, establish the bond angles expressions and check the energy invariability along the pseudorotation circuit. The problem is next developed fully in the case where the bond and torsional energy only are considered: the literal expression1 of m is then given as a function of the bond angle which cancels out the bond angle energy. A numerical application is carried out on cyclopentane and the values of the parameters Kt, K1 and used in the Conformational energy calculations are considered.Notations used 1 i bond lengths 1 in the case of the regular ring - i torsional angles - i bond angles - 3/5 = 108 - 4/5 = 144 - , i i – = complement to the 108 bond angle i - T - E Conformational energy of the 5-membered ring - E Conformational energy difference between planar and deformed ring - A n Coefficients of the energy development in terms of - E i l Bond energy relative to atom i (associated with angle i) - K i l Bond constant relative to atom i (associated with angle i) - E i l Torsional energy relative to the i th bond (associated with angle i) - k i l Torsional constant relative to the i th bond (associated with angle i) - i Angle i value corresponding to zero bond energy E i l (when the 5 atoms of the ring are identical, i ) - r ij Distance between atoms i and j - q i Charge carried by atom i - e Constant of proportionality including the effective dielectric constant - A ij, Bij, dij Coefficients dependent on the nature of the atoms i and j and accounted for in the Van der Waals energy and hydrogen bond expressions - S (r ij) Electrostatic contribution to the hydrogen bond energy - P Pseudorotation phase angle - m Maximum torsional angle value characterising the deformation amplitudeM  相似文献   

18.
Summary A phage has been isolated which specifically transduces the Escherichia coli pheS and pheT genes coding for the and subunits of the phenylalanyl-tRNA synthetase (PRS). This phage transduces with high frequency (i) several temperaturesensitive PRS mutants to thermoresistance and (ii) a p-fluorophenylalanine resistant PRS mutant to sensitivity against this amino-acid analog. The in vitro PRS activities of such lysogens suggest that the and subunits coded by the transducing phage complement the mutant host PRS-subunits in vivo by means of formation of hybrid enzymes.The transducing phages were also used to infect UV light irradiated cells. The SDS-gel electrophoretic analysis of the proteins synthesized in such cells revealed that the phage codes at least for four different E. coli proteins. Two proteins with molecular weights of 94,000 and 38,000 daltons cross-reacted with an anti PRS serum and were thus identified as the and subunits of PRS, respectively. A third protein with w molecular weight of 22,000 daltons is identical with the ribosomal initiation factor IF3 (Springer et al., 1977b). The other protein (Mr 78,000) is still unidentified.  相似文献   

19.
Regulation of phosphate starvation responses in higher plants   总被引:8,自引:0,他引:8  

Background

Phosphorus (P) is often a limiting mineral nutrient for plant growth. Many soils worldwide are deficient in soluble inorganic phosphate (Pi), the form of P most readily absorbed and utilized by plants. A network of elaborate developmental and biochemical adaptations has evolved in plants to enhance Pi acquisition and avoid starvation.

Scope

Controlling the deployment of adaptations used by plants to avoid Pi starvation requires a sophisticated sensing and regulatory system that can integrate external and internal information regarding Pi availability. In this review, the current knowledge of the regulatory mechanisms that control Pi starvation responses and the local and long-distance signals that may trigger Pi starvation responses are discussed. Uncharacterized mutants that have Pi-related phenotypes and their potential to give us additional insights into regulatory pathways and Pi starvation-induced signalling are also highlighted and assessed.

Conclusions

An impressive list of factors that regulate Pi starvation responses is now available, as is a good deal of knowledge regarding the local and long-distance signals that allow a plant to sense and respond to Pi availability. However, we are only beginning to understand how these factors and signals are integrated with one another in a regulatory web able to control the range of responses demonstrated by plants grown in low Pi environments. Much more knowledge is needed in this agronomically important area before real gains can be made in improving Pi acquisition in crop plants.  相似文献   

20.
Summary Calcium signaling systems in nonexcitable cells involve activation of Ca2+ entry across the plasma membrane and release from intracellular stores as well as activation of Ca2+ pumps and inhibition of passive Ca2+ pathways to ensure exact regulation of free cytosolic Ca2+ concentration ([Ca2+] i ). A431 cells loaded with fura-2 cells were used as a model system to examine regulation of Ca2+ entry and intracellular release. Epidermal growth factor (EGF) and transforming growth factor alpha (TGF-) both stimulated Ca2+ entry and release while bradykinin appeared only to release Ca2+ from intracellular stores. The possible role of protein kinase C (PKC) in modulating the [Ca2+] i response to these agonists was examined by four methods. Low concentrations of TPA (2×10–10 m) had no effect on Ca2+ release due to EGF, TGR- or bradykinin but resulted in a rapid return of [Ca2+] i to baseline levels for EGF or TGF-. Addition of the PKC inhibitor staurosporine (1 and 10nm)_completely inhibited the action of TPA on EGF-induced [Ca2+] i changes. An inhibitor of diglyceride kinase (R59022) mimicked the action of TPA. Down-regulation of PKC by overnight incubation with 0.1 or 1 m TPA produced the converse effect, namely prolonged Ca2+ entry following stimulation with EGF or TGF-. To show that one effect of TPA was on Ca2+ entry, fura-2 loaded cells were suspended in Mn2+ rather than Ca2+ buffers. Addition of EGF or TGF- resulted in Ca2+ release and Mn2+ entry. TPA but not the inactive phorbol ester, 4--phorbol-12,13-didecanoate, inhibited the Mn2+ influx. Thus, PKC is able to regulate Ca2+ entry due to EGF or TGF- in this cell type. A431 cells treated with higher concentrations of TPA (5×10–8 m) inhibited not only Ca2+ entry but also Ca2+ release due to EGF/TGF- but had no effect on bradykinin-mediated Ca2+ release, suggesting differences in the regulation of the intracellular stores responsive to these two classes of agonists. Furthermore, sequential addition of EGF or TGF- gave a single transient of [Ca2+] i , showing a common pool of Ca2+ for these agonists. In contrast, sequential addition of EGF (or TGF-) and bradykinin resulted in two [Ca2+] i transients equal in size to those obtained with a single agonist. Ionomycin alone was able to fully deplete intracellular Ca2+ stores, whereas ionomycin following either EGF (or TGF-) or bradykinin gave an elevation of the [Ca2+] i signal equal to that of the second agonist. These data indicate that there are separate pools of intracellular Ca2+ for EGF-mediated Ca2+ release which also respond differently to TPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号