首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bivalent cations Ca2+, Mg2+, Co2+, Mn2+, Sr2+ and Ba2+ were compared for their stimulatory or inhibitory effect on prostaglandin formation in rabbit kidney medulla slices. Ca2+, Mn2+ and Sr2+ ions stimulated prostaglandin generation up to 3--5-fold in a time- and dose-dependent manner (Ca2+ greater than Mn2+ congruent to Sr2+). The stimulation by Mn2+ (but not by Sr2+) was also observed in incubations of medulla slices in the presence of Ca2+. Mg2+ and Co2+ ions were without significant effects on either basal or Ca2+-stimulated prostaglandin synthesis. The stimulatory effects of Ca2+, Mn2+ and Sr2+ on medullary generation of prostaglandin E2 were found to correlate with their stimulatory effects on the release of arachidonic acid and linoleic acid from tissue lipids. The release of other fatty acids was unaffected, except for a small increase in oleic acid release. As both arachidonic acid and linoleic acid are predominantly found in the 2-position of the glycerol moiety of phospholipids, the stimulation by these cations of prostaglandin E2 formation appears to be mediated via stimulation of phospholipase A2 activity.  相似文献   

2.
Cultured smooth muscle cells from rat aorta were loaded with Na+, and Na+/Ca2+ antiport was assayed by measuring the initial rates of 45Ca2+ influx and 22Na+ efflux, which were inhibitable by 2',4'-dimethylbenzamil. The replacement of extracellular Na+ with other monovalent ions (K+, Li+, choline, or N-methyl-D-glucamine) was essential for obtaining significant antiport activity. Mg2+ competitively inhibited 45Ca2+ influx via the antiporter (Ki = 93 +/- 7 microM). External Ca2+ or Sr2+ stimulated 22Na+ efflux as would be expected for antiport activity. Mg2+ did not stimulate 22Na+ efflux, which indicates that Mg2+ is probably not transported by the antiporter under the conditions of these experiments. Mg2+ inhibited Ca2+-stimulated 22Na+ efflux as expected from the 45Ca2+ influx data. The replacement of external N-methyl-D-glucamine with K+, but not other monovalent ions (choline, Li+), decreased the potency of Mg2+ as an inhibitor of Na+/Ca2+ antiport 6.7-fold. Other divalent cations (Co2+, Mn2+, Cd2+, Ba2+) also inhibited Na+/Ca2+ antiport activity, and high external potassium decreased the potency of each by 4.3-8.6-fold. The order of effectiveness of the divalent cations as inhibitors of Na+/Ca2+ antiport (Cd2+ greater than Mn2+ greater than Co2+ greater than Ba2+ greater than Mg2+) correlated with the closeness of the crystal ionic radius to that of Ca2+.  相似文献   

3.
The effects of organic and inorganic calcium antagonists on washed platelets from rat and human have been studied. Platelet aggregation was assessed by turbidimetry. Endogenous serotonin release was measured on the same sample by means of electrochemically treated carbon fiber electrodes. The organic calcium antagonist, nitrendipine, and the inorganic calcium channel blockers (Co2+, Mn2+, Cd2+, La3+) drastically inhibited rat and human platelet aggregation induced by thrombin, ADP or adrenaline in the presence of 0.32 mM Ca2+. In our conditions, the thrombin-induced release of endogenous serotonin was found to be external Ca2+-dependent and completely inhibited by 20 microM nitrendipine or 1 mM Cd2+. In addition, Ba2+ or Sr2+ ions can be substituted for Ca2+ to bring about platelet aggregation as well as endogenous serotonin secretion. In Ba2+ or Sr2+-containing media, rat platelet aggregation and/or serotonin secretion can be inhibited by either nitrendipine or Cd2+. Finally, we have also studied the thrombin- and external Ca2+-dependence of radiolabeled calcium uptake by rat platelets. We found that the thrombin-induced 45Ca uptake was inhibited by either 18 microM nitrendipine or 1 mM Cd2+. These results provide strong evidence for the existence of an influx of divalent cations (Ca2+, Sr2+, Ba2+) triggering platelet function. They also suggest, although they do not prove, that the translocation of these cations occurs through an agonist-operated channel as proposed by Hallam and Rink (FEBS Lett. 186 (1986) 175-179).  相似文献   

4.
Ions of bivalent metals are shown to arrange in the Sr2+ greater than Ca2+ greater than Ba2+ greater than Mn2+ series as to their ability to induce ion flow vibration in the rat liver mitochondria. Application of Sr2+ results in the most stable prolonged vibrations of ion flows in mitochondria. Ca2+, Ba2+ and Mn2+ induce slightly pronounced and intensively damped vibrations. The studied Mg2+, Co2+, Ni2+, Pb2+ Fe2+ cations have effect on valinomycin-induced K+ transport in mitochondria and do not induce vibrations. It is established that the ability of bivalent cations to induce vibrations is associated with the possibility of their transfer through the mitochondrion membrane and accumulation in the matrix. Inhibitors of the electrogenic Ca2+ transport in mitochondria produce the similar effect on vibrations induced by Sr2+, Ca2+, Ba2+ and Mn2+.  相似文献   

5.
Fusogenic capacities of divalent cations and effect of liposome size   总被引:3,自引:0,他引:3  
J Bentz  N Düzgüne? 《Biochemistry》1985,24(20):5436-5443
The initial kinetics of divalent cation (Ca2+, Ba2+, Sr2+) induced fusion of phosphatidylserine (PS) liposomes, LUV, is examined to obtain the fusion rate constant, f11, for two apposed liposomes as a function of bound divalent cation. The aggregation of dimers is rendered very rapid by having Mg2+ in the electrolyte, so that their subsequent fusion is rate limiting to the overall reaction. In this way the fusion kinetics are observed directly. The bound Mg2+, which by itself is unable to induce the PS LUV to fuse, is shown to affect only the aggregation kinetics when the other divalent cations are present. There is a threshold amount of bound divalent cation below which the fusion rate constant f11 is small and above which it rapidly increases with bound divalent cation. These threshold amounts increase in the sequence Ca2+ less than Ba2+ less than Sr2+, which is the same as found previously for sonicated PS liposomes, SUV. While Mg2+ cannot induce fusion of the LUV and much more bound Sr2+ is required to reach the fusion threshold, for Ca2+ and Ba2+ the threshold is the same for PS SUV and LUV. The fusion rate constant for PS liposomes clearly depends upon the amount and identity of bound divalent cation and the size of the liposomes. However, for Ca2+ and Ba2+, this size dependence manifests itself only in the rate of increase of f11 with bound divalent cation, rather than in any greater intrinsic instability of the PS SUV. The destabilization of PS LUV by Mn2+ and Ni2+ is shown to be qualitatively distinct from that induced by the alkaline earth metals.  相似文献   

6.
Surface changes induced by sea water were analyzed in the ovulated oocyte of the prawn Palaemon serratus. They depended on the presence of external Mg2+ but not on external Ca2+ alone. Increasing external Mg2+ from 0 mM to 30 mM stimulated first a progressive disappearance of preexisting microvilli, which was over within 30 min of incubation. This is correlated with membrane removal via internalization of coated vesicles, ascertained by observations of endocytosis of an extracellular fluid-phase marker and by measurement of a diminution in membrane capacitance (Cm). Thirty-five minutes after sea water contact, the prawn oocyte underwent a cortical reaction independent of fertilization. It consists in a heavy exocytosis of ring-shaped elements, leading to the deposition of a thick capsule, and requiring a threshold Mg2+ concentration of greater than or equal to 10 mM and at least a 3-min incubation with Mg2+. Concurrently, the values of the membrane capacitance (Cm) and conductance (Gm) increased about 2 and 10 times their initial values, respectively. The calcium ionophore ionomycin, added to Mg(2+)-free artificial sea water, stimulated the cortical reaction with requirement of external Ca2+. Other divalent cations (Mn2+, Zn2+, Co2+, Ni2+, Cd2+) instead of Mg2+, induced the cortical reaction, but Ba2+, Sr2+, and La3+ did not. When eggs are fertilized, the cortical reaction takes place in two steps, the first being a discrete exocytosis of a foamy material and the second always involving ring-shaped elements.  相似文献   

7.
Asexual yeast flocculation was studied using strong flocculents of Saccharomyces cerevisiae. The inhibitory effect of cations on flocculation is considered to be caused by competition between those cations and Ca2+ at the binding site of the Ca(2+)-requiring protein that is involved in flocculation. Inhibition of flocculation by various cations occurred in the following order: La3+, Sr2+, Ba2+, Mn2+, Al3+, and Na+. Cations such as Mg2+, Co2+, and K+ promoted flocculation. This promoting effect may be based on the reduction of electrostatic repulsive force between cells caused by binding of these cations anionic groups present on the cell surface. In flocculation induced by these cations, trace amounts of Ca2+ excreted on the cell surface may activate the corresponding protein. The ratio of Sr2+/Ca2+ below which cells flocculated varied among strains: for strains having the FLO5 gene, it was 400 to 500; for strains having the FLO1 gene, about 150; and for two alcohol yeast strains, 40 to 50. This suggests that there are several different types of cell surface proteins involved in flocculation in different yeast strains.  相似文献   

8.
We investigated membrane currents activated by intracellular divalent cations in two types of molluscan pacemaker neurons. A fast and quantitative pressure injection technique was used to apply Ca2+ and other divalent cations. Ca2+ was most effective in activating a nonspecific cation current and two types of K+ currents found in these cells. One type of outward current was quickly activated following injections with increasing effectiveness for divalent cations of ionic radii that were closer to the radius of Ca2+ (Ca2+ greater than Cd2+ greater than Hg2+ greater than Mn2+ greater than Zn2+ greater than Co2+ greater than Ni2+ greater than Pb2+ greater than Sr2+ greater than Mg2+ greater than Ba2+). The other type of outward current was activated with a delay by Ca2+ greater than Sr2+ greater than Hg2+ greater than Pb2+. Mg2+, Ba2+, Zn2+, Cd2+, Mn2+, Co2+, and Ni2+ were ineffective in concentrations up to 5 mM. Comparison with properties of Ca2(+)-sensitive proteins related to the binding of divalent cations suggests that a Ca2(+)-binding protein of the calmodulin/troponin C type is involved in Ca2(+)-dependent activation of the fast-activated type of K+ current. Th sequence obtained for the slowly activated type is compatible with the effectiveness of different divalent cations in activating protein kinase C. The nonspecific cation current was activated by Ca2+ greater than Hg2+ greater than Ba2+ greater than Pb2+ greater than Sr2+, a sequence unlike sequences for known Ca2(+)-binding proteins.  相似文献   

9.
Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(-7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites.  相似文献   

10.
The effect of different extracellular alkaline-earth cations (Ca2+, Mg2+, Sr2+, Ba2+) upon the threshold membrane potential for spike initiation in crayfish axon has been studied by means of intracellular microelectrodes. This was done at the following extracellular concentrations of the divalent uranyl ion (UO2/2+): 1.0 X 10(-6) M, 3.0 X 10(-6) M, and 9.0 X 10(-6) M. At each concentration employed, extensive neutralization of axonal surface charges by UO2/2+ was evidenced by the fact that equal concentrations (50 mM) of alkaline-earth cations did not have the same effect on the threshold potential. The selectivity sequences observed at the different uranyl-ion concentrations were: 1.0 X 10(-6) M UO2/2+, Ca2+ greater than Mg2+ greater than Sr2+ greater than Ba2+; 3.0 X 10(-6) M UO2/2+, Ca2+ greater than Mg2+ greater than Ba2+ larger than or equal to Sr2+; 9.0 X 10(-6) M UO2/2+, Ca2+ approximately Ba2+ greater than Sr2+ greater than Mg2+. These selectivity sequences are in accord with the equilibrium selectivity theory for alkaline-earth cations. At each of the concentrations used, uranyl ion did not have any detectable effect on the actual shape of the action potential itself. It is concluded that many (if not most) of the surface acidic groups in the region of the sodium gates represent phosphate groups of membrane phospholipids, but that the m gates themselves are probably protein-aceous in structure.  相似文献   

11.
Multivalent cations were tested for their ability to replace the Ca2+ requirements of aggregation factor (AF) complex in activity, stability, and integrity assays. The ability of each cation to replace the Ca2+ required for the cell aggregation-enhancing activity of AF was examined by replacing the usual 10 mM Ca2+ with the test cation at various concentrations in the serial dilution assay of the AF. The other alkaline earth cations, Mg2+, Sr2+, and Ba2+, could not replace Ca2+; two transition elements, Mn2+ and Cd2+, partially replaced calcium. All 15 of the available lanthanides (including La3+ and Y3+) produced normal activity but only at 10-400-fold lower cation concentrations than Ca2+. An AF preparation is stable and remains active for months in 1 mM Ca2+ but decays rapidly when Ca2+ is lowered. Sr2+ and Ba2+ at 20 mM but not at 1 mM could replace 1 mM Ca2+ and give long term stability. AF was not stable in the presence of Mg2+, even at 100 mM. High Mn2+ concentrations did not stabilize AF even though AF was partially active in Mn2+. Cd2+ gave full stability at 75 mM and La3+ at about 0.1 mM. When Ca2+ is chelated, the macromolecular subunits of the AF slowly dissociate. Permeation chromatography and analytical ultracentrifugation showed that the cations that stabilized activity maintained the integrity of AF complex while those that failed to stabilize activity allowed the complex to dissociate into subunits, indicating that these two Ca2+ requirements are related. The cation specificities for activity and for stability-integrity are different indicating that these are separate Ca2+-dependent functions.  相似文献   

12.
A differential effect is found of various bivalent cations (Ba2+, Ca2+, Mg2+, Cd2+, Co2+, Mn2+, Ni2+, Zn2+ and Hg2+) on stability of intermolecular Py-Pu-Pu triplex with different sequence of base triads. Ca2+, Mg2+, Cd2+, Co2+, Mn2+, Ni2+ and Zn2+ do stabilize the d(C)n d(G)n d(G)n triplex whereas Ba2+ and Hg2+ do not. Ba2+, Ca2+, Mg2+ and Hg2+ destabilize the d(TC)n d(GA)n d(AG)n triplex whereas Cd2+, Co2+, Mn2+, Ni2+ and Zn2+ stabilize it. The complexes we observe are rather stable because they do not dissociate during time of gel electrophoresis in the co-migration experiments. Chemical probing experiments with dimethyl sulfate as a probe indicate that an arbitrary homopurine-homopyrimidine sequence forms triplex with corresponding purine oligonucleotide in the presence of Mn2+ or Zn2+, but not Mg2+. In the complex the purine oligonucleotide has antiparallel orientation with respect to the purine strand of the duplex. Specifically, we have shown the formation of the Py-Pu-Pu triplex in a fragment of human papilloma virus HPV-16 in the presence of Mn2+.  相似文献   

13.
The abilities of various divalent cations to enter the cytoplasm of mouse lacrimal acinar cells was examined under resting and agonist-stimulated conditions, by monitoring their effects on the fluorescence of cytosolic fura-2. In vitro, Ni2+, Co2+, and Mn2+ quenched the fura-2 fluorescence, whereas Sr2+, Ba2+, and La3+ produced an excitation spectrum and maximum brightness similar to Ca2+. Stimulation of mouse lacrimal acinar cells with methacholine (MeCh) caused a biphasic elevation of intracellular Ca2+ concentration [( Ca2+]i) resulting from a release of Ca2+ from intracellular pools followed by a sustained entry of extracellular Ca2+. Neither La3+ nor Ni2+ entered the cells under resting or stimulated conditions, but both blocked Ca2+ entry. Although both Co2+ and Mn2+ entered unstimulated cells, this process was not increased by MeCh. Both Sr2+ and Ba2+ were capable of supporting a sustained increase in fura-2 fluorescence in response to MeCh, indicating that these cations can enter the cells through the agonist-regulated channels. However, Sr2+, but not Ba2+, was capable of refilling the agonist-sensitive intracellular stores. These findings demonstrate dissociation of agonist-induced Ca2+ entry from intracellular Ca2+ pool refilling and thereby provide strong support for the recently modified version of the capacitative Ca2+ entry model according to which influx into the cytoplasm occurs directly across the plasma membrane and does not require a specialized cation channel directly linking the extracellular space and the intracellular Ca2+ stores.  相似文献   

14.
K Kato  M Goto  H Fukuda 《Life sciences》1983,32(8):879-887
When investigating the effects of divalent cations (Mg2+, Ca2+, Sr2+, Ba2+, Mn2+ and Ni2+) on 3H-baclofen binding to rat cerebellar synaptic membranes, we found that the specific binding of 3H-baclofen was not only dependent on divalent cations, but was increased dose-dependently in the presence of these cations. The effects were in the following order of potency: Mn2+ congruent to Ni2+ greater than Mg2+ greater than Ca2+ greater than Sr2+ greater than Ba2+. Scatchard analysis of the binding data revealed a single component of the binding sites in the presence of 2.5 mM MgCl2, 2.5 mM CaCl2 or 0.3 mM MnCl2 whereas two components appeared in the presence of 2.5 mM MnCl2 or 1 mM NiCl2. In the former, divalent cations altered the apparent affinity (Kd) without affecting density of the binding sites (Bmax). In the latter, the high-affinity sites showed a higher affinity and lower density of the binding sites than did the single component of the former. As the maximal effects of four cations (Mg2+, Ca2+, Mn2+ and Ni2+) were not additive, there are probably common sites of action of these divalent cations. Among the ligands for GABAB sites, the affinity for (-), (+) and (+/-) baclofen, GABA and beta-phenyl GABA increased 2-6 fold in the presence of 2.5 mM MnCl2, in comparison with that in HEPES-buffered Krebs solution (containing 2.5 mM CaCl2 and 1.2 mM MgSO4), whereas that for muscimol was decreased to one-fifth. Thus, the affinity of GABAB sites for its ligands is probably regulated by divalent cations, through common sites of action.  相似文献   

15.
Hyperpolarization of Paramecium tetraurelia under conditions where K+ currents are suppressed elicits an inward current that activates rapidly toward a peak at 25-80 ms and decays thereafter. This peak current (Ihyp) is not affected by removing Cl ions from the microelectrodes used to clamp membrane potential, or by changing extracellular Cl- concentration, but is lost upon removing extracellular Ca2+. Ihyp is also lost upon replacing extracellular Ca2+ with equimolar concentrations of Ba2+, Co2+, Mg2+, Mn2+, or Sr2+, suggesting that the permeability mechanism that mediates Ihyp is highly selective for Ca2+. Divalent cations also inhibit Ihyp when introduced extracellularly, in a concentration- and voltage-dependent manner. Ba2+ inhibits Ihyp with an apparent dissociation constant of 81 microM at -110 mV, and with an effective valence of 0.42. Ihyp is also inhibited reversibly by amiloride, with a dissociation constant of 0.4 mM. Ihyp is not affected significantly by changes in extracellular Na+, K+, or H+ concentration, or by EGTA injection. Also, it is unaffected by manipulations or mutations that suppress the depolarization-activated Ca2+ current or the various Ca(2+)-dependent currents of Paramecium. We suggest that Ihyp is mediated by a novel, hyperpolarization-activated calcium conductance that is distinct from the one activated by depolarization.  相似文献   

16.
The conduction properties of the alkaline earth divalent cations were determined in the purified sheep cardiac sarcoplasmic reticulum ryanodine receptor channel after reconstitution into planar phospholipid bilayers. Under bi-ionic conditions there was little difference in permeability among Ba2+, Ca2+, Sr2+, and Mg2+. However, there was a significant difference between the divalent cations and K+, with the divalent cations between 5.8- and 6.7-fold more permeant. Single-channel conductances were determined under symmetrical ionic conditions with 210 mM Ba2+ and Sr2+ and from the single-channel current-voltage relationship under bi-ionic conditions with 210 mM divalent cations and 210 mM K+. Single-channel conductance ranged from 202 pS for Ba2+ to 89 pS for Mg2+ and fell in the sequence Ba2+ greater than Sr2+ greater than Ca2+ greater than Mg2+. Near-maximal single-channel conductance is observed at concentrations as low as 2 mM Ba2+. Single-channel conductance and current measurements in mixtures of Ba(2+)-Mg2+ and Ba(2+)-Ca2+ reveal no anomalous behavior as the mole fraction of the ions is varied. The Ca(2+)-K+ reversal potential determined under bi-ionic conditions was independent of the absolute value of the ion concentrations. The data are compatible with the ryanodine receptor channel acting as a high conductance channel displaying moderate discrimination between divalent and monovalent cations. The channel behaves as though ion translocation occurs in single file with at most one ion able to occupy the conduction pathway at a time.  相似文献   

17.
Interactions of divalent metal cations (Mg2+, Ca2+, Ba2+, Sr2+, Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) with DNA have been investigated by laser Raman spectroscopy. Both genomic calf-thymus DNA (> 23 kilobase pairs) and mononucleosomal fragments (160 base pairs) were employed as targets of metal interaction in solutions containing 5 weight-% DNA and metal:phosphate molar ratios of 0.6:1. Raman difference spectra reveal that transition metal cations (Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) induce the greatest structural changes in B-DNA. The Raman (vibrational) band differences are extensive and indicate partial disordering of the B-form backbone, reduction in base stacking, reduction in base pairing, and specific metal interaction with acceptor sites on the purine (N7) and pyrimidine (N3) rings. Many of the observed spectral changes parallel those accompanying thermal denaturation of B-DNA and suggest that the metals link the bases of denatured DNA. While exocyclic carbonyls of dT, dG, and dC may stabilize metal ligation, correlation plots show that perturbations of the carbonyls are mainly a consequence of metal-induced denaturation of the double helix. Transition metal interactions with the DNA phosphates are weak in comparison to interactions with the bases, except in the case of Cu2+, which strongly perturbs both base and phosphate group vibrations. On the other hand, the Raman signature of B-DNA is largely unperturbed by Mg2+, Ca2+, Sr2+, and Ba2+, suggesting much weaker interactions of the alkaline earth metals with both base and phosphate sites. A notable exception is a moderate perturbation by alkaline earths of purine N7 sites in 160-base pair DNA, with Ca2+ causing the greatest effect. Correlation plots demonstrate a strong interrelationship between perturbations of Raman bands assigned to ring vibrations of the bases and those of bands assigned to exocyclic carbonyls and backbone phosphodiester groups. However, strong correlations do not occur between the Raman phosphodioxy band (centered near 1092 cm-1) and other Raman bands, suggesting that the former is not highly sensitive to the structural changes induced by divalent metal cations. The structural perturbations induced by divalent cations are much greater for > 23-kilobase pair DNA than for 160-base pair DNA, as evidenced by both the Raman difference spectra and the tendency toward the formation of insoluble aggregates. In the presence of transition metals, aggregation of high-molecular-weight DNA is evident at temperatures as low as 11 degrees C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from Streptococcus lactis C10 had an obligatory requirement for both a monovalent cation and divalent cation. NH+4 and K+ activated the enzyme in a sigmoidal manner (nH =1.55) at similar concentrations, whereas Na+ and Li+ could only weakly activate the enzyme. Of eight divalent cations studied, only three (Co2+, Mg2+ and Mn2+) activated the enzyme. The remaining five divalent cations (Cu2+, Zn2+, Ca2+, Ni2+ and Ba2+) inhibited the Mg2+ activated enzyme to varying degrees. (Cu2+ completely inhibited activity at 0.1 mM while Ba2+, the least potent inhibitor, caused 50% inhibition at 3.2 mM). In the presence of 1 mM fructose 1,6-diphosphate (Fru-1,6-P2) the enzyme showed a different kinetic response to each of the three activating divalent cations. For Co2+, Mn2+ and Mg2+ the Hill interaction coefficients (nH) were 1.6, 1.7 and 2.3 respectively and the respective divalent cation concentrations required for 50% maximum activity were 0.9, 0.46 and 0.9 mM. Only with Mn2+ as the divalent cation was there significatn activity in the absence of Fru-1,6-P2. When Mn2+ replaced Mg2+, the Fru-1,6-P2 activation changed from sigmoidal (nH = 2.0) to hyperbolic (nH = 1.0) kinetics and the Fru-1,6-P2 concentration required for 50% maximum activity decreased from 0.35 to 0.015 mM. The cooperativity of phosphoenolpyruvate binding increased (nH 1.2 to 1.8) and the value of the phosphoenolpyruvate concentration giving half maximal velocity decreased (0.18 to 0.015 mM phosphoenolyruvate) when Mg2+ was replaced by Mn2+ in the presence of 1 mM Fru-1,6-P2. The kinetic response to ADP was not altered significantly when Mn2+ was substituted for Mg2+. The effects of pH on the binding of phosphoenolpyruvate and Fru-1,6-P2 were different depending on whether Mg2+ or Mn2+ was the divalent cation.  相似文献   

19.
The effects of divalent cations on the E-4031-sensitive repolarization current (I(Kr)) were studied in single ventricular myocytes isolated from rabbit hearts. One group of divalent cations (Cd2+, Ni2+, Co2+, and Mn2+) produced a rightward shift of the I(Kr) activation curve along the voltage axis, increased the maximum I(Kr) amplitude (i.e., relieved the apparent inward rectification of the channel), and accelerated I(Kr) tail current kinetics. Another group (Ca2+, Mg2+ and Sr2+) had relatively little effect on I(Kr). The only divalent cation that blocked I(Kr) was Zn2+ (0.1-1 mM). Under steady-state conditions, Ba2+ caused a substantial block of I(K1) as previously reported. However, block by Ba2+ was time dependent, which precluded a study of Ba2+ effects on I(Kr). We conclude that the various effects of the divalent cations can be attributed to interactions with distinct sites associated with the rectification and/or inactivation mechanism of the channel.  相似文献   

20.
The adhesion and internalization of Chlamydia trachomatis by HeLa cells was unaffected by removal of K+, Mg2+, or glucose from the incubation medium, slightly reduced by removal of Na+, and significantly reduced by omission of Ca2+, Sr2+, Mg2+, and Mn2+ could replace Ca2+ in the adhesion but only Sr2+ supported internalization, and La3+, Co2+, Fe3+, Ba2+, and Zn2+ all reduced internalization more than adhesion. During initial infection there was no measurable difference in the uptake or release of 45Ca2+ or 86Rb+ between infected and noninfected HeLa monolayers. Infection was not prevented by pretreatment of the monolayers with the calcium channel blockers, verapamil, D600, and nitrendipine, or the calmodulin inhibitors, TMB-8 or trifluperazine. The results suggest that divalent cations are not essential for chlamydial infection but that the process of internalization is facilitated by the presence of cations, particularly Na+ and Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号