首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrity of epithelial tissues relies on the proper apical-basolateral polarity of epithelial cells. Members of the LAP (LRR and PDZ) protein family such as LET-413 and Scribble are involved in maintaining epithelial cell polarity in Caenorhabditis elegans and Drosophila melanogaster, respectively. We previously described Erbin as a mammalian LET-413 homologue interacting with ERBB2/HER2, an epidermal growth factor receptor family member. Erbin and ERBB2/HER2 are located in the basolateral membranes of epithelial cells. We show here that Erbin interacts with p0071 (also called plakophilin-4), an armadillo repeat protein linked to the cytoskeleton. Erbin binds to p0071 in vitro and in vivo in a PDZ domain-dependent manner, and both proteins colocalized in desmosomes of epithelial cells. Using a dominant negative approach, we found that integrity of epithelial cell monolayer is impaired when interaction between Erbin and p0071 is disrupted. We propose that Erbin is connected by p0071 to cytoskeletal networks in an interaction crucial for epithelial homeostasis.  相似文献   

2.
The asymmetric distribution of proteins to basolateral and apical membranes is an important feature of epithelial cell polarity. To investigate how basolateral LAP proteins (LRR (for leucine-rich repeats) and PDZ (for PSD-95/Discs-large/ZO-1), which play key roles in cell polarity, reach their target membrane, we carried out a structure–function study of three LAP proteins: Caenorhabditis elegans LET-413, human Erbin and human Scribble (hScrib). Deletion and point mutation analyses establish that their LRR domain is crucial for basolateral membrane targeting. This property is specific to the LRR domain of LAP proteins, as the non-LAP protein SUR-8 does not localize at the basolateral membrane of epithelial cells, despite having a closely related LRR domain. Importantly, functional studies of LET-413 in C. elegans show that although its PDZ domain is dispensable during embryogenesis, its LRR domain is essential. Our data establish a novel paradigm for protein localization by showing that a subset of LRR domains direct subcellular localization in polarized cells.  相似文献   

3.
The LAP (leucine-rich repeat and PDZ-containing) family of proteins play a role in maintaining epithelial and neuronal cell size, and mutation of these proteins can have oncogenic consequences. The LAP protein Erbin has been implicated previously in a number of cellular activities by virtue of its PDZ domain-dependent association with the C termini of both ERB-B2 and the p120-catenins. The present work describes the NMR structure of Erbin PDZ in complex with a high affinity peptide ligand and includes a comprehensive energetic analysis of both the ligand and PDZ domain side chains responsible for binding. C-terminal phage display has been used to identify preferred ligands, whereas binding affinity measurements provide precise details of the energetic importance of each ligand side chain to binding. Alanine and homolog scanning mutagenesis (in a combinatorial phage display format) identifies Erbin side chains that make energetically important contacts with the ligand. The structure of a phage-optimized peptide (Ac-TGW(-4)ETW(-1)V; IC(50) = approximately 0.15 microm) in complex with Erbin PDZ provides a structural context to understand the binding energetics. In particular, the very favorable interactions with Trp(-1) are not Erbin side chain-mediated (and therefore may be generally applicable to many PDZ domains), whereas the beta2-beta3 loop provides a binding site for the Trp(-4) side chain (specific to Erbin because it has an unusually long loop). These results contribute to a growing appreciation for the importance of at least five ligand C-terminal side chains in determining PDZ domain binding energy and highlight the mechanisms of ligand discrimination among the several hundred PDZ domains present in the human genome.  相似文献   

4.
Identification of protein complexes associated with the ERBB2/HER2 receptor may help unravel the mechanisms of its activation and regulation in normal and pathological situations. Interactions between ERBB2/HER2 and Src homology 2 or phosphotyrosine binding domain signaling proteins have been extensively studied. We have identified ERBIN and PICK1 as new binding partners for ERBB2/HER2 that associate with its carboxyl-terminal sequence through a PDZ (PSD-95/DLG/ZO-1) domain. This peptide sequence acts as a dominant retention or targeting basolateral signal for receptors in epithelial cells. ERBIN belongs to the newly described LAP (LRR and PDZ) protein family, whose function is crucial in non vertebrates for epithelial homeostasis. Whereas ERBIN appears to locate ERBB2/HER2 to the basolateral epithelium, PICK1 is thought to be involved in the clustering of receptors. We show here that ERBIN and PICK1 bind to ERBB2/HER2 with different mechanisms, and we propose that these interactions are regulated in cells. Since ERBIN and PICK1 tend to oligomerize, further complexity of protein networks may participate in ERBB2/HER2 functions and specificity.  相似文献   

5.
Cell proliferation and cell differentiation are balanced processes required for the correct development and maintenance of tissues, including epithelial tissues. Disruption of this balance by downregulation or loss of function of gatekeepers of epithelial homeostasis may unleash tumor suppressing activities leading ultimately to tumorigenesis. Among the newcoming actors involved in epithelial cell polarity, recent data shed light on the crucial role played by the LAP (LRR And PDZ) protein family. LAP proteins assemble receptors, cytoplasmic adaptors and enzymes in multimolecular networks important for the different steps of epithelial differentiation : adhesion, building of tight junctions and trafficking of proteins along the secretory pathway. Furthermore, genetic studies in invertebrates and vertebrates have installed LAP proteins not only as crucial determinants for epithelial integrity but also as key regulators of cell proliferation and embryonic development.  相似文献   

6.
We present a detailed comparative analysis of the PDZ domains of the human LAP proteins Erbin, Densin-180, and Scribble and the MAGUK ZO-1. Phage-displayed peptide libraries and in vitro affinity assays were used to define ligand binding profiles for each domain. The analysis reveals the importance of interactions with all four C-terminal residues of the ligand, which constitute a core recognition motif, and also the role of interactions with more upstream ligand residues that support and modulate the core binding interaction. In particular, the results highlight the importance of site(-1), which interacts with the penultimate residue of ligand C termini. Site(-1) was found to be monospecific in the Erbin PDZ domain (accepts tryptophan only), bispecific in the first PDZ domain of ZO-1 (accepts tryptophan or tyrosine), and promiscuous in the Scribble PDZ domains. Furthermore, it appears that the level of promiscuity within site(-1) greatly influences the range of potential biological partners and functions that can be associated with each protein. These findings show that subtle changes in binding specificity can significantly alter the range of biological partners for PDZ domains, and the insights enhance our understanding of this diverse family of peptide-binding modules.  相似文献   

7.
The family of membrane-associated guanylate kinases (MAGUK) comprises peripheral membrane proteins involved in the formation of specialized cell-cell junctions. MAGUK proteins possess a conserved domain composition, containing PDZ, guanylate kinase, and SH3 or WW domains. MAGI-1 is a recently identified member of the MAGUK protein family. Three splice variantsof MAGI-1 have been characterized to date, including MAGI-1a, -1b, and -1c. MAGI-1b is predominantly associated with the crude membrane fraction. Here we show that the fifth PDZ domain of MAGI-1b is essential for membrane localization. We have also identified beta-catenin as a potential ligand for this PDZ domain. MAGI-1b forms complexes with beta-catenin and E-cadherin during the formation of cell-cell junctions in MDCK cells. In agreement with this observation, a significant portion of a GFP fusion of MAGI-1b localizes to the basolateral membrane of polarized MDCK cells.  相似文献   

8.
Erbin is a recently described member of the LAP (leucine-rich repeat and PDZ domain) protein family. We used a C-terminally displayed phage peptide library to identify optimal ligands for the Erbin PDZ domain. Phage-selected peptides were type 1 PDZ ligands that bound with high affinity and specificity to the Erbin PDZ domain in vitro. These peptides most closely resembled the C-terminal PDZ domain-binding motifs of three p120-related catenins: delta-catenin, ARVCF, and p0071 (DSWV-COOH). Analysis of the interactions of the Erbin PDZ domain with synthetic peptides matching the C termini of ARVCF or delta-catenin also demonstrated specific high affinity binding. We characterized the interactions between the Erbin PDZ domain and both ARVCF and delta-catenin in vitro and in vivo. The Erbin PDZ domain co-localized and coprecipitated with ARVCF or delta-catenin complexed with beta-catenin and E/N-cadherin. Mutagenesis and peptide competition experiments showed that the association of Erbin with the cadherin-catenin complex was mediated by the interaction of its PDZ domain with the C-terminal PDZ domain-binding motifs (DSWV-COOH) of ARVCF and delta-catenin. Finally, we showed that endogenous delta-catenin and Erbin co-localized in and co-immunoprecipitated from neurons. These results suggest that delta-catenin and ARVCF may function to mediate the association of Erbin with the junctional cadherin-catenin complex. They also demonstrate that C-terminal phage-display technology can be used to predict physiologically relevant ligands for PDZ domains.  相似文献   

9.
10.
A family of anchoring proteins named MAGUK (for membrane associated guanylate kinase) has emerged as a key element in the organization of protein complexes in specialized membrane regions. These proteins are characterized by the presence of multipe protein-protein interaction domains including PDZ and SH3 domains. The MAGUK family comprises the post-synaptic density 95 (PSD-95) protein and closely related molecules such as chapsyn-110, synapse-associated protein 102 (SAP-102), and SAP-97. These are located either on the pre- and/or post-synaptic sides of synapses or at cell-cell adhesion sites of epithelial cells. MAGUK proteins interact with glutamate receptors and various ionic channels. For instance, an interaction has been reported between the first two PDZ domains of MAGUK proteins and several channels via a consensus sequence Thr/Ser-X-Val/Leu usually located at their carboxy terminus. The role of these anchoring proteins in channel function is not fully understood. MAGUK proteins enhance the current density by increasing the number of functional channels to the sarcolemma. They can also facilitate signaling between channels and several enzymes or G protein-dependent signaling pathways. In the heart also, MAGUK proteins are abundantly expressed and they interact with various channels including Shaker Kv1.5 and connexins.  相似文献   

11.
12.
《The Journal of cell biology》1996,135(4):1125-1137
hDlg, a human homologue of the Drosophila Dig tumor suppressor, contains two binding sites for protein 4.1, one within a domain containing three PSD-95/Dlg/ZO-1 (PDZ) repeats and another within the alternatively spliced I3 domain. Here, we further define the PDZ- protein 4.1 interaction in vitro and show the functional role of both 4.1 binding sites in situ. A single protease-resistant structure formed by the entirety of both PDZ repeats 1 and 2 (PDZ1-2) contains the protein 4.1-binding site. Both this PDZ1-2 site and the I3 domain associate with a 30-kD NH2-terminal domain of protein 4.1 that is conserved in ezrin/radixin/moesin (ERM) proteins. We show that both protein 4.1 and the ezrin ERM protein interact with the murine form of hDlg in a coprecipitating immune complex. In permeabilized cells and tissues, either the PDZ1-2 domain or the I3 domain alone are sufficient for proper subcellular targeting of exogenous hDlg. In situ, PDZ1-2- mediated targeting involves interactions with both 4.1/ERM proteins and proteins containing the COOH-terminal T/SXV motif. I3-mediated targeting depends exclusively on interactions with 4.1/ERM proteins. Our data elucidates the multivalent nature of membrane-associated guanylate kinase homologue (MAGUK) targeting, thus beginning to define those protein interactions that are critical in MAGUK function.  相似文献   

13.
Erbin inhibits RAF activation by disrupting the sur-8-Ras-Raf complex   总被引:2,自引:0,他引:2  
Erbin is a member of the LAP (leucine-rich repeat (LRR) and PDZ domain) family. It inhibits Ras-mediated activation of ERK in response to growth factors. In this study, we investigated the mechanisms by which Erbin regulates the Ras-Raf-MEK pathway. The N-terminal LRR domain was necessary and sufficient to inhibit neuregulin-activated expression of epsilon416-Luc, a reporter of ERK activation. On the other hand, Erbin had no effect on Ras activation, but it attenuated neuregulin-induced Raf activation, suggesting that Erbin may regulate Raf activation by Ras. Via the LRR domain, Erbin interacts with Sur-8, a scaffold protein necessary for the Ras-Raf complex. Expression of Erbin attenuated the interaction of Sur-8 with active Ras and Raf. Moreover, Erbin-shRNA, which suppressed Erbin expression at mRNA and protein levels, increased the interaction of Sur-8 with Ras and Raf, ERK activation, and neuregulin-induced expression of endogenous acetylcholine receptor epsilon-subunit mRNA. These results demonstrate a regulatory role of Erbin in the Ras-Raf-MEK pathway, suggesting that Erbin may inhibit ERK activation by disrupting the Sur-8-Ras/Raf interaction.  相似文献   

14.
15.
The PDZ target motifs located in the C-terminal end of many receptors and ion channels mediate protein-protein interactions by binding to specific PDZ-containing proteins. These interactions are involved in the localization of surface proteins on specialized membrane domains of neuronal and epithelial cells. However, the molecular mechanism responsible for this PDZ protein-dependent polarized localization is still unclear. This study first demonstrated that the epithelial gamma-aminobutyric acid (GABA) transporter (BGT-1) contains a PDZ target motif that mediates the interaction with the PDZ protein LIN-7 in Madin-Darby canine kidney (MDCK) cells, and then investigated the role of this interaction in the basolateral localization of the transporter. It was found that although the transporters from which the PDZ target motif was deleted were still targeted to the basolateral surface, they were not retained but internalized in an endosomal recycling compartment. Furthermore, an interfering BGT peptide determined the intracellular relocation of the native transporter. These data indicate that interactions with PDZ proteins determine the polarized surface localization of target proteins by means of retention and not targeting mechanisms. PDZ proteins may, therefore, act as a sort of membrane protein sorting machinery which, by recognizing retention signals (the PDZ target sequences), prevents protein internalization.  相似文献   

16.
Membrane-associated guanylate kinase (MAGUK) proteins act as molecular scaffolds organizing multiprotein complexes at specialized regions of the plasma membrane. All MAGUKs contain a Src homology 3 (SH3) domain and a region homologous to yeast guanylate kinase (GUK). We showed previously that one MAGUK protein, human CASK (hCASK), is widely expressed and associated with epithelial basolateral plasma membranes. We now report that hCASK binds another MAGUK, human discs large (hDlg). Immunofluorescence microscopy demonstrates that hCASK and hDlg colocalize at basolateral membranes of epithelial cells in small and large intestine. These proteins co-precipitate from lysates of an intestinal cell line, Caco-2. The GUK domain of hCASK binds the SH3 domain of hDlg in both yeast two-hybrid and fusion protein binding assays, and it is required for interaction with hDlg in transfected HEK293 cells. In addition, the SH3 and GUK domains of each protein participate in intramolecular binding that in vitro predominates over intermolecular binding. The SH3 and GUK domains of human p55 display the same interactions in yeast two-hybrid assays as those of hCASK. Not all SH3-GUK interactions among these MAGUKs are permissible, however, implying specificity to SH3-GUK interactions in vivo. These results suggest MAGUK scaffold assembly may be regulated through effects on intramolecular SH3-GUK binding.  相似文献   

17.
The Erbin was recently identified. The antibody against Erbin has not been commercially available. As a new member of peripheral protein LAP family and novel type of adaptor protein, its functions and binding partners are not completely known. In the present study, cDNA encoding PDZ domain of Erbin was inserted in a prokaryotic expression vector. His-tagged recombinant protein was overproduced in E. coli and purified by Ni-NTA column chromatography. About 14.4 mg of the purified protein was obtained from 500 mL of cell culture. The purity of the recombinant protein was higher than 90%. The polyclonal antibody against this protein was raised. The antibody can recognize both denatured and natural Erbin protein. It will be used to further identify the new binding partners of Erbin and study its unknown functions.  相似文献   

18.
Abstract

The Erbin was recently identified. The antibody against Erbin has not been commercially available. As a new member of peripheral protein LAP family and novel type of adaptor protein, its functions and binding partners are not completely known. In the present study, cDNA encoding PDZ domain of Erbin was inserted in a prokaryotic expression vector. His-tagged recombinant protein was overproduced in E. coli and purified by Ni-NTA column chromatography. About 14.4 mg of the purified protein was obtained from 500 mL of cell culture. The purity of the recombinant protein was higher than 90%. The polyclonal antibody against this protein was raised. The antibody can recognize both denatured and natural Erbin protein. It will be used to further identify the new binding partners of Erbin and study its unknown functions.  相似文献   

19.
In order to identify proteins that bind to the PDZ domain of Erbin, we tested the C-termini of several proteins in a yeast two-hybrid assay. ErbB2, APC, beta-catenin, c-Rel and HTLV-1 Tax were identified as ligands of the PDZ domain of Erbin. The interactions were verified by co-immunoprecipitation experiments. These findings demonstrate the promiscuity of the PDZ domain of Erbin.  相似文献   

20.
To understand the molecular evolution of functional diversity in protein families, we comprehensively investigated the consequences of all possible mutation combinations separating two peptide‐binding domains with highly divergent specificities. We analyzed the Erbin PDZ domain (Erbin‐PDZ), which exhibits canonical type I specificity, and a synthetic Erbin‐PDZ variant (E‐14) that differs at six positions and exhibits an atypical specificity that closely resembles that of the natural Pdlim4 PDZ domain (Pdlim4‐PDZ). We constructed a panel of 64 PDZ domains covering all possible transitions between Erbin‐PDZ and E‐14 (i.e., the panel contained variants with all possible combinations of either the Erbin‐PDZ or E‐14 sequence at the six differing positions). We assessed the specificity profiles of the 64 PDZ domains using a C‐terminal phage‐displayed peptide library containing all possible genetically encoded heptapeptides. The specificity profiles clustered into six distinct groups, showing that intermediate domains can be nodes for the evolution of divergent functions. Remarkably, three substitutions were sufficient to convert the specificity of Erbin‐PDZ to that of Pdlim4‐PDZ, whereas Pdlim4‐PDZ contains 71 differences relative to Erbin‐PDZ. X‐ray crystallography revealed the structural basis for specificity transition: a single substitution in the center of the binding site, supported by contributions from auxiliary substitutions, altered the main chain conformation of the peptide ligand to resemble that of ligands bound to Pdlim4‐PDZ. Our results show that a very small set of mutations can dramatically alter protein specificity, and these findings support the hypothesis whereby complex protein functions evolve by gene duplication followed by cumulative mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号