共查询到20条相似文献,搜索用时 49 毫秒
1.
I Z Siemion M Lisowski D Konopińska E Nawrocka 《European journal of biochemistry》1980,112(2):339-343
13C-NMR and circular dichroic (CD) spectra of tuftsin and its analogues are discussed in connection with our hypothesis that the beta-turn is the biologically active conformation of tuftsin. The changes in CD spectra evoked by an increase in pH are interpreted as a demonstration of the increasing amount of beta-turn conformers in solution. Configurational changes in successive residues of tuftsin showed that residues 2 and 3 of the peptide chain are important for the tuftsin conformation. 相似文献
2.
Studies of synthetic helical peptides using circular dichroism and nuclear magnetic resonance 总被引:14,自引:0,他引:14
E K Bradley J F Thomason F E Cohen P A Kosen I D Kuntz 《Journal of molecular biology》1990,215(4):607-622
We have designed a set of 17-residue synthetic peptides to be monomeric helices in aqueous solution. Circular dichrosim experiments indicate the presence of helical structure in aqueous solution at low temperature and low pH. The two-dimensional nuclear magnetic resonance results for one of the peptides show a segment of ten residues which clearly meets all of the criteria for the existence of helical structure at both 5 degrees C and 15 degrees C. The first four residues of the peptide are in a largely extended conformation. Calculations suggest that residues 5 through 14 are significantly helical at 5 degrees C. When the temperature is increased, circular dichroism spectra indicate that the helical content decreases. At 15 degrees C, the 3JN alpha coupling constants increase in the helical region, indicating an increase in motion or conformational averaging in the helical segment. None of the peptides has pH titration behavior consistent with salt bridge stabilization of helical conformation. Our data lend themselves to interpretation with the helix dipole model and specific side-chain interactions. When the N and C termini charges are removed the helical content of the peptides increases. The amount of helicity increases as the pH is lowered, due to the ionization of His16. Much of the helical stabilization appears to be due to a specific side-chain interaction between His16 and Tyr12. 相似文献
3.
We have examined the circular dichroism and nuclear magnetic resonance spectra of a long neurotoxin, alpha-bungarotoxin, over a wide range of pH values and temperatures, and under high salt conditions. The observations are interpreted partly in terms of the known crystal structure of this polypeptide. We support earlier findings of a greater degree of beta-sheet structure in solution than has been reported by X-ray crystallography and, importantly, the invariant residue associated with neurotoxicity, Trp29, is shown to be in a similar environment to that found in alpha-cobratoxin and LS III from Laticauda semifasciata. The implications of this observation for structure/function relationships are outlined. 相似文献
4.
Recently, we have designed a series of simplified artificial signal sequences and have shown that a proline residue in the signal sequence plays an important role in the secretion of human lysozyme in yeast, presumably by altering the conformation of the signal sequence [Yamamoto, Y., Taniyama, Y., & Kikuchi, M. (1989) Biochemistry 28, 2728-2732]. To elucidate the conformational requirement of the signal sequence in more detail, functional and nonfunctional signal sequences connected to the N-terminal five residues of mature human lysozyme were chemically synthesized and their conformations in a lipophilic environment [aqueous trifluoroethanol (TFE) or sodium dodecyl sulfate micelles] analyzed by circular dichroism (CD) and 1H nuclear magnetic resonance (NMR) spectroscopy. The helix content of the peptides, including functional (L8, CL10) and nonfunctional (L8PL, L8PG, L8PL2) signal sequences, was estimated from CD spectra to be 40-50% and 60-70%, respectively, indicating that the helical structure is more abundant in the nonfunctional signal sequences. Two-dimensional NMR analyses in 50% TFE/H2O revealed that each peptide adopted a helical conformation throughout the sequence except for a few residues at the N- and C-termini. Furthermore, H-D exchange experiments indicated that the helical structure of the C-terminal region of the functional signal sequences (L8 and CL10) was less stable than that of the nonfunctional signal sequences (L8PL and L8PL2). On the basis of these results, a model was developed in which the functional signal sequence is inserted in the membrane with a helical conformation and the C-terminal helix unraveled in an extended conformational form through an interaction with the signal peptidase. 相似文献
5.
400 MHz 1H NMR of ferric low-spin cytochrome P-450scc purified from bovine adrenal cortex was measured for the first time. As compared with 1H NMR spectra of low-spin P-450cam and metMb- mercaptan complexes, paramagnetic shifts of low-spin P-450scc complexes were more divergent, suggesting that there is a subtle difference in the heme environment between P-450scc and P-450cam [1]. The paramagnetic shifts of low-spin complexes of P-450scc caused by adding nitrogenous inhibitors, aminoglutethimide and metyrapone, were different from those caused by adding an intermediate, 20α-hydroxycholesterol, and a detergent, Tween 20 [2]. The paramagnetic shifts of the metMb-mercaptan complexes were convergent compared with those of ferric low-spin P-450scc and P-450cam, suggesting that the electronic character and/or the conformation of the internal thiolate ligand in P-450scc and P-450cam are different from those of the external thiolate ligand in metMb-thiolate complexes [3]. The paramagetic shifts of the metMb-mercaptan complexes were dependent on the electron donating factor of the alkyl group of the bound mercaptans [4].Magnetic CD(MCD) spectra of ferric low-spin P-450scc, rabbit liver P-450 complexes and metMb- mercaptan complexes were also observed at various temperatures. The temperature dependences of the Soret MCD bands for the low-spin P-450 and metMb- mercaptan complexes were decidedly less pronounced than those for the low-spin metMb-CN? or imidazole complexes, suggesting that thiolate ligands markedly influence the Soret MCD band of the ferric low-spin complexes [1]. The suggestion described in [2] implied by the 1H NMR study was reconfirmed from the temperature dependence study of the Soret MCD [2]. The temperature dependences of the Soret MCD bands for low-spin P-450 complexes having a non-nitrogenous ligand were more pronounced than for those having a nitrogenous ligand. 相似文献
6.
H. Senn A. Eugster G. Otting F. Suter K. Wüthrich 《European biophysics journal : EBJ》1987,14(5):301-306
The salmonella phage P22 c2 repressor was produced with 90% 15N isotope labeling of all leucines, using the expression system E. coli W3110 lac I
Q/pTP 125. The N-terminal DNA-binding domain 1–76 was obtained by chymotrypsin cleavage. Its characterization by biochemical techniques, mass spectrometry, and one- and two-dimensional nuclear magnetic resonance (NMR) showed that highly residue-selective isotope labeling was achieved with the minimal growth medium used. The ability to obtain such isotope labeling opens new avenues for NMR studies of protein-DNA interactions in the P22 operator system. 相似文献
7.
8.
9.
The structure of Escherichia coli heat-stable enterotoxin b by nuclear magnetic resonance and circular dichroism. 总被引:6,自引:0,他引:6 下载免费PDF全文
M. Sukumar J. Rizo M. Wall L. A. Dreyfus Y. M. Kupersztoch L. M. Gierasch 《Protein science : a publication of the Protein Society》1995,4(9):1718-1729
The heat-stable enterotoxin b (STb) is secreted by enterotoxigenic Escherichia coli that cause secretory diarrhea in animals and humans. It is a 48-amino acid peptide containing two disulfide bridges, between residues 10 and 48 and 21 and 36, which are crucial for its biological activity. Here, we report the solution structure of STb determined by two- and three-dimensional NMR methods. Approximate interproton distances derived from NOE data were used to construct structures of STb using distance-geometry and simulated annealing procedures. The NMR-derived structure shows that STb is helical between residues 10 and 22 and residues 38 and 44. The helical structure in the region 10-22 is amphipathic and exposes several polar residues to the solvent, some of which have been shown to be important in determining the toxicity of STb. The hydrophobic residues on the opposite face of this helix make contacts with the hydrophobic residues of the C-terminal helix. The loop region between residues 21 and 36 has another cluster of hydrophobic residues and exposes Arg 29 and Asp 30, which have been shown to be important for intestinal secretory activity. CD studies show that reduction of disulfide bridges results in a dramatic loss of structure, which correlates with loss of function. Reduced STb adopts a predominantly random-coil conformation. Chromatographic measurements of concentrations of native, fully reduced, and single-disulfide species in equilibrium mixtures of STb in redox buffers indicate that the formation of the two disulfide bonds in STb is only moderately cooperative. Similar measurements in the presence of 8 M urea suggest that the native secondary structure significantly stabilizes the disulfide bonds. 相似文献
10.
Proton and carbon-13 nuclear magnetic resonance (1H and 13C NMR) spectra of rhodopsin-phospholipid membrane vesicles and sonicated disk membranes are presented and discussed. The presence of rhodopsin in egg phosphatidylcholine vesicles results in homogeneous broadening of the methylene and methyl resonances. This effect is enhanced with increasing rhodopsin content and decreased by increasing temperature. The proton NMR data indicate the phospholipid molecules exchange rapidly (less than 10(-3) s) between the bulk membrane lipid and the lipid in the immediate proximity of the rhodopsin. These interactions result in a reduction in either or both the frequency and amplitude of the tilting motion of the acyl chains. The 13C NMR spectra identify the acyl chains and the glycerol backbone as the major sites of protein lipid interaction. In the disk membranes the saturated sn-1 acyl chain is significantly more strongly immobilized than the polyunsaturated sn-2 acyl chain. This suggest a membrane model in which the lipid molecules preferentially solvate the protein with the sn-1 chain, which we term an edge-on orientation. The NMR data on rhodopsin-asolectin membrane vesicles demonstrate that the lipid composition is not altered during reconstitution of the membranes from purified rhodopsin and lipids in detergent. 相似文献
11.
12.
Thermal stability of the three domains of streptokinase studied by circular dichroism and nuclear magnetic resonance. 总被引:1,自引:4,他引:1 下载免费PDF全文
F. Conejero-Lara J. Parrado A. I. Azuaga R. A. Smith C. P. Ponting C. M. Dobson 《Protein science : a publication of the Protein Society》1996,5(12):2583-2591
Streptococcus equisimilis streptokinase (SK) is a single-chain protein of 414 residues that is used extensively in the clinical treatment of acute myocardial infarction due to its ability to activate human plasminogen (Plg). The mechanism by which this occurs is poorly understood due to the lack of structural details concerning both molecules and their complex. We reported recently (Parrado J et al., 1996, Protein Sci 5:693-704) that SK is composed of three structural domains (A, B, and C) with a C-terminal tail that is relatively unstructured. Here, we report thermal unfolding experiments, monitored by CD and NMR, using samples of intact SK, five isolated SK fragments, and two two-chain noncovalent complexes between complementary fragments of the protein. These experiments have allowed the unfolding processes of specific domains of the protein to be monitored and their relative stabilities and interdomain interactions to be characterized. Results demonstrate that SK can exist in a number of partially unfolded states, in which individual domains of the protein behave as single cooperative units. Domain B unfolds cooperatively in the first thermal transition at approximately 46 degrees C and its stability is largely independent of the presence of the other domains. The high-temperature transition in intact SK (at approximately 63 degrees C) corresponds to the unfolding of both domains A and C. Thermal stability of domain C is significantly increased by its isolation from the rest of the chain. By contrast, cleavage of the Phe 63-Ala 64 peptide bond within domain A causes thermal destabilization of this domain. The two resulting domain portions (A1 and A2) adopt unstructured conformations when separated. A1 binds with high affinity to all fragments that contain the A2 portion, with a concomitant restoration of the native-like fold of domain A. This result demonstrates that the mechanism whereby A1 stimulates the plasminogen activator activities of complementary SK fragments is the reconstitution of the native-like structure of domain A. 相似文献
13.
T R Tritton 《Archives of biochemistry and biophysics》1979,197(1):10-17
Proton magnetic resonance line broadening of chloramphenicol resonances has been employed to study the binding of this inhibitor of protein synthesis to the Escherichia coli 70 S ribosome. Temperature dependence measurements of the resonance line widths show that chloramphenicol is in fast exchange with the ribosome. Differential broadening of the various drug resonances suggests that it binds in its receptor site in essentially the same conformation that exists free in solution. Thus, even though the drug possesses a fair degree of structural flexibility, this is not necessary for its interaction with the ribosome. The recognition is most likely of the classic lock and key type, with the ribosomal site being essentially an open gate for the fitting of the drug. From the proton line-width measurements and 19F spectra of a derivative, it has been possible to propose a model for the geometry of chloramphenicol when it resides on the ribosome which is consistent with established structure-activity relationships for the drug. 相似文献
14.
The triple-helical conformation has the stringent amino acid sequence constraint that every third residue must be a glycine, (X-Y-Gly)n. We use nuclear magnetic resonance and circular dichroism to quantify the consequences of a substitution in the glycine position of a triple-helical peptide, and to enhance our understanding of interactions in this basic structural motif. A 30-residue peptide with a Gly----Ala change forms a stable trimer at a folding rate somewhat less than that of the unsubstituted peptide, and the substitution results in a marked decrease in thermal stability and a conformational perturbation of about 30% of the triple-helical structure. Two models were generated for this peptide, one with the alanine residues packed inside the triple helix and one with a looping out of the chain at the substitution site. Studies on the Gly----Ala peptide are useful in understanding connective tissue diseases which result from the substitution of one glycine residue in the triple-helix of fibrillar collagens. 相似文献
15.
Electron paramagnetic resonance and magnetic circular dichroism studies of a hexa-heme nitrite reductase from Wolinella succinogenes 总被引:3,自引:0,他引:3
The nature of the heme centers in the hexa-heme dissimilatory nitrite reductase from the bacterium Wolinella succinogenes has been investigated with EPR and magnetic circular dichroism spectroscopy. The EPR spectrum of the ferric enzyme is complex showing, in addition to magnetically isolated low-spin ferric hemes with g values of 2.93, 2.3 and 1.48, two sets of signals at g = 10.3, 3.7 and 4.8, 3.21, which we assign to two pairs of exchange coupled hemes. The MCD spectra show that the isolated hemes are bis-histidine coordinated and that there is one high-spin ferric heme. The exchange coupling is lost on treatment with SDS. 相似文献
16.
Human erythrocyte glycophorin containing four molecules of phospholipid tightly bound to the protein was isolated from human red cell ghosts. This protein preparation was reconstituted into a digalactosyl diglyceride bilayer. The 31P NMR spectrum of this reconstituted membrane produced an axially symmetric powder pattern arising exclusively from the phospholipids bound to glycophorin. The width of the powder pattern, about 90 ppm, is about twice as broad as that normally exhibited by a phospholipid bilayer. The chemical shift tensor is perturbed relative to phospholipids in a bilayer. The spin-lattice relaxation rate of these protein-bound phospholipids is found to be nearly an order of magnitude faster than phospholipids in a bilayer. The results are consistent with phospholipids tightly bound to the membrane protein and undergoing rotational diffusion, perhaps as a complex of phospholipid and protein. 相似文献
17.
18.
Near-infrared magnetic and natural circular dichroism of cytochrome c oxidase. 总被引:1,自引:6,他引:1 下载免费PDF全文
D G Eglinton M K Johnson A J Thomson P E Gooding C Greenwood 《The Biochemical journal》1980,191(2):319-331
A detailed study is presented of the room-temperature absorption, natural and magnetic circulation-dichroism (c.d. and m.c.d.) spectra of cytochrome c oxidase and a number of its derivatives in the wavelength range 700-1900 nm. The spectra of the reduced enzyme show a strong negative c.d. band peaking at 1100nm arising from low-spin ferrous haem a and a positive m.c.d. peak at 780nm assigned to high-spin ferrous haem a3. Addition of cyanide ion doubles the intensity of the low-spin ferrous haem c.d. band and abolishes reduced carbonmonoxy derivative the haem a32+-CO group shows no c.d. or m.c.d. bands at wavelengths longer than 700nm. A comparison of the m.c.d. spectra of the oxidized and cyanide-bound oxidized forms enables bands characteristic of the high-spin ferric form of haem a33+ to be identified between 700 and 1300nm. At wavelengths longer than 1300nm a broad positive m.c.d. spectrum, peaking at 1600nm, is observed. By comparison with the m.c.d. spectrum of an extracted haem a-bis-imidazole complex this m.c.d. peak is assigned to one low-spin ferric haem, namely haem a3+. On binding of cyanide to the oxidized form of the enzyme a new, weak, m.c.d. signal appears, which is assigned to the low-spin ferric haem a33+-CN species. A reductive titration, with sodium dithionite, of the cyanide-bound form of the enzyme leads to a partially reduced state in which low-spin haem a2+ is detected by means of an intense negative c.d. peak at 1100 nm and low-spin ferric haem a33+-CN gives a sharp positive m.c.d. peak at 1550nm. The c.d. and m.c.d. characteristics of the 830nm absorption band in oxidized cytochrome c oxidase are not typical of type 1 blue cupric centres. 相似文献
19.
F. Moro F. Piga I. Krivokapic A. Burgess W. Lewis J. McMaster J. van Slageren 《Inorganica chimica acta》2010,363(15):4329-4336
A study of the magnetic anisotropies of three Ni cubane single-molecule magnets (SMM), [Ni(hmp)(MeOH)Cl]4·H2O (1·H2O) (hmpH = (2-hydroxymethyl)pyridine) [Ni(hmp)(dmb)Cl]4 (2) (dmb = 3,3-dimethylbutanol) and [Ni(hmp)(dmp)Cl]4 (3) (dmp = 2,2-dimethylpropanol) is reported. Frequency domain magnetic resonance spectroscopic (FDMRS) studies on 1, 2 and 3 as powder pellets reveal zero-field splitting (ZFS) for the spin ground states of these compounds in the solid state. The ZFS of the complexes 1 and 2 were determined and the presence of different molecular species was found in both complexes while only one species was found in 3. The nesting of the variable temperature variable field (VTVH) curves observed from magnetic circular dichroism (MCD) measurements on 1 in solution confirms the presence of ZFS. Virtually all the bands observed in the magnetic circular dichroism spectra possess the same sign, which may be related to the ferromagnetic exchange coupling. In addition, MCD measurements of a dilute solution demonstrate the molecular origin of the magnetic anisotropy in 1. 相似文献
20.
C R Lancaster P K Mishra D W Hughes S A St-Pierre A A Bothner-By R M Epand 《Biochemistry》1991,30(19):4715-4726
The structural requirements for the binding of dynorphin to the kappa-opioid receptor are of profound clinical interest in the search for a powerful nonaddictive analgesic. These requirements are thought to be met by the membrane-mediated conformation of the opioid peptide dynorphin A-(1-13)-peptide, Tyr1-Gly2-Gly3-Phe4-Leu5-Arg6-Arg7-Ile8-Arg9-Pro10- Lys11-Leu12-Lys13. Schwyzer has proposed an essentially alpha-helical membrane-mediated conformation of the 13 amino acid peptide [Schwyzer, R. (1986) Biochemistry 25, 4281-4286]. In the present study, circular dichroism (CD) studies on dynorphin A-(1-13)-peptide bound to an anionic phospholipid signified negligible helical content of the peptide. CD studies also demonstrated that the aqueous-membraneous interphase may be mimicked by methanol. The 500- and 620-MHz 1H nuclear magnetic resonance (NMR) spectra of dynorphin A-(1-13)-peptide in methanolic solution were sequence-specifically assigned with the aid of correlated spectroscopy (COSY), double-quantum filtered phase-sensitive COSY (DQF-COSY), relayed COSY (RELAY), and nuclear Overhauser enhancement spectroscopy (NOESY). 2-D CAMELSPIN/ROESY experiments indicated that at least the part of the molecule from Arg7 to Arg9 was in an extended or beta-strand conformation, which agreed with deuterium-exchange and temperature-dependence studies of the amide protons and analysis of the vicinal spin-spin coupling constants 3JHN alpha. The results clearly demonstrated the absence of extensive alpha-helix formation. chi 1 rotamer analysis of the 3J alpha beta demonstrated no preferred side-chain conformations. 相似文献