首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hypothesis presented here for proton transfer away from the water oxidation complex of Photosystem II (PSII) is supported by biochemical experiments on the isolated PsbO protein in solution, theoretical analyses of better understood proton transfer systems like bacteriorhodopsin and cytochrome oxidase, and the recently published 3D structure of PS II (Pdb entry 1S5L). We propose that a cluster of conserved glutamic and aspartic acid residues in the PsbO protein acts as a buffering network providing efficient acceptors of protons derived from substrate water molecules. The charge delocalization of the cluster ensures readiness to promptly accept the protons liberated from substrate water. Therefore protons generated at the catalytic centre of PSII need not be released into the thylakoid lumen as generally thought. The cluster is the beginning of a localized, fast proton transfer conduit on the lumenal side of the thylakoid membrane. Proton-dependent conformational changes of PsbO may play a role in the regulation of both supply of substrate water to the water oxidizing complex and the resultant proton transfer.  相似文献   

2.
A comparative study of X-band EPR and ENDOR of the S2 state of photosystem II membrane fragments and core complexes in the frozen state is presented. The S2 state was generated either by continuous illumination at T=200 K or by a single turn-over light flash at T=273 K yielding entirely the same S2 state EPR signals at 10 K. In membrane fragments and core complex preparations both the multiline and the g=4.1 signals were detected with comparable relative intensity. The absence of the 17 and 23 kDa proteins in the core complex preparation has no effect on the appearance of the EPR signals. 1H-ENDOR experiments performed at two different field positions of the S2 state multiline signal of core complexes permitted the resolution of four hyperfine (hf) splittings. The hf coupling constants obtained are 4.0, 2.3, 1.1 and 0.6 MHz, in good agreement with results that were previously reported (Tang et al. (1993) J Am Chem Soc 115: 2382–2389). The intensities of all four line pairs belonging to these hf couplings are diminished in D2O. A novel model is presented and on the basis of the two largest hfc's distances between the manganese ions and the exchangeable protons are deduced. The interpretation of the ENDOR data indicates that these hf couplings might arise from water which is directly ligated to the manganese of the water oxidizing complex in redox state S2.Abbreviations cw continuous wave - ENDOR electron nuclear double resonance - EPR electron paramagnetic resonance - hf hyperfine - hfc hyperfine coupling - MLS multiline signal - PS II Photosystem II - rf radio frequency - WOC water oxidizing complex  相似文献   

3.
An overview is presented of secondary electron transfer at the electron donor side of Photosystem II, at which ultimately two water molecules are oxidized to molecular oxygen, and the central role of manganese in catalyzing this process is discussed. A powerful technique for the analysis of manganese redox changes in the water-oxidizing mechanism is the measurement of ultraviolet absorbance changes, induced by single-turnover light flashes on dark-adapted PS II preparations. Various interpretations of these ultraviolet absorbance changes have been proposed. Here it is shown that these changes are due to a single spectral component, which presumably is caused by the oxidation of Mn(III) to Mn(IV), and which oscillates with a sequence +1, +1, +1, –3 during the so-called S0 S1 S2 S3 S0 redox transitions of the oxygen-evolving complex. This interpretation seems to be consistent with the results obtained with other techniques, such as those on the multiline EPR signal, the intervalence Mn(III)-Mn(IV) transition in the infrared, and EXAFS studies. The dark distribution of the S states and its modification by high pH and by the addition of low concentrations of certain water analogues are discussed. Finally, the patterns of proton release and of electrochromic absorbance changes, possibly reflecting the change of charge in the oxygen-evolving system, are discussed. It is concluded that nonstoichiometric patterns must be considered, and that the net electrical charge of the system probably is the highest in state S2 and the lowest in state S1.  相似文献   

4.
The water-oxidation complex of Photosystem II (PS II) contains a heteronuclear cluster of 4 Mn atoms and a Ca atom. Ligands to the metal cluster involve bridging O atoms, and O and N atoms from amino acid side-chains of the D1 polypeptide of PS II, with likely additional contributions from water and CP43. Although moderate resolution X-ray diffraction-based structures of PS II have been reported recently, and the location of the Mn4Ca cluster has been identified, the structures are not resolved at the atomic level. X-ray absorption (XAS), emission (XES), resonant inelastic X-ray scattering (RIXS) and extended X-ray absorption fine structure (EXAFS) provide independent and potentially highly accurate sources of structural and oxidation-state information. When combined with polarized X-ray studies of oriented membranes or single-crystals of PS II, a more detailed picture of the cluster and its disposition in PS II is obtained.  相似文献   

5.
The integrity of Photosystem II membranes isolated from chloroplast thylakoids is profoundly affected by the solute environment. Examples are given for stabilizing effects various solutes have on the binding of the 17 and 23 kDa extrinsic polypeptides under conditions conductive to their dissociation. It is concluded that these and many other solute effects on Photosystem II membranes can be accommodated readily in a concept developed by Timasheff and his coworkers according to which the responses of proteins to their solute environment are consequences of interaction preferences among the constituents of the solvent-protein-solute systems.Abbreviations Chl chlorophyll - MES 2-(N-morpholino)ethanesulfonic acid - MOPS (3-[N-morpholino]propanesulfonic acid) - PS II Photosystem II  相似文献   

6.
《BBA》2001,1503(1-2):164-186
The catalytic site for photosynthetic water oxidation is embedded in a protein matrix consisting of nearly 30 different polypeptides. Residues from several of these polypeptides modulate the properties of the tetrameric Mn cluster and the redox-active tyrosine residue, YZ, that are located at the catalytic site. However, most or all of the residues that interact directly with YZ and the Mn cluster appear to be contributed by the D1 polypeptide. This review summarizes our knowledge of the environments of YZ and the Mn cluster as obtained from the introduction of site-directed, deletion, and other mutations into the photosystem II polypeptides of the cyanobacterium Synechocystis sp. PCC 6803 and the green alga Chlamydomonas reinhardtii.  相似文献   

7.
The oxygen evolving complex (OEC) of Photosystem II (PS II) incorporates a Mn-cluster and probably a further redox cofactor, X. Four quanta of light drive the OEC through the increasingly oxidized states S0 S1 S2 S3 S4 to yield O2 during the transition S4 S0. It has been speculated that the oxidation of water might be kinetically facilitated by the abstraction of hydrogen. This implied that the respective electron acceptor is deprotonated upon oxidation. Whether YZ and X fulfill this expectation is under debate. We have previously inferred a 'chemical' deprotonation of X based on the kinetics of proton release (Haumann M, Drerenstedt W, Hundelt M and Junge W (1996) Biochim Biophys Acta 1273: 237–250. Here, we investigated the rates of electron transfer and proton release as function of the D2O/H2O ratio, the pH, and the temperature both in thylakoids and PS II core particles. The largest kinetic isotope effect on the rate of electron transfer (factor of 2.1–2.4) and the largest pH-dependence (factor of about 2 between pH 5 and 8) was found on S2 S3 where X is oxidized. During the other transitions both factors were much smaller ( 1.4). Electron transfer is probably kinetically steered by proton transfer only during S2 S3. These results corroborate the notion that X serves as a hydrogen acceptor for bound water during S4 S0. We propose a consistent scheme for the final reaction with water to yield dioxygen: two two-electron (hydrogen) transfers in series with a peroxide intermediate.  相似文献   

8.
In recent years great advances in the understanding of photosystem II have been achieved. The process of photochemical charge separation seems to be fairly well understood, while the identity of the water oxidizing enzyme in photosystem II has remained uncertain. In the first part of the paper a brief review on structural and functional aspects of photosystem II is given, and in the second part the nature of the elusive water oxidizing enzyme is considered. Two models are discussed. The first model, favoured by the majority of groups working in this area, suggests that the reaction center polypeptide D1 (in association with other known photosystem II polypeptides) is the site of water oxidation. The second model, mainly based on our results with cyanobacteria, predicts that the water oxidizing enzyme is a separate polypeptide in the 30 kDa region, distinct from D1 and D2, in addition to the seven polypeptides so far recognized in minimal O2 evolving photosystem II complexes  相似文献   

9.
Kimiyuki Satoh 《BBA》1979,546(1):84-92
The Photosystem II pigment-protein complex, the chlorophyll α-protein comprising the reaction center of Photosystem II, was prepared from EDTA-treated spinach chloroplasts by digitonin extraction, sucrose-gradient centrifugation, DEAE-cellulose column chromatography, and isoelectrofocussing on Ampholine.The dissociated pigment-protein complex exhibits two polypeptide subunits that migrate in SDS-polyacrylamide gel with electrophoretic mobilities corresponding to molecular weights of approximately 43 000 and 27 000. The chlorophyll was always found in the free pigment zone at the completion of the electrophoresis. Heat-treatment of the sample (100°C, 90 s) for electrophoresis caused association of the two polypeptides into large aggregates. It is concluded that these two polypeptides, 43 000 and 27 000, are valid structural or functional components of Photosystem II pigment-protein complex.  相似文献   

10.
The chlorophyll-binding protein CP43 is an inner subunit of the Photosystem II (PSII) reaction center core complex of all oxygenic photoautotrophs. X-Ray structural evidence places the guanidinium cation of the conserved arginine 357 residue of CP43 within a few Angstroms to the Mn(4)Ca cluster of the water-oxidizing complex (WOC) and has been implicated as a possible carbonate binding site. To test the hypothesis, the serine mutant, CP43-R357S, from Synechocystis PCC 6803 was investigated by PSII variable fluorescence (F(v)/F(m)) and simultaneous flash O(2) yield measurements in cells and thylakoid membranes. The R357S mutant assembles PSII-WOC centers, but is unable to grow photoautotrophically. Reconstitution of O(2) evolution by photoactivation and the occurrence of period-four oscillations of F(v)/F(m) establishes that the R357S mutant contains an assembled Mn(4)Ca cluster, but turnover is impaired as seen by an 11-fold larger Kok double miss parameter and faster decay of upper S states. Using pulsed light to avoid photoinactivation, wild-type cells and thylakoid membranes exhibit a 2-4-fold loss in O(2) evolution rate upon partial bicarbonate depletion under multiple turnover conditions, while the R357S mutant is unaffected by bicarbonate. Arginine R357 appears to function in binding a (bi)carbonate ion essential to normal catalytic turnover of the WOC. The quantum yield of electron donation from the WOC into PSII increases with decreasing turnover rate in R357S mutant cells and involves an aborted two-flash pathway that is distinct from the classical four-flash pattern. We speculate that an altered photochemical mechanism for O(2) production occurs via formation of hydrogen peroxide, by analogy to other treatments that retard the kinetics of proton release into the lumen.  相似文献   

11.
Nugent JH  Muhiuddin IP  Evans MC 《Biochemistry》2002,41(12):4117-4126
We report the detection of a "split" electron paramagnetic resonance (EPR) signal during illumination of dark-adapted (S(1) state) oxygen-evolving photosystem II (PSII) membranes at <20 K. The characteristics of this signal indicate that it arises from an interaction between an organic radical and the Mn cluster of PSII. The broad radical signal decays in the dark following illumination either by back-reaction with Qa*- or by forward electron transfer from the Mn cluster. The forward electron transfer (either from illumination at 11 K followed by incubation in the dark at 77 K or by illumination at 77 K) results in the formation of a multiline signal similar to, but distinct from, other well-characterized multiline forms found in the S0 and S2 states. The relative yield of the "S1 split signal", which we provisionally assign to S1X*, where X could be YZ* or Car*+, and that of the 77 K multiline signal indicate a relationship between the two states. An approximate quantitation of the yield of these signals indicates that up to 40-50% of PSII centers can form the S1 split signal. Ethanol addition removes the ability to observe the S1 split signal, but the multiline signal is still formed at 77 K. The multiline forms with <700 nm light and is not affected by near-infrared (IR) light, showing that we are detecting electron transfer in centers not responsive to IR illumination. The results provide important new information about the mechanism of electron abstraction from the water oxidizing complex (WOC).  相似文献   

12.
Murray JW  Barber J 《Biochemistry》2006,45(13):4128-4130
Analysis of the anomalous X-diffraction data reported by Ferreira et al. (PDB entry 1S5L) for crystals of photosystem II isolated from Thermosynechococcus elongatus indicates that a calcium ion is bound to the PsbO protein. The Ca2+-binding site is located close to the lumenal exit of a putative proton channel leading from the water splitting site.  相似文献   

13.
Light induced damage of the photosynthetic apparatus is an important and highly complex phenomenon, which affects primarily the Photosystem II complex. Here the author summarizes the current state of understanding of the molecular mechanisms, which are involved in the light induced inactivation of Photosystem II electron transport together with the relevant mechanisms of photoprotection. Short wavelength ultraviolet radiation impairs primarily the Mn?Ca catalytic site of the water oxidizing complex with additional effects on the quinone electron acceptors and tyrosine donors of PSII. The main mechanism of photodamage by visible light appears to be mediated by acceptor side modifications, which develop under conditions of excess excitation in which the capacity of light-independent photosynthetic processes limits the utilization of electrons produced in the initial photoreactions. This situation of excess excitation facilitates the reduction of intersystem electron carriers and Photosystem II acceptors, and thereby induces the formation of reactive oxygen species, especially singlet oxygen whose production is sensitized by triplet chlorophyll formation in the reaction center of Photosystem II. The highly reactive singlet oxygen and other reactive oxygen species, such as H?O? and O??, which can also be formed in Photosystem II initiate damage of electron transport components and protein structure. In parallel with the excess excitation dependent mechanism of photodamage inactivation of the Mn?Ca cluster by visible light may also occur, which impairs electron transfer through the Photosystem II complex and initiates further functional and structural damage of the reaction center via formation of highly oxidizing radicals, such as P 680(+) and Tyr-Z(+). However, the available data do not support the hypothesis that the Mn-dependent mechanism would be the exclusive or dominating pathway of photodamage in the visible spectral range. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

14.
The catalytic site for photosynthetic water oxidation is embedded in a protein matrix consisting of nearly 30 different polypeptides. Residues from several of these polypeptides modulate the properties of the tetrameric Mn cluster and the redox-active tyrosine residue, Y(Z), that are located at the catalytic site. However, most or all of the residues that interact directly with Y(Z) and the Mn cluster appear to be contributed by the D1 polypeptide. This review summarizes our knowledge of the environments of Y(Z) and the Mn cluster as obtained from the introduction of site-directed, deletion, and other mutations into the photosystem II polypeptides of the cyanobacterium Synechocystis sp. PCC 6803 and the green alga Chlamydomonas reinhardtii.  相似文献   

15.
《BBA》1987,890(1):89-96
Electron donation to Photosystem II (PS II) by diphenylcarbazide (DPC) is interrupted by the presence of endogenous Mn in PS II particles. Removal of this Mn by Tris treatment greatly stimulates the electron transport with DPC as donor. Binding of low concentration of exogenous Mn(II) to Tris-treated PS II particles inhibits DPC photooxidation competitively with DPC. This phenomenon was used to locate a highly specific Mn(II) binding site on the oxidizing side of Photosystem II with dissociation constant about 0.15 μM. The binding of Mn(II) is electrostatic in nature. Its affinity depends not only on the ionic strength, but also on the anion species of the salt in the medium. The effectiveness in decreasing the affinity follows the order F > SO2−4 > CH3COO > CI > Br > NO3. This observation is interpreted as follows: smaller ions, like F, CH3COO, and larger ions, like SO2−4, have inhibitory effects on Mn(II) binding, whereas ions with optimal size, like Cl, Br and NO3, can stabilize the binding, resembling the anion requirement for reactivation of Cl-depleted chloroplasts. We suggest that the binding site for Mn(II) we observed is the site for the endogenous Mn in the O2-evolving complex of PS II. This site remains after Tris treatment, which removes all the endogenous Mn as well as the three extrinsic proteins, indicating that it is on the intrinsic component(s) of PS II reaction centers. Furthermore, the Cl requirement for O2 evolution may be attributed, at least partly to its stabilizing effect on Mn binding.  相似文献   

16.
Membrane protein complexes can support both the generation and utilisation of a transmembrane electrochemical proton potential ('proton-motive force'), either by transmembrane electron transfer coupled to protolytic reactions on opposite sides of the membrane or by transmembrane proton transfer. Here we provide the first evidence that both of these mechanisms are combined in the case of a specific respiratory membrane protein complex, the dihaem-containing quinol:fumarate reductase (QFR) of Wolinella succinogenes, so as to facilitate transmembrane electron transfer by transmembrane proton transfer. We also demonstrate the non-functionality of this novel transmembrane proton transfer pathway ('E-pathway') in a variant QFR where a key glutamate residue has been replaced. The 'E-pathway', discussed on the basis of the 1.78-Angstrom-resolution crystal structure of QFR, can be concluded to be essential also for the viability of pathogenic varepsilon-proteobacteria such as Helicobacter pylori and is possibly relevant to proton transfer in other dihaem-containing membrane proteins, performing very different physiological functions.  相似文献   

17.
In photosynthesis, the central step in transforming light energy into chemical energy is the coupling of light-induced electron transfer to proton uptake and release. Despite intense investigations of different photosynthetic protein complexes, including the photosystem II (PS II) in plants and the reaction center (RC) in bacteria, the molecular details of this fundamental process remain incompletely understood. In the RC of Rhodobacter (Rb.) sphaeroides, fast formation of the charge separated state, P(+)Q(A)(-), is followed by a slower electron transfer from the primary acceptor, Q(A), to the secondary acceptor, Q(B), and the uptake of a proton from the cytoplasm. The proton transfer to Q(B) takes place via a protonated water chain. Mutation of the amino acid AspL210 to Asn (L210DN mutant) near the entry of the proton pathway can disturb this water chain and consequently slow down proton uptake. Time-resolved step-scan Fourier transform infrared (FTIR) measurements revealed an intermediate X in the Q(A)(-)Q(B) to Q(A)Q(B)(-) transition. The nature of this transition remains a matter of debate. In this study, we investigated the role of the iron-histidine complex located between Q(A) and Q(B). We used time-resolved fast-scan FTIR spectroscopy to characterize the Rb. sphaeroides L210DN RC mutant marked with isotopically labeled histidine. FTIR marker bands of the intermediate X between 1120 cm(-1) and 1050 cm(-1) are assigned to histidine vibrations and indicate the protonation of a histidine, most likely HisL190, during the disappearance of the intermediate. Based on these results we propose a novel mechanism of the coupling of electron and proton transfer in photosynthesis.  相似文献   

18.
The Mn4CaO5 cluster of photosystem II (PSII) catalyzes the oxidation of water to molecular oxygen through the light-driven redox S-cycle. The water oxidizing complex (WOC) forms a triad with TyrosineZ and P680, which mediates electrons from water towards the acceptor side of PSII. Under certain conditions two other redox-active components, TyrosineD (YD) and Cytochrome b 559 (Cyt b 559) can also interact with the S-states. In the present work we investigate the electron transfer from Cyt b 559 and YD to the S2 and S3 states at 195 K. First, YD ? and Cyt b 559 were chemically reduced. The S2 and S3 states were then achieved by application of one or two laser flashes, respectively, on samples stabilized in the S1 state. EPR signals of the WOC (the S2-state multiline signal, ML-S2), YD ? and oxidized Cyt b 559 were simultaneously detected during a prolonged dark incubation at 195 K. During 163 days of incubation a large fraction of the S2 population decayed to S1 in the S2 samples by following a single exponential decay. Differently, S3 samples showed an initial increase in the ML-S2 intensity (due to S3 to S2 conversion) and a subsequent slow decay due to S2 to S1 conversion. In both cases, only a minor oxidation of YD was observed. In contrast, the signal intensity of the oxidized Cyt b 559 showed a two-fold increase in both the S2 and S3 samples. The electron donation from Cyt b 559 was much more efficient to the S2 state than to the S3 state.  相似文献   

19.
The photosystem II (PSII) manganese-stabilizing protein (PsbO) is known to be the essential PSII extrinsic subunit for stabilization and retention of the Mn and Cl cofactors in the oxygen evolving complex (OEC) of PSII, but its function relative to Ca2+ is less clear. To obtain a better insight into the relationship, if any, between PsbO and Ca2+ binding in the OEC, samples with altered PsbO-PSII binding properties were probed for their potential to promote the ability of Ca2+ to protect the Mn cluster against dark-inhibition by an exogenous artificial reductant, N,N-dimethylhydroxylamine. In the absence of the PsbP and PsbQ extrinsic subunits, Ca2+ and its surrogates (Sr2+, Cd2+) shield Mn atoms from inhibitory reduction (Kuntzleman et al., Phys Chem Chem Phys 6:4897, 2004). The results presented here show that PsbO exhibits a positive effect on Ca2+ binding in the OEC by facilitating the ability of the metal to prevent inhibition of activity by the reductant. The data presented here suggest that PsbO may have a role in the formation of the OEC-associated Ca2+ binding site by promoting the equilibrium between bound and free Ca2+ that favors the bound metal.  相似文献   

20.
This short communication addresses three topics of photosynthetic water cleavage in Photosystem II (PS II): (a) effect of protonation in the acidic range on the extent of the ‘fast’ ns kinetics of P680 reduction by YZ, (b) mechanism of O–O bond formation and (c) role of protein flexibility in the functional integrity of PS II. Based on measurements of light-induced absorption changes and quasielastic neutron scattering in combination with mechanistic considerations, evidence is presented for the protein acting as a functionally active constituent of the water cleavage machinery, in particular, for directed local proton transfer. A specific flexibility emerging above a threshold of about 230 K is an indispensable prerequisite for oxygen evolution and plastoquinol formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号