首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In embryonic mice pluripotential hemopoietic stem cells (PHSC) originate in the yolk sac and migrate to the fetal liver and from there to the bone marrow. Hemopoietic cells from yolk sac and fetal liver also migrate to the thymic primordium, and within the thymic environment these prothymocytes differentiate into mature T cells. We have recently demonstrated that macromolecular insoluble cold globulin (MICG), a T cell marker, is synthesized and inserted into the plasma membrane of embryonic prothymocytes as soon as these cells appear in the early thymus. In addition, we have shown that MICG+ cells are present within the fetal liver before the thymus has fully formed. In the present study we show that pluripotential hemopoietic stem cells in the fetal liver and bone marrow have MICG on their surface and represent a subpopulation of these MICG+ cells. The implications of these findings in relationship to stem cell differentiation and isolation are discussed.  相似文献   

2.
Palmar fibromatosis is a benign fibroproliferative tumor of unknown etiology, with a high rate of recurrence after excision. The offending cells of palmar fibromatosis are myofibroblasts and the cellular origin of other myofibroblasts has previously been reported to be the bone marrow. However, further clarification of the relationship between bone marrow precursors and palmar fibromatosis is required. Stem cells (SCs) are known to exist in various tissues, but whether SCs can be isolated from fibromatosis tissue is still unclear. The purpose of this study was to isolate and identify stem cells from human palmar fibromatosis, and to evaluate the differences in the differentiation and fibrogenic capacities of bone marrow stem cells (BMSCs) and fibromatosis-derived stem cells (FSCs). We found that FSCs had better fibrogenic differentiation potential than BMSCs, whereas BMSCs had better adipogenic and chondrogenic differentiation capacities. Treatment with transforming growth factor-β1 increased the expression of α-smooth muscle actin, and types III and I collagen significantly more in FSCs than in BMSCs. An in vivo study further confirmed the results of fibrogenesis and suggested that FSCs can recapitulate the fibromatosis nodule. In summary, their myofibroblastic differentiation both in vivo and in vitro makes FSCs a potential cell source for future applications in murine models of fibromatosis or fibrogenesis.  相似文献   

3.
近年来,研究者从小鼠骨髓和其他组织脏器中分离并纯化了一类数量极其稀少的极小胚胎样干细胞(very small embryonic—like stem cells,VSELs)。VSELs不仅表达多能干细胞的表面分子标记,并能向3个胚层方向分化。有学者推测,VSELs可能是在哺乳动物组织/器官的发育早期迁移并定居下来的,且能在特定情况下向组织特异的单潜能干细胞方向分化。据此,VSELs可能在成体组织的更新和损伤组织的再生修复过程中发挥重要作用。  相似文献   

4.
Recently, our group purified a rare population of primitive Sca1(+)/Lin(-)/CD45(-) cells from murine bone marrow by employing multiparameter cell sorting. Based on flow cytometric and gene expression analysis, these cells have been shown to express several markers of embryonic stem cells and were accordingly termed Very Small Embryonic-Like stem cells (VSELs). In order to better characterize VSELs, we focused on their morphological parameters (e.g. diameter, nuclear to cytoplasmic ratio, cytoplasmic area) as well as expression of Oct-4. To examine the morphological features of VSELs, we employed a multi-dimensional approach, including (i) traditional flow cytometry, (ii) a novel approach, which is ImageStream (IS) cytometry and (iii) confocal microscopy. We demonstrate by all of the sensitive and precise methods employed, that VSELs are a population of very small cells, which are significantly smaller than haematopoetic stem cells (HSC) (3.63 +/- 0.09 versus 6.54 +/-0.17 microm in diameter). They also exhibit higher nuclear to cytoplasmic ratio and lower cytoplasmic area as compared with HSCs and mature granulocytes. Besides confirming the size characteristics, confocal microscopic analysis also confirmed that VSELs express Oct-4, a marker of pluripotent embryonic stem cells. Morphological examination reveals that VSELs are unusually small eukaryotic cells that posses several characteristics of embryonic cells. Thus, FACS-based sorting strategies should consider that adult tissues harbour small primitive cells that are larger than platelets and smaller than erythrocytes.  相似文献   

5.
Age-related changes in the number and concentration of pluripotential and unipotential hematopoietic stem cells in the femoral bone marrow and spleen of BC3F1 mice were investigated. Pluripotential stem cells were assayed by the spleen colony technique, and unipotential stem cells were determined by an agar cloning method and by erythropoietin responsiveness in polycythemic mice. Changes with senescence were observed in the concentration of both uni- and pluripotential stem cells in the bone marrow; the size of the stem cell compartment in the marrow did not change significantly with age. Also, a reduction in the seeding of transplanted spleen colony-forming units into the spleens of aged recipients was demonstrated. The implications of these findings for the kinetics of hematopoietic stem cell proliferation in aged animals are discussed.  相似文献   

6.
Tissue engineering (TE) has emerged as a promising new therapy for the treatment of damaged tissues and organs. Adult stem cells are considered as an attractive candidate cell type for cell-based TE. Mesenchymal stem cells (MSC) have been isolated from a variety of tissues and tested for differentiation into different cell lineages. While clinical trials still await the use of human MSC, horse tendon injuries are already being treated with autologous bone marrow-derived MSC. Given that the bone marrow is not an optimal source for MSC due to the painful and risk-containing sampling procedure, isolation of stem cells from peripheral blood would bring an attractive alternative. Adherent fibroblast-like cells have been previously isolated from equine peripheral blood. However, their responses to the differentiation conditions, established for human bone marrow MSC, were insufficient to fully confirm their multilineage potential. In this study, differentiation conditions were optimized to better evaluate the multilineage capacities of equine peripheral blood-derived fibroblast-like cells (ePB-FLC) into adipogenic, osteogenic, and chondrogenic pathways. Adipogenic differentiation using rabbit serum resulted in a high number of large-size lipid droplets three days upon induction. Cells' expression of alkaline phosphatase and calcium deposition upon osteogenic induction confirmed their osteogenic differentiation capacities. Moreover, an increase of dexamethasone concentration resulted in faster osteogenic differentiation and matrix mineralization. Finally, induction of chondrogenesis in pellet cultures resulted in an increase in cartilage-specific gene expression, namely collagen II and aggrecan, followed by protein deposition after a longer induction period. This study therefore demonstrates that ePB-FLC have the potential to differentiate into adipogenic, osteogenic, and chondrogenic mesenchymal lineages. The presence of cells with confirmed multilineage capacities in peripheral blood has important clinical implications for cell-based TE therapies in horses.  相似文献   

7.
Hematopoietic stem cells of high proliferative potential such as the giant macrophage colony-forming cell HPP-CFC, were present in the marrow of mice treated with high dose 5-fluorouracil (5Fu) (150 mg/kg i.v.), whereas most committed granulocyte-macrophage progenitors, GM-CFU-C, were depleted. Enrichment of primitive stem cells in post 5-Fu bone marrow (5FuBM) was reflected in an enhanced capacity to proliferate in suspension cultures stimulated by the mixture of lymphokines present in Con A spleen-conditioned medium supernatant (Con A CM) when compared to normal bone marrow. The population of blast-like cells harvested at 5 days from suspension cultures of 5FuBM with Con A CM showed marked increases in stem cells GM-CFU-C and HPP-CFC. For this reason, 5FuBM was utilized to study the cell surface characteristics of putative pluripotential stem cells capable of giving rise to committed stem cells in suspension cultures. Treatment of 5FuBM (BDF1 mice) before suspension culture with a high concentration of either of two cytotoxic monoclonal antibodies directed against the Thy-1.2 surface antigen in the presence of rabbit complement reduced or abrogated the generation of stem cells HPP-CFC and GM-CFU-C in suspension cultures, even though the input content of HPP-CFC and GM-CFU-C in treated 5FuBM compared with control 5FuBM showed little reduction by the antibody plus complement treatment. The Thy-1+ cell required for generation of stem cells was not a T cell, because reconstitution of Thy-1.2-depleted 5FuBM with spleen nylon nonadherent (T) cells did not reconstitute the generation of stem cells, even though T cells did grow in the suspension cultures. In addition, depletion from 5FuBM of cells expressing Lyt-1 and Lyt-2 antigens, unambiguous markers of T cell-thymocyte differentiation, did not ablate the generation of HPP-CFC and GM-CFU-C. Rather, performance of Thy-1 cell depletion at lower efficiency, which still abrogated T cell function, ablated generation of HPP-CFC but did not affect the generation of GM-CFU-C. It was concluded that 5FuBM contains distinct Thy-1+ primitive stem cells expressing different amounts of Thy-1 antigen correlating with their respective generation potentials. Some of these Thy-1+ progenitor cells may be pluripotential.  相似文献   

8.
Although stem cells are present in various adult tissues and body fluids, bone marrow has been the most popular source of stem cells for treatment of a wide range of diseases. Recent results for stem cells from adipose tissue have put it in a position to compete for being the leading therapeutic source. The major advantage of these stem cells over their counterparts is their amazing proliferative and differentiation potency. However, their pancreatic lineage transdifferentiation competence was not compared to that for bone marrow-derived stem cells. This study aims to identify an efficient source for transdifferentiation into pancreatic islet-like clusters, which would increase potential application in curative diabetic therapy. The results reveal that mesenchymal stem cells (MSC) derived from bone marrow and subcutaneous adipose tissue can differentiate into pancreatic islet-like clusters, as evidenced by their islet-like morphology, positive dithizone staining and expression of genes such as Nestin, PDX1, Isl 1, Ngn 3, Pax 4 and Insulin. The pancreatic lineage differentiation was further corroborated by positive results in the glucose challenge assay. However, the results indicate that bone marrow-derived MSCs are superior to those from subcutaneous adipose tissue in terms of differentiation into pancreatic islet-like clusters. In conclusion, bone marrow-derived MSC might serve as a better alternative in the treatment of diabetes mellitus than those from adipose tissue.  相似文献   

9.
Prolonged replication of pluripotential stem cells and committed progenitor cells is sustained for prolonged periods in a murine marrow culture system. Alterations in stem cell replication and differentiation are observed after infection of the cultures with Friend virus and Kirsten sarcoma virus consistent with transformation of pluripotential stem cells in the first case and transformation of the macrophage component of the hemopoietic microenvironment in the second. Prolonged myelopoiesis and CFU-c proliferation was also observed in continuous human and prosimian marrow cultures, suggesting the applicability of this technique for analysis of stem cell control and in vitro leukemogenesis in species other than the mouse.  相似文献   

10.
Summary The present investigations have been concerned with factors which determine and influence the localization and development of hemopoietic bone marrow in the embryo mouse and the adult. These studies, which have employed organ cultures and the transplantation of mouse embryo femur and tail rudiments, indicate that the surrounding mesenchyme is required for the normal development of the cartilage rudiment and its ossification, and for the formation and colonization of the marrow cavity. It was suggested that hemopoiesis results from the colonization of the “prepared” marrow cavity by stem cells arising from sources external to the rudiment. The addition of erythropoietin and L-thyroxine produced distinct erythropoietic differentiation in the normally myelocytic embryonic marrow cavity. The significance of the microenvironment present in developing bone rudiments and the initiation of hemopoiesis in stem cells was discussed. A hypothesis was developed to explain marrow localization in adults based on the colonization of bone rudiments which are developing their marrow sites at a time when the blood contains large numbers of colony-forming units.  相似文献   

11.
Pluripotent very small embryonic/epiblast derived stem cells (VSELs) as we hypothesize are deposited at begin of gastrulation in developing tissues and play an important role as backup population of pluripotent stem cells (PSCs) for tissue committed stem cells (TCSCs). We envision that during steady state conditions these cells may be involved in tissue rejuvenation and in processes of regeneration/repair after organ injuries. Molecular analysis of adult bone marrow (BM)-derived purified VSELs revealed that they i) express pluripotent stem cells markers e.g., Oct4, Nanog, Klf-4, SSEA-1 ii) share several markers characteristic for epiblast as well as migratory primordial germ cells (PGCs), and iii) possess a unique pattern of genomic imprinting (e.g., erasure of differently methylated regions at Igf2-H19 and Rasgrf1 loci and hypermethylation at KCNQ1 and Igf2R loci). This supports that VSELs are related to epiblast-derived migrating PGC-like cells and, despite their pluripotent stem cell character, changes in the epigenetic signature of imprinted genes keep these cells quiescent in adult tissues and prevent them from teratoma formation. In contrast epigenetic changes/mutations that lead to activation of imprinted genes could potentially lead to tumor formation by these cells. Mounting evidence accumulates that perturbation of expression of imprinted genes is a common phenomenon observed in developing tumors.  相似文献   

12.
In view of the recent success in pancreatic islet transplantation, interest in treating diabetes by the delivery of insulin-producing beta-cells has been renewed. Because differentiated pancreatic beta-cells cannot be expanded significantly in vitro, beta-cell stem or progenitor cells are seen as a potential source for the preparation of transplantable insulin-producing tissue. In addition to embryonic stem (ES) cells, several potential adult islet/beta-cell progenitors, derived from pancreas, liver, and bone marrow, are being studied. To date, none of the candidate cells has been fully characterized or is clinically applicable, but pancreatic physiology makes the existence of one or more types of adult islet stem cells very likely. It also seems possible that pluripotential stem cells, derived from the bone marrow, contribute to adult islet neogenesis. In future studies, more stringent criteria should be met to clonally define adult islet/beta-cell progenitor cells. If this can be achieved, the utilization of these cells for the generation of insulin-producing beta-cells in vitro seems to be feasible in the near future.  相似文献   

13.
骨髓间充质干细胞是具有自我更新能力和分化潜能的一类成体干细胞,经过局部微环境的诱导,可在体内外进行扩展,到晚期可分化成为多种细胞系。当组织受损伤时,可迅速到达损伤部位,分化为特异的组织细胞,参与组织修复。骨髓间充质干细胞这种惊人的分化及组织修复能力,为治疗退行性疾病和器官损伤性疾病提供广阔前景,故成为科研热点。国内外相关实验研究多以大鼠为动物模型,而骨髓间充质干细胞如何进入大鼠体内并定植,是实验成功的重要前提。因此如何找到最合适、最安全的移植途径将骨髓间充质干细胞有效地移植进入大鼠疾病模型体内的受损区域,是研究者关心的重点。本文就目前骨髓间充质干细胞在大鼠实验中不同移植途径进行综述,并比较各种途径的优缺点,希望能对临床科研工作提供参考,并期待能有更成熟的移植手段来推动骨髓间充质干细胞实验研究的进展。  相似文献   

14.
肝硬化是一种临床常见的肝病良性终末期表现。目前临床上尚缺乏有效的治疗措施。肝脏移植是最理想的治疗方法,但受供体肝脏来源限制,且费用昂贵。近年来开展的自体骨髓干细胞(BMSCs)移植治疗,为肝硬化的治疗带来了新的希望。BMSCs主要包括造型血干细胞和间充质干细胞,其具有可塑性,体外通过生长因子,体内利用特定微环境均可诱导BMSCs分化为肝前体细胞和成熟肝细胞,并明显改善肝功能。从动物实验到临床研究亦表明,BMSCs具有来源丰富、费用低廉、损伤小、自体移植不栓塞、无排斥反应等优点,为治疗肝病带来了新思路,有望成为生物人工肝的细胞来源。本文就BMSCs移植治疗肝硬化的研究现状,尤其是移植途径以及在肝脏内定居、迁移和分化机制的示踪观察方法和存在的问题作一综述,以期为从事肝病研究的同仁提供参考依据。通过对BMSCs移植从基础研究及临床应用的最新进展的描述,展示BMSCs在肝硬化治疗方面良好的治疗前景。  相似文献   

15.
Retroviral vectors were used to introduce an activated ras gene into murine pluripotent hemopoietic stem cells. We attempted to reconstitute the hemopoietic system of lethally irradiated mice with isolated spleen colonies obtained in vivo after injection of infected bone marrow cells. Spleen colonies derived from infected bone marrow were inefficient in promoting long-term survival of irradiated hosts. This loss of reconstitutive capacity of spleen colonies was not due to the retroviral infection per se but to the in vitro culture of spleen colony precursors. Incubation for 24 h in the presence of fetal calf serum and interleukin-3 without virus-producing cells was sufficient to abolish completely the reconstitutive capacity of spleen colonies while maintaining both self-renewal and pluripotential capacities of spleen colony precursors. These results show that the in vitro manipulation of stem cells that is included in current protocols for retroviral infection can modify the developmental potential of these cells. This finding clearly indicates that the use of retroviral vectors can introduce a bias in the analysis of hemopoiesis.  相似文献   

16.
Human urine-derived stem cells (hUSCs) are a newly found type of stem cell with a potential for therapeutic application in urology. The aim of this study is to investigate whether hUSCs contribute to cartilage regeneration. Despite their characterization with multi-lineage differentiation capacities, in terms of osteogenesis, adipogenesis and myogenesis, hUSCs do not show the ability to differentiate into chondrocytes. Human bone marrow stromal cells (hBMSCs) are a tissue-specific stem cell for endochondral bone formation; however, repeated-passage hBMSCs have a lower capacity for chondrogenic differentiation. We found that the extracellular matrix (ECM) deposited by hUSCs (UECM) can greatly recharge repeated-passage hBMSCs toward chondrogenic differentiation, a result that might be explained by trophic factors released from hUSCs being immobilized in UECM. We also found that ECM from repeated-passage hBMSCs (BECM) have a limited rejuvenation effect. The Wnt11-mediated noncanonical signaling pathway might be responsible for UECM-mediated hBMSC rejuvenation and subsequent chondrogenic differentiation. Our data indicate that commercially available UECM from young healthy donors might represent a simple and promising approach for autologous hBMSC rejuvenation. This study also provides an excellent model for investigating the effect of trophic factors released by stem cells on tissue regeneration without interference by stem cell differentiation.  相似文献   

17.
The concept that bone marrow (BM)-derived cells may participate in neural regeneration remains controversial, and the identity of the specific cell type(s) involved remains unknown. We recently reported that the adult murine BM contains a highly mobile population of Sca-1+LinCD45 cells known as very small embryonic/epiblast-like stem cells (VSELs) that express several markers of pluripotency such as Oct-4. In the BM microenvironment, these cells are kept quiescent because of epigenetic modification of certain paternally imprinted genes. However, as reported, these cells can be mobilized in mice in an experimental model of stroke and express several genes involved in neurogenesis while circulating in peripheral blood (PB). In the current work, we employed a model of toxic brain damage, which is induced by administration of kainic acid, to see not only whether VSELs can be mobilized into PB in response to this neurotoxin, but, more importantly, whether they proliferate and expand in BM tissue. We report here for the first time that brain damage leads to activation and expansion of the BM pool of quiescent VSELs, which precedes their subsequent egress into PB. Harnessing these cells in neural tissue regeneration is currently one of the challenges in regenerative medicine.  相似文献   

18.
Small stem cells, such as spore-like cells, blastomere-like stem cells (BLSCs), and very-small embryonic-like stem cells (VSELs) have been described in recent studies, although their multipotency in human tissues has not yet been confirmed. Here, we report the discovery of adult multipotent stem cells derived from human bone marrow, which we call StemBios (SB) cells. These isolated SB cells are smaller than 6 ìm and are DAPI+ and Lgr5+ (Leucine-Rich Repeat Containing G Protein-Coupled Receptor 5). Because Lgr5 has been characterized as a stem cell marker in the intestine, we hypothesized that SB cells may have a similar function. In vivo cell tracking assays confirmed that SB cells give rise to three types of cells, and in vitro studies demonstrated that SB cells cultured in proprietary media are able to grow to 6–25 ìm in size. Once the SB cells have attached to the wells, they differentiate into different cell lineages upon exposure to specific differentiation media. We are the first to demonstrate that stem cells smaller than 6 ìm can differentiate both in vivo and in vitro. In the future, we hope that SB cells will be used therapeutically to cure degenerative diseases.  相似文献   

19.
Adipose tissue-derived stem cells (ADSCs) are one population of adult stem cells that can self renew and differentiate into multiple lineages. Because of advantages in method and quantity of acquisition, ADSCs are gaining attention as an alternative source of bone marrow mesenchymal stem cells. In this study, we performed microRNA profiling of undifferentiated and of neurally-differentiated ADSCs to identify the responsible microRNAs in neurogenesis using this type of stem cell. MicroRNAs from four different donors were analysed by microarray. Compared to the undifferentiation control, we identified 39–101 microRNAs with more than two-fold higher expression and 3–9 microRNAs with two-fold lower expression. The identified microRNAs were further analysed in terms of gene ontology (GO) in relation with neurogenesis, based on their target mRNAs predicted by computational analysis. This study revealed the specific microRNAs involved in neurogenesis via microRNA microarray, and may provide the basic information for genetic induction of adult stem cell differentiation using microRNAs.  相似文献   

20.

An efficient harvest of hematopoietic stem/progenitor cells (HSPCs) after pharmacological mobilization from the bone marrow (BM) into peripheral blood (PB) and subsequent proper homing and engraftment of these cells are crucial for clinical outcomes from hematopoietic transplants. Since extracellular adenosine triphosphate (eATP) plays an important role in both processes as an activator of sterile inflammation in the bone marrow microenvironment, we focused on the role of Pannexin-1 channel in the secretion of ATP to trigger both egress of HSPCs out of BM into PB as well as in reverse process that is their homing to BM niches after transplantation into myeloablated recipient. We employed a specific blocking peptide against Pannexin-1 channel and noticed decreased mobilization efficiency of HSPCs as well as other types of BM-residing stem cells including mesenchymal stroma cells (MSCs), endothelial progenitors (EPCs), and very small embryonic-like stem cells (VSELs). To explain better a role of Pannexin-1, we report that eATP activated Nlrp3 inflammasome in Gr-1+ and CD11b+ cells enriched for granulocytes and monocytes. This led to release of danger-associated molecular pattern molecules (DAMPs) and mitochondrial DNA (miDNA) that activate complement cascade (ComC) required for optimal egress of HSPCs from BM. On the other hand, Pannexin-1 channel blockage in transplant recipient mice leads to a defect in homing and engraftment of HSPCs. Based on this, Pannexin-1 channel as a source of eATP plays an important role in HSPCs trafficking.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号