首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-three species of benthic hydroids, belonging to eight families and 13 genera, were found in a hydroid collection from Peter I Island, collected during both the Bentart 2003 and Bentart 2006 Spanish expeditions with BIO Hespérides in 2003 and 2006. Fourteen out of the 23 species constitute new records for Peter I Island, raising the total number of known species in the area to 30, as also do seven out of the 13 genera. The majority of the species are members of the subclass Leptothecata; the subclass Anthoathecata being scarcely represented. Sertulariidae is the family with the greatest number of species in the collection, with eight species (35%), followed by Lafoeidae with five (22%). Symplectoscyphus with four species (17%) and both Antarctoscyphus and Halecium with three (13%), including H. frigidum sp. nov., were the most diverse genera. Twenty species (ca. 77%) are endemic to Antarctic waters, either with a circum-Antarctic (11 species, ca. 42%) or West Antarctic (9 species, ca. 35%) distribution. Twenty-four (ca. 92%) are restricted to Antarctic or Antarctic/sub-Antarctic waters; only two species have a wider distribution. Peter I Island hydroid fauna is composed of typical representatives of the Antarctic benthic hydroid fauna, though it is characterized by the low representation of some of the most diverse and widespread Antarctic genera (Schizotricha and Staurotheca).  相似文献   

2.
A total of 36 species of benthic hydroids, belonging to nine families and 16 genera, were found in the hydroid collection gathered during the Brazilian Antarctic expeditions PROANTAR III and IV. Seven of the species were identified only to generic level. There is a clear dominance of the subclass Leptothecatae with 33 species. By far the most diversified family was the Sertulariidae, with 16 species (44%). Symplectoscyphus with eight species, including Symplectoscyphus magnificus sp. nov., is the most diversified genus. Almost 70% of the species diversity is restricted to just six genera (38%). Sixty-eight percent of the species is Antarctic endemics and 86% is restricted to Antarctic or Antarctic/sub-Antarctic waters. Eudendrium antarcticum and Amphisbetia operculata are recorded for the first time from Antarctic waters.  相似文献   

3.
The Bellingshausen Sea constitutes the third largest sea in the Southern Ocean, though it is widely recognized as one of the less-studied Antarctic areas. To reduce this lack of knowledge, a survey to study the biodiversity of its marine benthic communities was carried out during the Bentart 2003 and Bentart 2006 Spanish Antarctic expeditions. The study of the hydroid collection has provided 27 species, belonging to ten families and 15 genera. Twenty-one out of the 27 species constitute new records for the Bellingshausen Sea, raising the total number of known species to 37, as also do nine out of the 15 genera. Candelabrum penola, Lafoea annulata, and Staurotheca juncea are recorded for the second time. Most species belong to Leptothecata. Sertulariidae with 13 species (48%) is by far the most speciose family, and Symplectoscyphus with seven species (26%), including S. bellingshauseni sp. nov. and S. hesperides sp. nov., the most diverse genus. Considering the whole benthic hydroid fauna of the Bellingshausen Sea, 18 species (69%) are endemic to Antarctic waters, either with a circum-Antarctic (12 species, 46%) or West Antarctic (6 species, 23%) distribution, 23 (88%) are restricted to Antarctic or Antarctic/sub-Antarctic waters, and only three species have a wider distribution. Bellingshausen Sea hydroid fauna is composed of a relatively high diversity of typical representatives of the Antarctic benthic hydroid fauna, though with a surprisingly low representation of some of the most diverse and widespread Antarctic genera (Oswaldella and Schizotricha), what could be related to the fact that its shelf-inhabiting hydroid fauna remains practically unknown.  相似文献   

4.
A total of 61 species of hydroids, belonging to 13 families and 23 genera, were found during the Spanish Antarctic expedition Bentart 95 with the RV Hespérides. Ten of the species were identified only to generic level. The dominance of the subclass Leptothecatae, with 57 species, was remarkable. The remaining four species belong to the subclass Anthoathecatae. By far the most diverse family was the Sertulariidae, with 25 species (41%), followed by Haleciidae with nine species (15%) and Kirchenpaueriidae with six (10%). The family Plumulariidae, represented by one species of Nemertesia, is recorded for the first time from Antarctic waters. Eudendrium scotti, Perarella clavata and Symplectoscyphus hero are each recorded for the second time. Symplectoscyphus with 11 species was the dominant genus. Almost 60% of the species diversity is concentrated in just a little more than the 20% of genera. Nearly 70% of the species are endemic to Antarctic waters and 90% of them are restricted to Antarctic or Antarctic/sub-Antarctic waters.  相似文献   

5.
The shallow-water hydrozoan Antarctic fauna is still poorly studied, and available knowledge mostly refers to samples gathered by traditional ship-operated gears. By scuba diving in the coastal areas off the Italian Antarctic station “Mario Zucchelli” (Ross Sea, Terra Nova Bay), in the austral summer 2002–2003, a total of 20 hydrozoan species were found, belonging to 10 families and 13 genera. As hypothesized, Anthoathecata (11 species), usually under-represented in collections from indirect sampling gears, are common as also are Leptothecata (9 species). Hydractiniidae and Hydractinia are the dominant family and genus, followed by Haleciidae and Halecium. A new species to science, Halecium exaggeratum sp. nov. is also described. Most species are either endemic to Antarctic waters or restricted to Antarctic/sub-Antarctic areas; only two species have a wider distribution. Material reared in aquaria at the Italian Antarctic Base Mario Zucchelli facilitated knowledge of the life cycle and reproductive biology of several species. In particular, Opercularella belgicae was found to liberate a medusa stage referable to Phialella, and the species is assigned here to that genus, as Phialella belgicae. Also, extraordinary is the complete absence or scant representation of the most typical Antarctic benthic hydroid genera (Antarctoscyphus, Oswaldella, Schizotricha, Staurotheca, and Symplectoscyphus), likely related to the shallow limits of sampling (down to 48 m).  相似文献   

6.
Productivity in the oceans is heightened around oceanographic and bathymetric features such as fronts and islands. This can have a flow-on effect, providing increased food availability for higher trophic level species. Using data from a 5-day combined visual and acoustic survey, we examined the hypothesis that higher Antarctic krill (Euphausia superba) density provides a lucrative resource for humpback whales (Megaptera novaeangliae) at a remote Antarctic feeding area, the Balleny Islands (67oS, 164°E). We assessed whale presence at the feeding area in relation to prey (krill), productivity and environmental variables using density surface modeling. We found stark differences between krill swarms near the islands and those in adjacent open water. Swarms were twice as dense and three times more numerous near the Balleny Islands compared to an open water pelagic environment, suggesting that the islands offered a profitable feeding opportunity. At the feeding area, whales were found in deeper and more productive waters with medium krill densities. These relationships, along with the high krill availability around the islands, may be the result of the Island Mass Effect.  相似文献   

7.
8.
Four specimens of Neolithodes brodiei Dawson and Yaldwyn (1970) have been obtained for the first time from bottom trawls deployed in Antarctic waters off the Balleny Islands (about 67°S) in March 2004. The Lithodidae constitute the only anomuran crab family so far known to be able to thrive under high-Antarctic conditions, and lithodids in the Ross Sea have previously only been recorded off Scott Island. The new record of N. brodiei, commonly found in waters off New Zealand, clearly extends its geographic range into the Southern Ocean. The significance of this finding with respect to the biodiversity and distribution of the Lithodidae from the Southern Ocean is briefly discussed.This revised version was published online in November 2004 with corrections to Figure 2.  相似文献   

9.
Aim The aim of this study is to investigate areas of endemism within the distribution of Oswaldella species in the Southern Ocean, thereby testing previous hypotheses and proposing alternative scenarios for Antarctic evolution. Location Southern Ocean, Antarctic and sub-Antarctic waters of southern South America. Methods We prepared a database for the 31 currently known species of the Antarctic genus Oswaldella, which includes geographical locations gathered from published taxonomic studies as well as materials from museums and expeditions. A parsimony analysis of endemicity (PAE) was used to test hypotheses of distribution patterns. Results Four areas of endemism are hypothesized: southern South America, two high Antarctic areas (eastern and western) and a larger area, mainly in western Antarctica at lower latitudes and including insular areas (but not the Balleny Islands). Main conclusions The results support, in part, previous hypotheses for the Southern Ocean region, while providing more detailed resolution. The areas of endemism may reflect both historical and ecological processes that influenced the Antarctic biota. The Magellanic area reflects the well-known affinities of the Antarctic biota with that of South America and may be a consequence of dispersal through deeper (and colder) waters, followed by speciation. The second area, the largest one, encompasses most of the insular faunas and may also be associated with deeper waters formed since 43 Ma. The third area may be explained by the development of seaways in the circum-Antarctic region beginning 50 Ma. Finally, the fourth zone, with a very poor fauna, coincides with the opening of the Tasman Strait and the formation of the Australo-Antarctic Gulf, associated with a minor wind-driven current.  相似文献   

10.
New data on the species composition and distribution of reef-building corals on some reefs of the Seychelles Islands are presented. The study revealed 236 species belonging to 68 genera, which exceeds the well-known values of scleractinian species composition in this region by almost two times. Representatives of the families Acroporidae, Poritidae, and Faviidae dominated. Settlements of the blue coral Heliopora coerulea and the hydroid Millepora dichotoma were fairly numerous and in aggregate covered up to 40% of the substratum. In its species composition, the coral fauna of the Seychelles reefs makes a single unit with the Indo-Pacific tropical fauna.  相似文献   

11.
ABSTRACT

The Antarctic Conoidean fauna is critically reviewed based on published data and specimens in the collections of the USNM, IORAS and MNHN. Forty-two species and subspecies of the superfamily Conoidea are recorded as occurring within the Antarctic Convergence (excluding the fauna of the Kerguelen Islands) and are attributed to 14 genera and seven families. These include the new taxa: Antarctospira n. gen. (type species—Leucosyrinx badenpowelli Dell, 1990); Drilliola antarctica n. sp.; Pleurotomella (Pleutoromella) tippetti n. sp.; Pleurotomella (Anomalotomella) petiti n. sp.; Xanthodaphne pastorinoi n. sp. Aforia watsoni is introduced as a new name for Pleurotoma (Surcula) lepta Watson, 1881, non Pleurotoma lepta Edwards, 1861. A lectotype is designated for Conorbella antarctica (Strebel, 1908). New combinations are also proposed. Antarctospira badenpowelli (Dell, 1990), n. comb. (previously assigned to Leucosyrinx); Antarctospira principalis (Thiele, 1912), n. comb. (previously assigned to Typhlomangelia); Antarctospira mawsoni (Powell, 1958), n. comb. (previously assigned to Leucosyrinx); Typhlodaphne paratenoceras (Powell, 1951), n. comb. (previously assigned to Leucosyrinx); Belalora weirichi (Engl, 2008), n. comb. (previously assigned to Oenopota); Pleurotomella (Anomalotomella) innocentia (Dell, 1990), n. comb. (previously assigned to Typhlodaphne); Pleurotomella (Anomalotomella) nipri (Numanami, 1996), n. comb. (previously assigned to Typhlodaphne); Xanthodaphne raineri (Engl, 2008), n. comb. (previously assigned to Pleurotomella); Aforia hedleyi (Dell, 1990), n. comb. (previously assigned to Pontiothauma). The majority of Antarctic conoidean taxa have hypodermic marginal teeth. Although there is a similar relative abundance of conoideans in Antarctic waters to that seen in other well-studied faunas, the low number of conoideans is indicative of the general impoverishment of the gastropod fauna in the region. Fourteen percent (2 of 14) of conoidean genera that occur within the Antarctic Convergence are endemic to Antarctic waters, as are 82% (34 of 42) of the species. Most taxa have very broad bathymetric ranges, some extending from bathyal to hadal depths. The greatest species diversity was at bathyal depths.  相似文献   

12.
13.
Four species of lithodid crabs from waters (240–2,005 m) in the Crozet and Kerguelen Islands area were studied. One new species, Neolithodes duhameli, is described. Three other species, N. capensis Stebbing, Paralomis anamerae Macpherson and P. birsteini Macpherson are reported for the first time from these localities. The new species, N. duhameli (620–1,500 m), is the fourth representative of the genus in Subantarctic waters and belongs to the group of species possessing a carapace, chelipeds and walking legs covered with numerous spinules or spiniform granules in addition to spines. However, the new species is distinguishable from others in the genus by the long, strong spines on the carapace and pereiopods. The finding of two species of Paralomis clearly extends their geographic ranges in the Southern Ocean: P. anamerae was previously known only in waters of the Falkland Islands and the circumpolar distribution of P. birsteini is supported. The observation of N. capensis also extends its previously described range from South Africa, in the Cape region, to Subantarctic waters. As a result of this study, 14 species of the family Lithodidae are now known from Antarctic and Subantarctic waters; and most can be considered endemic to these waters.  相似文献   

14.
Based on the collection of the Zoological Institute (Russian Academy of Sciences, St. Petersburg) and the data available in the literature, a list of calcareous sponges (Calcarea) of the Russian waters of the Sea of Japan was compiled. It comprises 15 species belonging to ten genera and seven families. Among these sponges, five species were found in the Sea of Japan for the first time: Leucetta poculiformis (Hozawa), Sycon protectum Lambe, Grantia uchidai Hozawa et Tanita, Heteropia medioarticulata Hozawa, and Leucopsila stilifera (Schmidt). Data on the distribution and ecology of the calcareous sponges in the area of study are reported.  相似文献   

15.
The biology and ecology of lotic microcrustaceans   总被引:11,自引:2,他引:9  
  • 1 Copepoda, Ostracoda and ‘Cladocera’ are important meiobenthic Crustacea which can be both numerically abundant and species rich in running waters. Harpacticoids and ostracods are well adapted to benthic life because they are typical crawlers, walkers, and burrowers. Many cladocerans are substratum dwellers, but most benthic species among these can also swim. Cyclopoids which are generally good swimmers are nevertheless often bottom frequenters and actively colonise sediment interstices (the hyporheic zone).
    • 2 The subclass Copepoda includes 10 orders. With 53 families, the order Harpacticoida dominates the benthos. Only five of these families are represented in fresh waters (ca. 1 000 species and subspecies). The order Cyclopoida includes 12 families of which the Cyclopidae is well represented in freshwater habitats with 900 species and subspecies. Freshwater Ostracods belong to the order Podocopida (5 000 species) with three superfamilies occurring in running fresh waters. The group ‘Cladocera’ contains four orders, 12 families, more than 80 genera, and 450–600 freshwater species. Most of the benthic species are found in the families Chydoridae (39 genera), Macrothricidae, Ilyocryptidae and Sididae.
  • 3 For each of the three major taxa, morphological characteristics are presented, specimen collection and preparation are described and references to available taxonomical keys are provided.
  • 4 Biological characteristics are extremely diverse among and within the three taxa, resulting in a great variety of strategies in meiobenthic crustaceans. Characteristics of reproduction, sexual dimorphism, cyclomorphosis and population parameters (i.e. clutch size, lifespan, growth, moulting) are provided for some of the most common species.
  • 5 Important differences between the three main taxa were found at the species level. Ecological requirements such as hydraulic microhabitats and geomorphologic features of the streambed are the major determinants of species diversity and abundance for benthic microcrustacea of lotic habitats. Many studies on the ecology of these communities are limited by a lack of knowledge of the life history characterisitics of lotic (especially interstitial) crustacean populations.
  相似文献   

16.
The radiation of notothenioid fishes (Perciformes) in Antarctic waters was likely the result of an absence of competition in the isolated Antarctic waters and key traits such as the production of antifreeze glycoprotein and buoyancy modifications. Although notothenioids lack a swim bladder, the buoyancy of Antarctic species, ranging from neutrally buoyant to relatively heavy, corresponds to diverse life styles. The buoyancy of South American notothenioids has not been studied. Static buoyancy was measured in adult notothenioids (n = 263, from six species of the sub-order Notothenioidei, families Bovichtidae, Eleginopidae, Nototheniidae, and Harpagiferidae) from the Beagle Channel. Measurements were expressed as percentage buoyancy (%B). Buoyancy ranged from 3.88 to 6.96% (median, 4.0–6.7%), and therefore, all species could be considered benthic consistent with previous studies that found that neutral buoyancy in notothenioids is rare. Harpagifer bispinis, Patagonotothen cornucola, and Cottoperca gobio were significantly less buoyant than Paranotothenia magellanica. The buoyancy values of most species were concordant with known habitat preferences. These data, especially the data of C. gobio (sister lineage of all other nototehnioids) and E. maclovinus (sister lineage of the Antarctic clade of notothenioids), could be useful for understanding the diversification of this feature during the notothenioid radiation.  相似文献   

17.
Summary The species composition of the ichthyofauna of Admiralty Bay, King George Island was determined from results of sampling using bottom trawls, gill-nets and long-lines. Thirty-five species from 24 genera and 10 families (Table 1) were found. The number of species increased with depth (e.g. 7 species at 100 m, 14 species at 255 m and 21 species at 540 m), a tendency characteristic of Antarctic waters. In the bay, the catch rate obtained with a bottom trawl (greater than 30 kg/h) was roughly ten times lower than the catch rate using the same gear on the shelf around the Island. Notothenia gibberifrons was the dominant species in all trawls. The majority of these fish (about 95%) were immature juveniles (Table 4). Younger fish were found to inhabit shallower waters (Fig. 1). The majority of the fish of species Notothenia coriiceps neglecta, Notothenia rossii marmorata, Notothenia nudifrons, Trematomus newnesi and Trematomus bernacchii preferred waters about 255 m deep. Fourteen specimens of a previously undescribed species of the genus Psilodraco (currently being described by H. DeWitt) were caught in the bay within the 146 to 540 m depth range. The rare zoarcid, Lycenchelys aratrirostris, was also caught in Admirality Bay; previously this species had only been reported from the Elephant Island region. In the case of Trematomus newnesi, the occurrence of scales in the interorbital space was noted (Fig. 2), an observation which verifies this feature as a distinct taxonomical criterion for this species.  相似文献   

18.
Hydractinia angusta Hartlaub, 1904 has been recorded at Terra Nova Bay (Ross Sea, Antarctica) as epizoic on shells of the Antarctic scallop Adamussium colbecki. The species can exploit different trophic resources: first, polyps are able to detach and ingest tube feet and pedicellariae from the sea urchins Sterechinus neumayeri, grazing on the scallop shell, and second, they also eat masses of benthic diatoms settled among the hydrorhiza of the colony. The particular relationship observed between the hydroid and one of the most common Antarctic sea urchins may prevent or reduce the damage to A. colbecki shells, otherwise caused by the grazing of sea urchins on the algal film of the upper valve of the scallops. H. angusta is the first known species of hydroid that exploits prey several times its own size and the second that does not ingest entire prey but portions of them. The use of benthic diatoms as a food resource has previously been documented for the sub-Antarctic marine hydroid Silicularia rosea. Accepted: 20 December 1999  相似文献   

19.
A genus and species of Antarctic benthic hydroids new to science, Mixoscyphus antarcticus gen. nov., sp. nov., is described and figured. Its systematic position amongst allied genera of the family Sertulariidae is discussed. The studied material originates from the South Shetland Islands area (West Antarctica), which was collected by several Spanish and US Antarctic expeditions. Mixoscyphus gen. nov. currently represents the only complete endemic genus of Antarctic benthic hydrozoans. A discussion of other genera of benthic hydroids that are largely endemic to the Antarctic is also provided.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号