首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 674 毫秒
1.
Close appositions between axonal membranes are present in the septum between adjacent axonal segments of the septate or lateral giant axons of the crayfish Procambarus. In sections the closely apposed membranes appear separated by a space or gap. The use of lanthanum indicates that there may be structures connecting the apposed membranes. The apparent gap is actually a network of channels continuous with the extracellular space. Adjacent axonal segments are electrotonically coupled at the septa. The coupling resistance is increased by mechanical injury of an axon, immersion in low Cl- solutions, and immersion in low Ca++ solutions, followed by a return to normal physiological solution. Septa at which coupling resistance had been measured were examined in the electron microscope. The induced increases in coupling resistance are associated with separation of the junctional membranes (with the exception of the moderate increases during immersion in low Ca++ solutions). Schwann cell processes are present between the separated axonal membranes. When nerve cords in low Cl- solutions are returned to normal physiological solution, coupling, i.e., electrotonic synapses. A model of an electrotonic synapse is proposed in which tween axonal membranes are again found. The association between the morphological and physiological findings provides further evidence that the junctions are the sites of electrotonic coupling, i.e., electrotonic, synapses. A model of an electrotonic synapse is proposed in which intercytoplasmic channels not open to the extracellular space are interlaced with a hexagonal network of extracellular channels between the apposed junctional membranes.  相似文献   

2.
Transmembrane potentials were recorded simultaneously from pairs of ventricular fibers in an isolated, regularly beating preparation. A double-barrelled microelectrode was used to record the potentials from, and to polarize, one fiber. A single microelectrode was used to record from a distant fiber. The existence of two systems of fibers, termed P and V, was confirmed. Histological evidence for the existence of two types of fibers is also presented. Electrotonic current spread was observed within both systems, electrotonic interaction between the two systems was rare and always weak. In the case of those pairs of fibers showing electrotonic interaction, the distance for an e-fold decrease in magnitude of the electrotonic potentials was found to be from 300 to 600 µ in P fibers and from 100 to 300 µ in V fibers. However, no electrotonic interaction could be observed in the majority of V fiber pairs. Moreover, the magnitude of the electrotonic potential did not decay monotonically with distance in any one direction. It is concluded that the rabbit ventricle cannot be regarded as a single freely interconnected syncytium.  相似文献   

3.
On the electrotonic spread in cardiac muscle of the mouse   总被引:4,自引:2,他引:2       下载免费PDF全文
As an appropriate model which can simulate the cardiac working muscle with respect to the passive electrical spread, a lattice whose sides have linear cable properties is presented, and the passive potential spread on the model is mathematically analyzed in the fiber direction. Distribution of electrotonic potential in the fiber direction was measured with a pair of intracellular microelectrodes in the cardiac muscle fiber of mouse. By employing “pencil type” microelectrodes potential distribution in the transverse direction within a fiber was also measured. This transverse effect was differentiated from the longitudinal potential distribution. A tonically applied potential at any point of a cell interior spreads continuously in a manner described by a Bessel function. Using appropriate electrical and morphological parameters the experimental results proved to fit the curve obtained from numerical calculation on the model. The apparent length constant obtained for smaller distances (less than 100 μ) from the current source was 70 μ, and it increases as the distance becomes larger. At a point inside the fiber the resistance to the extracellular fluid ranged from 200 to 600 KΩ. The influence of coupling resistance between current and recording electrodes on the measurement of electrotonic potential was examined for small interelectrode distance.  相似文献   

4.
During the metamorphosis of the holometabolous insect, Manduca sexta, the postembryonic acquisition of adult specific motor behaviors is accompanied by changes in dendritic architecture, membrane currents, and input synapses of identified motoneurons. This study aims to test whether increased activity affects dendritic architecture and sub-dendritic input synapse distribution of the identified flight motoneuron 5 (MN5). Systemic injections of the chloride channel blocker, picrotoxin (PTX), during early pupal stages increase pupal reflex responsiveness, but overall development is not impaired. MN5 input resistance, resting membrane potential, and spiking threshold are not affected. Bath application of PTX to isolated ventral nerve cords evokes spiking in pupal and adult flight motoneurons. Quantitative three-dimensional reconstructions of the dendritic tree of the adult MN5 show that systemic PTX injections into early pupae cause dendritic overgrowth and reduce the density of GABAergic inputs. In contrast, the distribution patterns of GABAergic terminals throughout the dendritic tree remain unaltered. This indicates that increased overall excitability might cause dendritic overgrowth and decreased inhibitory input during postembryonic motoneuron remodeling, whereas sub-dendritic synapse targeting might be controlled by activity-independent signals. Behavioral testing reveals that these neuronal changes do not impede the animal’s ability to fly, but impair maximum flight performance.  相似文献   

5.
The development of vestibulo-ocular circuitry in the chicken embryo.   总被引:1,自引:0,他引:1  
This article reviews studies of the organization and development of the vestibulo-ocular reflex arc in the chicken embryo. It summarizes some of the principal features that characterize the development of this circuit, including the gradual clustering of motoneurons in the oculomotor nucleus into functionally identifiable motoneuron pools, the patterning of vestibular projection neurons into coherent clusters with specific axonal trajectories and terminations onto the oculomotor motoneuron pools, the reverse order of synapse formation during development (motoneuron to muscle, then vestibular projection neuron to motoneuron), and the selectivity of initial synaptic termination at both the ultimate and penultimate relays within the reflex arc. Reference to studies in other vertebrate species is made to provide a comparative context, and potential mechanisms are discussed that may contribute to the underlying synaptic specificity in this circuit.  相似文献   

6.
Summary The anatomical organization of the two dorsal giant fiber systems of the earthworm Lumbricus terrestris is demonstrated in whole mounts and serial-section reconstructions based on backfillings of the ventral nerve cord with cobalt chloride. Both the medial and lateral fiber systems can be labeled selectively over more than ten body segments. They show a characteristic segmental pattern of collaterals with some modification in tail segments and of dorsal plasma protrusions in the unpaired medial giant fiber presumably representing openings in the myelin sheath. We found no multisegmental cobalt transport in other large neurons of the nerve cord. Cobalt passes through the segmentai septa between consecutive axonal elements of the metameric giant fibers and presumably also through commissural contacts between specific collaterals of the lateral giant fibers. Since these sites of contact are known to represent electrical synapses, cobalt coupling may, in L. terrestris, correlate with functional electrotonic coupling.Abbreviations CL collateral of lateral giant fiber - CM collateral of medial giant fiber - GIN giant interneuron - LGF lateral giant fiber - MGF medial giant fiber - SN segmental nerve  相似文献   

7.
Henneman's size principle relates the input and output properties of motoneurons and their muscle fibers to size and is the basis for size-ordered activation or recruitment of motor units during movement. After nerve injury and surgical repair, the relationship between motoneuron size and the number and size of the muscle fibers that the motoneuron reinnervates is initially lost but returns with time, irrespective of whether the muscles are self- or cross-reinnervated by the regenerated axons. Although the return of the size relationships was initially attributed to the recovery of the cross-sectional area of the reinnervated muscle fibers and their force per fiber, direct enumeration of the innervation ratio and the number of muscle fibers per motoneuron demonstrated that a size-dependent branching of axons accounts for the size relationships in normal muscle, as suggested by Henneman and his colleagues. This same size-dependent branching accounts for the rematching of motoneuron size and muscle unit size in reinnervated muscles. Experiments were carried out to determine whether the daily amount of neuromuscular activation of motor units accounts for the size-dependent organization and reorganization of motor unit properties. The normal size-dependent matching of motoneurons and their muscle units with respect to the numbers of muscle fibers per motoneuron was unaltered by synchronous activation of all of the motor units with the same daily activity. Hence, the restored size relationships and rematching of motoneuron and muscle unit properties after nerve injuries and muscle reinnervation sustain the normal gradation of muscle force during movement by size-ordered recruitment of motor units and the process of rate coding of action potentials. Dynamic modulation of size of muscle fibers and their contractile speed and endurance by neuromuscular activity allows for neuromuscular adaptation in the context of the sustained organization of the neuromuscular system according to the size principle.  相似文献   

8.
Some Electrical Measurements of Motoneuron Parameters   总被引:9,自引:0,他引:9       下载免费PDF全文
Electrical properties of the membrane of cat spinal motoneurons have been studied using pulses of current and sinusoidally varying currents applied with intracellular microelectrodes. Hyperpolarization of the motoneuron membrane produces time and voltage dependent changes in membrane resistance and E. M. F. The voltage transients produced by steps of current have been analyzed in order to determine the effective electrotonic length of the dendrites. In a sample of 16 motoneurons, the average total length of the dendrites was 1.5 times the electrotonic length constant of the dendrites. The phase relationship between applied sinusoidal currents and the resultant transmembrane voltage was studied to determine the dendritic to somatic conductance ratio, ρ. In a sample of seven cells the best estimate for ρ was in the range between 5 and 10.  相似文献   

9.
In the adult rat, there is a general correspondence between the sizes of motoneurons, motor units, and muscle fibers that has particular functional importance in motor control. During early postnatal development, after the establishment of singular innervation, there is rapid growth of diaphragm muscle (Dia(m)) fibers. In the present study, the association between Dia(m) fiber growth and changes in phrenic motoneuron size (both somal and dendritic) was evaluated from postnatal day 21 (D21) to adulthood. Phrenic motoneurons were retrogradely labeled with fluorescent tetramethylrhodamine dextran (3,000 MW), and motoneuron somal volumes and surface areas were measured using three-dimensional confocal microscopy. In separate animals, phrenic motoneurons retrogradely labeled with choleratoxin B-fragment were visualized using immunocytochemistry, and dendritic arborization was analyzed by camera lucida. Between D21 and adulthood, Dia(m) fiber cross-sectional area increased by approximately 164% overall, with the growth of type II fibers being disproportionate to that of type I fibers. There was also substantial growth of phrenic motoneurons ( approximately 360% increase in total surface area), during this same period, that was primarily attributable to an expansion of dendritic surface area. Comparison of the distribution of phrenic motoneuron surface areas between D21 and adults suggests the establishment of a bimodal distribution that may have functional significance for motor unit recruitment in the adult rat.  相似文献   

10.
Horseradish peroxidase (HRP) tracing methods and subsequent computer reconstruction were used to study the structural organization of sensory-motoneuron connections in turtles. HRP was applied through suction electrodes to thin dorsal and ventral root filaments of superfused isolated lumbar spinal cord of the turtle Testudo horsfieldi. Single motoneurons were labeled ionophoretically with intracellular glass microelectrodes. Labeled elements were examined under a light microscope. The Eutectic neuron tracing system and its associated program were used for three-dimensional reconstructions and morphometry. The distribution of afferent fibers of the dorsal root and their terminations were presented in a new scheme in which new zones, in addition to those that were already well known, were shown, including the following: in the Lissauer zone, motor nuclei, and ventrolateral funiculus, as well as in the contralateral medial gray matter (laminae IV–V). Unlike in frogs, the motoneuron dendritic field in turtles was restricted to an ellipsoid space with a short axis in the rostrocaudal direction (300–500 µm). The afferent fibers of the dorsal root connected to motoneurons produced very short branches in a restricted rostrocaudal direction (50–70 μm). One fiber collateral of the dorsal root had about 80 synapse-like enlargements (approximately tenfold fewer than in frogs). Putative sensory-motoneuron contacts were found on the I–VII-order dendritic segments of the dorsal and ventro-medial dendritic trees. It was shown that, in turtles, only one first-order collateral of the dorsal root fiber participated in the sensory-motoneuron connection with a small number (about 4) of putative contacts, which is also one order less than in frogs. It is likely that the simplification of the synapse structure in turtles is compensated by a higher efficiency of the signal transmission comparable to that in mammals.  相似文献   

11.
Both motoneurons and the muscle fibers that they innervate can vary widely in their properties. The finding that these properties are highly correlated indicates that these cells are not specified independently, but rather interact in some manner to achieve the observed coherence. The direction of the interaction, i.e., whether orthograde or retrograde, required analysis beyond the simple observation of these correlated properties. Evidence, largely from experiments involving reinnervation of muscle by the original or a foreign motor nerve, suggests the action of retrogradely transported factors from the muscle as well as orthograde ones. Various possible factors, specifically neurotrophins, are advanced as possible candidates for retrograde specification. In addition, synaptic input to motoneurons also varies in a coordianted fashion in a manner that suggests a retrograde determination from the muscle. However, motoneuron properties and their synaptic input change after peipheral nerve manipulations such that they are no longer in register. This indicates some independence in retrograde specification of motoneurons and their synaptic input. 1994 John Wiley & Sons, Inc.  相似文献   

12.
In lower vertebrates, locomotor burst generators for axial muscles generally produce unitary bursts that alternate between the two sides of the body. In lamprey, a lower vertebrate, locomotor activity in the axial ventral roots of the isolated spinal cord can exhibit flexibility in the timings of bursts to dorsally-located myotomal muscle fibers versus ventrally-located myotomal muscle fibers. These episodes of decreased synchrony can occur spontaneously, especially in the rostral spinal cord where the propagating body waves of swimming originate. Application of serotonin, an endogenous spinal neurotransmitter known to presynaptically inhibit excitatory synapses in lamprey, can promote decreased synchrony of dorsal-ventral bursting. These observations suggest the possible existence of dorsal and ventral locomotor networks with modifiable coupling strength between them. Intracellular recordings of motoneurons during locomotor activity provide some support for this model. Pairs of motoneurons innervating myotomal muscle fibers of similar ipsilateral dorsoventral location tend to have higher correlations of fast synaptic activity during fictive locomotion than do pairs of motoneurons innervating myotomes of different ipsilateral dorsoventral locations, suggesting their control by different populations of premotor interneurons. Further, these different motoneuron pools receive different patterns of excitatory and inhibitory inputs from individual reticulospinal neurons, conveyed in part by different sets of premotor interneurons. Perhaps, then, the locomotor network of the lamprey is not simply a unitary burst generator on each side of the spinal cord that activates all ipsilateral body muscles simultaneously. Instead, the burst generator on each side may comprise at least two coupled burst generators, one controlling motoneurons innervating dorsal body muscles and one controlling motoneurons innervating ventral body muscles. The coupling strength between these two ipsilateral burst generators may be modifiable and weakening when greater swimming maneuverability is required. Variable coupling of intrasegmental burst generators in the lamprey may be a precursor to the variable coupling of burst generators observed in the control of locomotion in the joints of limbed vertebrates.  相似文献   

13.
Various nonlinear regenerative responses, including plateau potentials and bistable repetitive firing modes, have been observed in motoneurons under certain conditions. Our simulation results support the hypothesis that these responses are due to plateau-generating currents in the dendrites, consistent with a major role for a noninactivating calcium L-type current as suggested by experiments. Bistability as observed in the soma of low- and higher-frequency spiking or, under TTX, of near resting and depolarized plateau potentials, occurs because the dendrites can be in a near resting or depolarized stable steady state. We formulate and study a two-compartment minimal model of a motoneuron that segregates currents for fast spiking into a soma-like compartment and currents responsible for plateau potentials into a dendrite-like compartment. Current flows between compartments through a coupling conductance, mimicking electrotonic spread. We use bifurcation techniques to illuminate how the coupling strength affects somatic behavior. We look closely at the case of weak coupling strength to gain insight into the development of bistable patterns. Robust somatic bistability depends on the electrical separation since it occurs only for weak to moderate coupling conductance. We also illustrate that hysteresis of the two spiking states is a natural consequence of the plateau behavior in the dendrite compartment.  相似文献   

14.
The distribution and morphology of motoneurons innervating specific types of muscle fibers in the levator scapulae superior (LSS) muscle complex of the bullfrog (Rana catesbeiana) and tiger salamander (Ambystoma tigrinum) were studied by retrograde labelling with cholera toxin-conjugated horseradish peroxidase (CT-HRP). The LSS muscle complex in both of these amphibians has a segregated pattern of muscle-fiber types (tonic; fast oxidative-glycolytic twitch [FOG]; fast glycolytic twitch [FG]) along an anteroposterior axis. The entire motor pool was labelled by injection of CT-HRP into the whole LSS muscle complex. The motoneurons innervating specific fiber types were labelled by injection of CT-HRP into certain muscle regions. The organization of the motoneuron pool of the LSS complex of both species was arranged in two columns—one ventrolateral and one medial. In bullfrogs, the ventrolateral column contains motoneurons innervating FG and tonic fiber types and the medial column contains motoneurons innervating FOG fiber types. In tiger salamanders, the ventrolateral column contains motoneurons innervating FG fiber types and the medial column contains motoneurons innervating FOG and tonic fiber types. The different motoneuron types also have different soma sizes and patterns of dendritic arborization. In both species, FG motoneurons are the largest, whereas FOG motoneurons are intermediate in size and tonic motoneurons are the smallest. In bullfrogs, the main dendrites of FG motoneurons extend into the dorsolateral and the ventrolateral gray matter of the spinal cord, whereas the dendrites of FOG motoneurons extend into the ventral and medial cord. In the tiger salamander, dendrites of FG motoneurons extend into the ventrolateral spinal cord and dendrites of the FOG motoneurons extend more generally into the ventral cord. Dendrites of tonic motoneurons in both amphibians were small and short, and difficult to observe. These results establish that motoneurons innervating different types of muscle fibers in the LSS muscle complex are segregated spatially and display consistent morphological differences. © 1993 Wiley-Liss, Inc.  相似文献   

15.
The network of interstitial cells of Cajal associated with Auerbach’s (myenteric) plexus in the canine colon was investigated to determine its role in facilitating communication between circular and longitudinal muscle layers. Electrical coupling between the muscle layers was demonstrated by propagating extracellularly evoked electrotonic pulses from circular muscle cells to nearby longitudinal muscle cells. The likelihood of cytoplasmic continuity across Auerbach’s plexus was further demonstrated by the ability of neurobiotin to spread between the interstitial cells and the circular and longitudinal muscle cells. Importantly, direct neurobiotin spread between circular and longitudinal muscle cells was not observed even when they were in close proximity as determined by confocal microscopy. When neurobiotin did spread across the two muscle layers, the intervening interstitial cells were always neurobiotin-positive. In regions where circular and longitudinal muscle cells approach each other closely, electron microscopy revealed the presence of close appositions between interstitial cells and smooth muscle cells. Gap junctions between interstitial cells and smooth muscle cells of both layers, as judged by electron microscopy, were extremely rare. Neither gap junctions nor close appositions were observed between longitudinal and circular muscle cells. The special arrangement for electrotonic coupling across Auerbach’s plexus through interstitial cells of Cajal suggests controlled coupling between the two muscle layers, explaining the preservation of their distinct electrical activities. Received: 21 July 1995 / Accepted: 22 April 1998  相似文献   

16.
The purpose of this study was to develop a scheme for classifying turtle motoneurons, such that their properties could be compared to those of other vertebrate species, including, in particular, the cat. A 130-cell sample of turtle motoneurons was provisionally classified into four groups (1-4) on the basis of a cluster analysis of the cells' intracellularly recorded input resistance, rheobase, and slope of their stimulus current-spike frequency relation. These measurements, using sharp microelectrodes and an in vitro spinal cord slice preparation, were particularly robust. It is argued that the cat counterpart of our turtle type 1, 2, and 3 motoneurons innervate slow-twitch muscle fibers, fast-twitch-oxidative fibers, and fast-twitch-glycolytic fibers, respectively. Our turtle type 4 motoneuron is thought analogous to a particularly high-threshold cat and human cell that innervates highly fatigable fast-twitch muscle fibers in both species. Our turtle type 1 category may include cells that innervate non-twitch muscle fibers, which are found in other non-mammalian vertebrates. To advance comparative spinal cord neurobiology, the present results invite comparison to the motoneurons of other vertebrate species, which have yet to be subjected to similar or other classification procedures.  相似文献   

17.
To evaluate whether sex differences in the proportions of fibers of different phenotypes in the masseter muscle might be the result of differences in the behavior of their motoneurons, we studied the firing patterns of masseter motoneurons in adult male and female rabbits. Activity in individual motoneurons was determined from high spatial resolution EMG recordings made during cortically evoked rhythmic activation of the masticatory muscles. Although some motoneurons could be said to fire according to slow-tonic or fast-phasic patterns, most did not. In both sexes a substantial range of median firing rates and median firing durations was found. In adult males, masseter motoneurons fired more rapidly than those recorded from adult females. No significant sex differences in motoneuron firing duration were found. These results are consistent with the hypothesis that androgen-induced differences in rabbit masseter muscle fiber phenotype are a reflection of differences in motoneuron firing rate. Whether this effect of androgen is directly upon the motoneurons or is the result of a response of muscle fibers to androgen remains to be investigated.  相似文献   

18.
The nature of synaptic interaction between two neighboring motoneurons in the isolated frog spinal cord was studied by parallel insertion of two separate micro-electrodes into the cells. In 82 of 89 motoneurons tested transmission through synapses between the motoneurons was electrical in nature, as shown by the absence or short duration of the latent period of elementary intermotoneuronal EPSPs, stability of their amplitude, and preservation of responses in Ca++-free solution containing 2 mM Mn++. Direct electrotonic interaction was demonstrated in both directions: artificial de- and hyperpolarization of one motoneuron led to corresponding shifts of membrane potential in the neighboring motoneuron. The time constant of rise and decay of this potential was appreciably greater than the time constant of the membrane of the two interconnected motoneurons. Blockade of the SD-component of the action potential in the "triggering" motoneuron led to a decrease in the elementary EPSP in the neighboring motoneuron. These facts suggest that electrotonic interaction takes place through dendro-dendritic junctions. Absence of rectification was demonstrated in electrical synapses between motoneurons. In four cases elementary EPSPs were chemical in nature, for they appeared 1.3–3.3 msec after the beginning of the action potential in the "triggering" motoneuron, and were blocked in Ca++-free solution containing Mn++; fluctuations of their amplitude approximated closely to a Poisson or binomial distribution. Such responses are evidently generated by synapses formed by recurrent axon collaterals of one motoneuron on the neighboring motoneurons. In three cases elementary intermotoneuronal EPSPs consisted of two components, the first electrical and the second chemical in nature. Morphological structures which may be responsible for generation of 2-component EPSPs are examined.Deceased.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 16, No. 5, pp. 619–630, September–October, 1984.  相似文献   

19.
The hatchetfish, Gasteropelecus, possesses large pectoral fin adductor muscles whose simultaneous contraction enables the fish to dart upwards at the approach of a predator. These muscles can be excited by either Mauthner fiber. In the medulla, each Mauthner fiber forms axo-axonic synapses on four "giant fibers," two on each side of the midline. Each pair of giant fibers innervates ipsilateral motoneurons controlling the pectoral fin adductor muscles. Mauthner fibers and giant fibers can be penetrated simultaneously by microelectrodes close to the synapses between them. Electrophysiological evidence indicates that transmission from Mauthner to giant fiber is chemically mediated. Under some conditions miniature postsynaptic potentials (PSP's) are observed, suggesting quantal release of transmitter. However, relatively high frequency stimulation reduces PSP amplitude below that of the miniature potentials, but causes no complete failures of PSP's. Thus quantum size is reduced or postsynaptic membrane is desensitized. Ramp currents in Mauthner fibers that rise too slowly to initiate spikes can evoke responses in giant fibers that appear to be asynchronous PSP's. Probably both spikes and ramp currents act on the same secretory mechanism. A single Mauthner fiber spike is followed by prolonged depression of transmission; also PSP amplitude is little affected by current pulses that markedly alter presynaptic spike height. These findings suggest that even a small spike releases most of an immediately available store of transmitter. If so, the probability of release by a single spike is high for any quantum of transmitter within this store.  相似文献   

20.
The cell body sizes and succinate dehydrogenase (SDH) activities of motoneurons in the retrodorsolateral region of the ventral horn in the spinal cord innervating the soleus muscle in mice, rats, and cats were compared using quantitative enzyme histochemistry. There was an inverse relationship between cell body size and SDH activity of motoneurons in the three species. The mean cell body sizes of both gamma and alpha motoneuron pools were in the rank order of mice < rats < cats, while the mean SDH activities of both gamma and alpha motoneuron pools were in the rank order of mice > rats > cats. It is concluded that smaller motoneurons innervating the soleus muscle have higher SDH activities than larger motoneurons, irrespective of the species, and that motoneuron pools innervating the soleus muscle in smaller animals have smaller mean cell body sizes and higher mean SDH activities than those in larger animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号