首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
AIMS: Evaluation of the technical feasibility of transferring beta-glucan production by Botryosphaeria rhodina DABAC-P82 from shaken flasks to bench-top bioreactors. METHODS AND RESULTS: Three different bioreactors were used: 3 l stirred tank reactor (STR-1) equipped with two different six-blade turbines; STR as above but equipped with a three-blade marine propeller plus draft-tube (STR-2); 2 l air-lift column reactor (ALR) equipped with an external loop. STR-1, tested at three different stirrer speeds (300, 500 and 700 rev min(-1)) appeared to be less suitable for beta-glucan production by the fungus, being maximum production (19.4 g l(-1)), productivity (0.42 g l(-1) h(-1)) and yield (0.48 g g(-1) of glucose consumed) markedly lower than those obtained in shaken culture (29.7 g l(-1), 1.23 g l(-1) h(-1) and 0.61 g g(-1), respectively). Better performances were obtained with both STR-2 and ALR. With the latter, in particular, the increase of production was accompanied by reduced fermentation time (25.7 g l(-1) after only 22 h); productivity and yield were highest (1.17 g l(-1) h(-1) and 0.62 g g(-1) of glucose consumed, respectively). CONCLUSION: Using an air-lift reactor with external loop, the scaling up from shaken flasks to bench-top bioreactor of the beta-glucan production by B. rhodina DABAC-P82 is technically feasible. SIGNIFICANCE AND IMPACT OF THE STUDY: Although culture conditions are still to be optimized, the results obtained using the ARL are highly promising.  相似文献   

2.
AIMS: Characterization of beta-glucan production from Botryosphaeria rhodina DABAC-P82 by detecting simultaneously glucan-hydrolytic enzymes and their localization, culture medium rheology and oxygen transfer. METHODS AND RESULTS: Mycelium growth, beta-glucan production, substrate consumption and glucan-hydrolytic enzymes were monitored both in shaken flasks and in a 3-l stirred-tank bioreactor. Glucan production (19.7 and 15.2 g l(-1), in flask and bioreactor, respectively) was accompanied by extra-cellular and cell-bound beta-glucanase and beta-glucosidase activities. In the bioreactor scale, in the time interval of 0-78 h the apparent viscosity of the culture broth exhibited a general increase; thereafter, it began to reduce, probably because of the above glucan-hydrolytic activities. Moreover, the culture media collected after 45 h behaved as solid-like materials at shear rates smaller than 0.001 s(-1), as pseudo-plastic liquids in the middle shear rate range and as Newtonian ones at shear rates greater than 1000 s(-1). CONCLUSION: The greatest beta-glucan accumulation in the bioreactor was found to be associated with nitrogen and dissolved oxygen concentrations smaller than 0.15 g l(-1) and 25%, respectively, and with the peak points of the glucan-degrading enzymes. SIGNIFICANCE AND IMPACT OF THE STUDY: A careful analysis of the critical factors (such as, culture broth rheology, oxygen mass transfer and glucan-hydrolytic enzymes) limiting the beta-glucan production by B. rhodina is a prerequisite to maximize beta-glucan yield and production, as well as to define the process flow sheet capable of maximizing biopolymer recovery, solvent re-utilization and glucose consumption.  相似文献   

3.
Three D-glucans were isolated from the mycelium of the fungus Botryosphaeria rhodina MAMB-05 by sequential extraction with hot-water and hot aqueous KOH (2% w/v) followed by ethanol precipitation. Following their purification by gel permeation chromatography on Sepharose CL-4B, the structural characteristics of the D-glucans were determined by FT-IR and 13C NMR spectroscopy and, after methylation, by GC-MS. The hot-water extract produced a fraction designated Q1A that was a beta-(1-->6)-D-glucan with the following structure: [Formula: see text] The alkaline extract, when subjected to repeated freeze-thawing, yielded two fractions: K1P (insoluble) that comprised a beta-(1-->3)-D-glucan with beta-D-glucose branches at C-6 with the structure: [Formula: see text] and K1SA (soluble) consisting of a backbone chain of alpha-(1-->4)-linked D-glucopyranosyl residues substituted at O-6 with alpha-D-glucopyranosyl residues: [Formula: see text]  相似文献   

4.
Production of an exopolysaccharide (glucan) by Acremonium diospyri was not markedly affected by its specific growth rate, the culture pH or the stirrer speed under NH 4 + -limiting chemostat conditions. The exopolysaccharide was also detected in the medium under conditions of NH 4 + excess.P. Wood and R.J. Seviour are with the Biotechnology Research Centre, La Trobe University College of Northern Victoria, Bendigo, Victoria 3550, Australia  相似文献   

5.
The filamentous fungus Botryosphaeria rhodina (ATCC 9055) was investigated related to its ability for epoxide hydrolase (EH) production. Epoxide hydrolase activity is located at two different sites of the cells. The larger part is present in the cytosol (70%), while the smaller part is associated to membranes (30%). In media optimization experiments, an activity of 3.5 U/gDW for aromatic epoxide hydrolysis of para-nitro-styrene oxide (pNSO) could be obtained. Activity increased by 30% when pNSO was added to the culture during exponential growth. An increase of enzyme activity up to 6 U/gDW was achieved during batch-fermentations in a bioreactor with 2.7 l working volume. Evaluation of fermentations with 30 l working volume revealed a relation of oxygen uptake rate to EH expression. Oxygen limitation resulted in a decreased EH activity. Parameter estimation by the linearization method of Hanes yielded Km values of 2.54 and 1.00 mM for the substrates S-pNSO and R-pNSO, respectively. vmax was 3.4 times higher when using R-pNSO. A protein purification strategy leading to a 47-fold increase in specific activity (940 U/mgProtein) was developed as a first step to investigate molecular and structural characteristics of the EH.  相似文献   

6.
Weissella hellenica SKkimchi3 produces the higher exopolysaccharide (EPS) on sucrose than lactose, glucose, and fructose at pH 5 and 20°C. Sucrose was exclusively used to cultivate SKkimchi3 in all experiments base on the EPS production tests. The molecular mass of EPS, as determined by gel permeation chroma-tography, was 203,000. 1H and 13C NMR analysis indicated that the identity of EPS may be a glucan. When EPS, starch, and cellulose was treated with a-amylase, glucoamylase, glucosidase, and cellulase, glucose was produced from starch and cellulose but was not produced from EPS. Based on HPLC analysis, elemental analysis, 1H and 13C NMR analysis, and enzymatic hydrolysis tests, EPS was estimated to be a glucan. EPS suspension was not precipitated even by centrifugation at 10,000×g for 60 min, and EPS made the fermented milk and bacterial culture viscous.  相似文献   

7.
Despite the naturally high capacity for protein secretion by many species of filamentous fungi, secteted yields of many heterologous proteins have been comparatively low. The strategies for yield improvement have included the use of strong homologous promoters, increased gene copy number, gene fusions with a gene encoding a naturally well-secreted protein, protease-deficient host strains and screening for high yields following random mutagenesis. Such approaches have been effective with some target heterologous proteins but not others.Approaches used in heterologous protein production from filamentous fungi are discussed and a perspective on emerging strategies is presented.  相似文献   

8.
Exopolysaccharide of the gellan family: prospects and potential   总被引:8,自引:0,他引:8  
The use of microbial polysaccharides in the food, pharmaceutical and chemical industries has increased steadily during the past decade. The biopolymer gellan is a more recent addition to the family of microbial polysaccharides that is gaining much importance due to its novel property of forming thermo-reversible gels when heated and cooled. It is produced and marketed by some companies of Europe, USA, etc under trade names such as Gelrite, Phytagel and Kelcogel. It has applications in diverse fields in the food, pharmaceutical and many other industries. Further research and development in biopolymer technology is expected to expand its use. This article presents a critical review of the available published information on the gellan exopolysaccharide synthesized by Pseudomonas species. In particular information on its structure, physico-chemical properties and the rheology of its solutions etc. is critically assessed. Emphasis has also been paid to characterization of gellan. A brief historical background of the polymer and the biochemical and physiological characteristics of several different existing bacterial isolates which secrete gellan and related polysaccharides are discussed. An attempt has also been made to review the potential and future prospects, highlighting some novel techniques adopted to overcome the mass transfer problems associated with the fermentative production of gellan gum. The efficient downstream processes used for obtaining purified gellan are also highlighted. Attention has also been drawn to the problem associated with the fermentation processes due to the highly viscous nature of gellan gum and effect of different impeller systems on gellan fermentation kinetics and rheological properties.  相似文献   

9.
10.
The marine microalga Chroomonas sp. isolated from Venezuela was grown in semicontinuous culture in order to study the effect of renewal rate and nutrient concentration on alloxanthin, chlorophyll a, carotenoid, carbohydrate, exopolysaccharide, protein and cell productivity. Maximal cell productivity of 8.43 ± 1.8 and 8.81 ± 2.3 × 109 cell l–1 day–1 were achieved with renewal rates of 30 and 40%. Maximal protein and chlorophyll productivity of 64.64 ± 2.3 and 2.72 ± 0.3 mg l–1 day–1 were obtained with renewal rate of 20 and 30%. Biochemical composition of Chroomonas sp. was influenced by renewal rate. Nutrient concentration seems not to affect cell, protein, chlorophyll and carotenoid productivity. However, carbohydrate and exopolysaccharide productivity of 7.56 ± 0.4 and 9.57 ± 1.2 mg l–1 day–1 were increased at 12 mM NaNO3(P < 0.05). Also, alloxanthin and chlorophyll a production analysed by HPLC, were higher between 8 and 12 mM NaNO3 at a renewal rate of 30%. Results demonstrated that a renewal rate of 30% and nutrient concentration at 8 mM NaNO3 optimize the cell, protein, carbohydrate, chlorophyll a, and exopolysaccharide productivity in semicontinuous cultures of Chroomonas. This microalga, as biological source of commercially valuable compounds, shows high capacity for changing its productivity and biochemical composition in semicontinuous system on the basis of nutrient concentration and the renewal rate.  相似文献   

11.
In order to improve the effectiveness of the production of recombinant proteins in E. coli, integrated fermentation processes were developed. Therefore, expression vectors were constructed containing a strongly expressed gene for a β-glucanase fused with a metal-chelating affinity tag and a leader peptide for directing the fusion protein into the periplasmic space. Its export into the medium was achieved by means of co-expression of a bacteriocin-release protein, the Kil protein from pColE1. Bioreactors were modified so that special devices containing metal chelate pentadentate chelator PDC resins were located within the bioreactor. Using the bioreactor with an internal device the Zn2+-PDC had a 4.3-fold higher binding capacity than metal-free PDC (12.3 and 2.6 kU ml−1 PDC, respectively. Using the bioreactor with charged PDC in an external circuit revealed even higher β-glucanase concentration (65.6 kU ml−1), i.e. 1.5-fold compared to the internal adsorbent system. An erratum to this article can be found at  相似文献   

12.
2-Cyanopyridine proved to act as a powerful nitrilase inducer in Aspergillus niger K10, Fusarium solani O1, Fusarium oxysporum CCF 1414, Fusarium oxysporum CCF 483 and Penicillium multicolor CCF 2244. Valeronitrile also enhanced the nitrilase activity in most of the strains. The highest nitrilase activities were produced by fungi cultivated in a Czapek-Dox medium with both 2-cyanopyridine and valeronitrile. The specific nitrilase activities of these cultures were two to three orders of magnitude higher than those of cultures grown on other nitriles such as 3-cyanopyridine or 4-cyanopyridine.  相似文献   

13.
Lactobacillus delbrueckii subsp. bulgaricus NCFB 2483, when grown on lactose in continuous culture, showed increasing specific yields and volumetric productivities of exopolysaccharide (EPS) with increasing dilution rate. Specific and volumetric productivities of lactate and galactose, as extracellular metabolites, increased in response to the incremental changes in the dilution rate up to 0.4 h–1. Elevated Yp/s values determined for EPS (0.025 g EPSg lactose–1) at the dilution rates of 0.3 h–1–0.4 h–1, relative to those determined at lower dilution rates, suggest a diversion of carbon flux towards EPS being associated with the higher rates of growth.  相似文献   

14.
Summary Biosorption of heavy metals by gram-positive, non-pathogenic and non-toxicogenic Paenibacillus polymyxa P13 was evaluated. Copper was chosen as a model element because it is a pollutant originated from several industries. An EPS (exopolysaccharide)-producing phenotype exhibited significant Cu(II) biosorption capacity. Under optimal assay conditions (pH 6 and 25 °C), the adsorption isotherm for Cu(II) in aqueous solutions obeyed the Langmuir model. A high q value (biosorption capacity) was observed with whole cells (qmax=112 mgCu g−1). EPS production was associated with hyperosmotic stress by high salt (1 M NaCl), which led to a significant increase in the biosorption capacity of whole cells (qmax=150 mgCu g−1). Biosorption capacity for Cu(II) of the purified EPS was investigated. The maximum biosorption value (q) of 1602 mg g−1 observed with purified EPS at 0.1 mg ml−1 was particularly promising for use in field applications.  相似文献   

15.
Insect-associated microbes exhibit a wide range of interactions with their hosts. One example of such interactions is the insect-driven dispersal of microorganisms, which plays an essential role in the ecology of several microbes. To study dispersal of microorganisms by leaf-cutting ants (Formicidae: Attini), we applied culture-dependent methods to identify the filamentous fungi and yeasts found in two different body parts of leaf-cutting ant gynes: the exoskeleton and the infrabuccal pocket. The gynes use the latter structure to store a pellet of the ants’ symbiotic fungus during nest founding. Many filamentous fungi (n = 142) and yeasts (n = 19) were isolated from the gynes’ exoskeleton. In contrast, only seven filamentous fungi and three yeasts isolates were recovered from the infrabuccal pellets, suggesting an efficient mechanism utilized by the gynes to prevent contamination of the symbiotic fungus inoculum. The genus Cladosporium prevailed (78%) among filamentous fungi whereas Aureobasidium, Candida and Cryptococcus prevailed among yeasts associated with gynes. Interestingly, Escovopsis, a specialized fungal pathogen of the leaf-cutting ant-fungus symbiosis, was not isolated from the body parts or from infrabuccal pellets of any gynes sampled. Our results suggest that gynes of the leaf-cutter ants Atta laevigata and A. capiguara do not vertically transmit any particular species of yeasts or filamentous fungi during the foundation of a new nest. Instead, fungi found in association with gynes have a cosmopolitan distribution, suggesting they are probably acquired from the environment and passively dispersed during nest foundation. The possible role of these fungi for the attine ant–microbial symbiosis is discussed.  相似文献   

16.
Liposome-mediated transformation is common for cells with no cell wall, but has very limited usage in cells with walls, such as bacteria, fungi, and plants. In this study, we developed a procedure to introduce DNA into mycelium of filamentous fungi, Rhizopus nigricans LH 21 and Pleurotus ostreatus TD 300, by liposome-mediation but with no protoplast preparation. The DNA was transformed into R. nigricans via plasmid pEGFP-C1 and into P. ostreatus via 7.2 kb linear DNA. The mycelia were ground in 0.6 M mannitol without any grinding aids or glass powder for 15 min to make mycelial fragments suspension; the suspension was mixed with a mixture of the DNA and Lipofectamine 2000, and placed on ice for 30 min; 100 μL of the transformation solution was plated on potato dextrose agar (PDA) plate and cultivated at 28 °C for transformant screening. The plasmid and the linear DNA were confirmed to be integrated into the host chromosome, proving the success of transformation. The transformation efficiencies were similar to those of electroporation-mediated protoplast transformation (EMPT) of R. nigricans or PEG/CaCl2-mediated protoplast transformation (PMT) of P. ostreatus, respectively. The results showed that our procedure was effective, fast, and simple transformation method for filamentous fungi.  相似文献   

17.
Growth on a wheat bran media induced production of an extracellular β-glucanase by Rhizomucor miehei (DSM 1330). The enzyme was purified to homogeneity. Substrate specificity studies coupled with protein database similarity searching using mass spectrometry-derived sequence data indicate it to be an endo-1,3(4)-β-glucanase (EC 3.2.1.6). The enzyme was characterised in terms of potential suitability for use in animal (poultry) feed. Significant activity was observed over the entire pH range typical of the avian upper digestive tract (pH 2.6–6.5). The enzyme was also found to be more thermostable than current commercialized β-glucanases, particularly when heated at a high enzyme concentration, and retained twice as much residual activity as the latter upon exposure to simulated avian digestive tract conditions. There are no previous reports of the production, purification or characterization of a β-glucanase from a Rhizomucor, and the enzyme’s application-relevant physicochemical characteristics render it potentially suited for use in animal feed.  相似文献   

18.
Summary Glucan formation ofSchizophyllum commune andSclerotium glucanicum were investigated. Process data obtained during batch cultivation are presented. Glucan release can be improved by oxygen limitation. Thus, growth and glucan release are influenced by oxygen in opposite ways. Possible pathways of this oxygen-dependent regulation are discussed. A draft-tube/propeller system, rushtonturbine-, fan- and helicon-ribbon-impeller as well as a fundaspi and intermig agitator were tested. The 4-bladed fan impeller withd *=0.64 yielded the best results, since effective bulk mixing is much more important than bubble break up (micromixing) with regard to this system. Fed-batch cultivation always resulted in higher rates of glucan formation than the batch process.  相似文献   

19.
Four exopolysaccharides (EPS) obtained from Botryosphaeria rhodina strains isolated from rotting tropical fruit (graviola, mango, pinha, and orange) grown on sucrose were purified on Sepharose CL-4B. Total acid hydrolysis of each EPS yielded only glucose. Data from methylation analysis and (13)C NMR spectroscopy indicated that the EPS from the graviola isolate consisted of a main chain of glucopyranosyl (1-->3) linkages substituted at O-6 as shown in the putative structure below: [carbohydrate structure: see text]. The EPS of the other fungal isolates consisted of a linear chain of (1-->6)-linked glucopyranosyl residues of the following structure: [carbohydrate structure: see text]. FTIR spectra showed one band at 891 cm(-1), and (13)C NMR spectroscopy showed that all glucosidic linkages were of the beta-configuration. Dye-inclusion studies with Congo Red indicated that each EPS existed in a triple-helix conformational state. beta-(1-->6)-d-Glucans produced as exocellular polysaccharides by fungi are uncommon.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号