首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Pseudomonas putida OUS82 biofilm dispersal was previously shown to be dependent on the gene PP0164 (here designated lapG). Sequence and structural analysis has suggested that the LapG geneproduct belongs to a family of cysteine proteinases that function in the modification of bacterial surface proteins. We provide evidence that LapG is involved in P. putida OUS82 biofilm dispersal through modification of the outer membrane‐associated protein LapA. While the P. putida lapG mutant formed more biofilm than the wild‐type, P. putida lapA and P. putida lapAG mutants displayed decreased surface adhesion and were deficient in subsequent biofilm formation, suggesting that LapG affects LapA, and that the LapA protein functions both as a surface adhesin and as a biofilm matrix component. Lowering of the intracellular c‐di‐GMP level via induction of an EAL domain protein led to dispersal of P. putida wild‐type biofilm but did not disperse P. putida lapG biofilm, indicating that LapG exerts its activity on LapA in response to a decrease in the intracellular c‐di‐GMP level. In addition, evidence is provided that associated to LapA a cellulase‐degradable exopolysaccharide is part of the P. putida biofilm matrix.  相似文献   

2.
3.
Genetic differentiation by natural selection is readily observed among microbial populations, but a more comprehensive understanding of evolutionary forces, genetic causes, and resulting phenotypic advantages is not often sought. Recently, a surface population of Pseudomonas putida bacteria was shown to evolve rapidly by natural selection of better-adapted variants in a mixed-species biofilm consortium (S. K. Hansen, P. B. Rainey, J. A. Haagensen, and S. Molin, Nature 445:533-536, 2007). Adaptation was caused by mutations in a wapH homolog (PP4943) involved in core lipopolysaccharide biosynthesis. Here we investigate further the biofilm physiology and the phenotypic characteristics of the selected P. putida rough colony variants. The coexistence of the P. putida population in a mixed-species biofilm with Acinetobacter sp. strain C6 is dependent on the benzoate excreted from Acinetobacter during the catabolism of benzyl alcohol, the sole carbon source. Examination of biofilm development and the dynamics of the wild-type consortium revealed that the biofilm environment became oxygen limited, possibly with low oxygen concentrations around Acinetobacter microcolonies. In contrast to P. putida wild-type cells, which readily dispersed from the mixed-species biofilm in response to oxygen starvation, the rough variant cells displayed a nondispersal phenotype. However, in monospecies biofilms proliferating on benzoate, the rough variant (like the wild-type population) dispersed in response to oxygen starvation. A key factor explaining this conditional, nondispersal phenotype is likely to be the acquired ability of the rough variant to coaggregate specifically with Acinetobacter cells. We further show that the P. putida rough variant displayed enhanced production of a cellulose-like polymer as a consequence of the mutation in wapH. The resulting phenotypic characteristics of the P. putida rough variant explain its enhanced fitness and ability to form tight structural associations with Acinetobacter microcolonies.  相似文献   

4.
Pseudomonas putida strains are frequently isolated from the rhizosphere of plants and many strains promote plant-growth, exhibit antagonistic activities against plant pathogens and have the capacity to degrade pollutants. Factors that appear to contribute to the rhizosphere fitness are the ability of the organism to form biofilms and the utilization of cell-to-cell-communication systems (quorum sensing, QS) to co-ordinate the expression of certain phenotypes in a cell density dependent manner. Recently, the ppu QS locus of the tomato rhizosphere isolate P. putida Iso F was characterized and an isogenic QS-negative ppuI mutant P. putida F117 was generated. In the present study we investigated the impact of QS and biofilm formation on the protein profile of surface-associated proteins of P. putida IsoF. This was accomplished by comparative proteome analyses of the P. putida wild type IsoF and the QS-deficient mutant F117 grown either in planktonic cultures or in 60 h old mature biofilms. Differentially expressed proteins were identified by peptide mass fingerprinting and database search in the completed P. putida KT2440 genome sequence. The sessile life style affected 129 out of 496 surface proteins, suggesting that a significant fraction of the bacterial genome is involved in biofilm physiology. In surface-attached cells 53 out of 484 protein spots were controlled by the QS system, emphasizing its importance as global regulator of gene expression in P. putida IsoF. Most interestingly, the impact of QS was dependent on whether cells were grown on a surface or in suspension; about 50% of the QS-controlled proteins identified in planktonic cultures were found to be oppositely regulated when the cells were grown as biofilms. Fifty-seven percent of all identified surface-controlled proteins were also regulated by the ppu QS system. In conclusion, our data provide strong evidence that the set of QS-regulated proteins overlaps substantially with the set of proteins differentially expressed in sessile cells.  相似文献   

5.
We analyzed metabolic interactions and the importance of specific structural relationships in a benzyl alcohol-degrading microbial consortium comprising two species, Pseudomonas putida strain R1 and Acinetobacter strain C6, both of which are able to utilize benzyl alcohol as their sole carbon and energy source. The organisms were grown either as surface-attached organisms (biofilms) in flow chambers or as suspended cultures in chemostats. The numbers of CFU of P. putida R1 and Acinetobacter strain C6 were determined in chemostats and from the effluents of the flow chambers. When the two species were grown together in chemostats with limiting concentrations of benzyl alcohol, Acinetobacter strain C6 outnumbered P. putida R1 (500:1), whereas under similar growth conditions in biofilms, P. putida R1 was present in higher numbers than Acinetobacter strain C6 (5:1). In order to explain this difference, investigations of microbial activities and structural relationships were carried out in the biofilms. Insertion into P. putida R1 of a fusion between the growth rate-regulated rRNA promoter rrnBP1 and a gfp gene encoding an unstable variant of the green fluorescent protein made it possible to monitor the physiological activity of P. putida R1 cells at different positions in the biofilms. Combining this with fluorescent in situ hybridization and scanning confocal laser microscopy showed that the two organisms compete or display commensal interactions depending on their relative physical positioning in the biofilm. In the initial phase of biofilm development, the growth activity of P. putida R1 was shown to be higher near microcolonies of Acinetobacter strain C6. High-pressure liquid chromatography analysis showed that in the effluent of the Acinetobacter strain C6 monoculture biofilm the metabolic intermediate benzoate accumulated, whereas in the biculture biofilms this was not the case, suggesting that in these biofilms the excess benzoate produced by Acinetobacter strain C6 leaks into the surrounding environment, from where it is metabolized by P. putida R1. After a few days, Acinetobacter strain C6 colonies were overgrown by P. putida R1 cells and new structures developed, in which microcolonies of Acinetobacter strain C6 cells were established in the upper layer of the biofilm. In this way the two organisms developed structural relationships allowing Acinetobacter strain C6 to be close to the bulk liquid with high concentrations of benzyl alcohol and allowing P. putida R1 to benefit from the benzoate leaking from Acinetobacter strain C6. We conclude that in chemostats, where the organisms cannot establish in fixed positions, the two strains will compete for the primary carbon source, benzyl alcohol, which apparently gives Acinetobacter strain C6 a growth advantage, probably because it converts benzyl alcohol to benzoate with a higher yield per time unit than P. putida R1. In biofilms, however, the organisms establish structured, surface-attached consortia, in which heterogeneous ecological niches develop, and under these conditions competition for the primary carbon source is not the only determinant of biomass and population structure.  相似文献   

6.
The ability to form biofilms is seen as an increasingly important colonization strategy among both pathogenic and environmental bacteria. A survey of 185 plant-associated, phytopathogenic, soil and river Pseudomonas isolates resulted in 76% producing biofilms at the air-liquid (A-L) interface after selection in static microcosms. Considerable variation in biofilm phenotype was observed, including waxy aggregations, viscous and floccular masses, and physically cohesive biofilms with continuously varying strengths over 1500-fold. Calcofluor epifluorescent microscopy identified cellulose as the matrix component in biofilms produced by Pseudomonas asplenii, Pseudomonas corrugata, Pseudomonas fluorescens, Pseudomonas marginalis, Pseudomonas putida, Pseudomonas savastanoi and Pseudomonas syringae isolates. Cellulose expression and biofilm formation could be induced by the constitutively active WspR19 mutant of the cyclic-di-GMP-associated, GGDEF domain-containing response regulator involved in the P. fluorescens SBW25 wrinkly spreader phenotype and cellular aggregation in Pseudomonas aeruginosa PA01. WspR19 could also induce P. putida KT2440, which otherwise did not produce a biofilm or express cellulose, as well as Escherichia coli K12 and Salmonella typhimurium LT2, both of which express cellulose yet lack WspR homologues. Statistical analysis of biofilm parameters suggest that biofilm development is a more complex process than that simply described by the production of attachment and matrix components and bacterial growth. This complexity was also seen in multivariate analysis as a species-ecological habitat effect, underscoring the fact that in vitro biofilms are abstractions of those surface and volume colonization processes used by bacteria in their natural environments.  相似文献   

7.
The composition of the exopolysaccharide matrix of Pseudomonas putida mt2 biofilms is relatively undefined as well as the contributions of each polymer to ecological fitness. Here, we describe the role of two putative exopolysaccharide gene clusters, putida exopolysaccharide A (pea) and bacterial cellulose (bcs) in biofilm formation and stability, rhizosphere colonization and matrix hydration under water-limiting conditions. Our findings suggest that pea is involved in the production of a novel glucose, galactose, and mannose-rich polymer that contributes to cell-cell interactions necessary for pellicle and biofilm formation and stability. In contrast, Bcs plays a minor role in biofilm formation and stability, although it does contribute to rhizosphere colonization based on a competition assay. We show that pea expression is highly induced transiently under water-limiting conditions but only slightly by high osmolarity, as determined by qRT-PCR. In contrast, both forms of water stress highly induced bcs expression. Cells deficient in making one or more exopolysaccharide experienced greater dehydration-mediated cell-envelope stress, leading to increased alginate promoter activity. However, this did not lead to increased exopolysaccharide production, except in bcs or pea mutants unable to produce alginate, indicating that P. putida compensates by producing, presumably more Pea or Bcs exopolysaccharides, to facilitate biofilm hydration. Collectively, the data suggest that Pea and Bcs contribute to biofilm formation and in turn their presence contributes to fitness under water-limiting conditions, but not to the extent of alginate.  相似文献   

8.
Pseudomonas sp. strain B13 and Pseudomonas putida OUS82 were genetically tagged with the green fluorescent protein and the Discosoma sp. red fluorescent protein, and the development and dynamics occurring in flow chamber-grown two-colored monospecies or mixed-species biofilms were investigated by the use of confocal scanning laser microscopy. Separate red or green fluorescent microcolonies were formed initially, suggesting that the initial small microcolonies were formed simply by growth of substratum attached cells and not by cell aggregation. Red fluorescent microcolonies containing a few green fluorescent cells and green fluorescent microcolonies containing a few red fluorescent cells were frequently observed in both monospecies and two-species biofilms, suggesting that the bacteria moved between the microcolonies. Rapid movement of P. putida OUS82 bacteria inside microcolonies was observed before a transition from compact microcolonies to loose irregularly shaped protruding structures occurred. Experiments involving a nonflagellated P. putida OUS82 mutant suggested that the movements between and inside microcolonies were flagellum driven. The results are discussed in relation to the prevailing hypothesis that biofilm bacteria are in a physiological state different from planktonic bacteria.  相似文献   

9.
10.
We genetically characterized the Pseudomonas putida mutS gene and found that it encodes a smaller MutS protein than do the genes of other bacteria. This gene is able to function in the mutS mutants of Escherichia coli and Bacillus subtilis. A P. putida mutS mutant has a mutation frequency 1,000-fold greater than that of the wild-type strain.  相似文献   

11.
Vibrio cholerae, the causative agent of cholera, can undergo phenotypic variation generating rugose and smooth variants. The rugose variant forms corrugated colonies and well-developed biofilms and exhibits increased levels of resistance to several environmental stresses. Many of these phenotypes are mediated in part by increased expression of the vps genes, which are organized into vps-I and vps-II coding regions, separated by an intergenic region. In this study, we generated in-frame deletions of the five genes located in the vps intergenic region, termed rbmB to -F (rugosity and biofilm structure modulators B to F) in the rugose genetic background, and characterized the mutants for rugose colony development and biofilm formation. Deletion of rbmB, which encodes a protein with low sequence similarity to polysaccharide hydrolases, resulted in an increase in colony corrugation and accumulation of exopolysaccharides relative to the rugose variant. RbmC and its homolog Bap1 are predicted to encode proteins with carbohydrate-binding domains. The colonies of the rbmC bap1 double deletion mutant and bap1 single deletion mutant exhibited a decrease in colony corrugation. Furthermore, the rbmC bap1 double deletion mutant was unable to form biofilms at the air-liquid interface after 2 days, while the biofilms formed on solid surfaces detached readily. Although the colony morphology of rbmDEF mutants was similar to that of the rugose variant, their biofilm structure and cell aggregation phenotypes were different than those of the rugose variant. Taken together, these results indicate that vps intergenic region genes encode proteins that are involved in biofilm matrix production and maintenance of biofilm structure and stability.  相似文献   

12.
A combination of experimental and theoretical approaches was used to investigate the role of nutrient starvation as a potential trigger for biofilm detachment. Experimental observations of detachment in a variety of biofilm systems were made with pure cultures of Pseudomonas aeruginosa. These observations indicated that biofilms grown under continuous-flow conditions detached after flow was stopped, that hollow cell clusters were sometimes observed in biofilms grown in flow cells, and that lysed cells were apparent in the internal strata of colony biofilms. When biofilms were nutrient starved under continuous-flow conditions, detachment still occurred, suggesting that starvation and not the accumulation of a metabolic product was responsible for triggering detachment in this particular system. A cellular automata computer model of biofilm dynamics was used to explore the starvation-dependent detachment mechanism. The model predicted biofilm structures and dynamics that were qualitatively similar to those observed experimentally. The predicted features included centrally located voids appearing in sufficiently large cell clusters, gradients in growth rate within these clusters, and the release of most of the biofilm with simulated stopped-flow conditions. The model was also able to predict biofilm sloughing resulting solely from this detachment mechanism. These results support the conjecture that nutrient starvation is an environmental cue for the release of microbes from a biofilm.  相似文献   

13.
We report a study of the role of putative exopolysaccharide gene clusters in the formation and stability of Pseudomonas putida KT2440 biofilm. Two novel putative exopolysaccharide gene clusters, pea and peb, were identified, and evidence is provided that they encode products that stabilize P. putida KT2440 biofilm. The gene clusters alg and bcs, which code for proteins mediating alginate and cellulose biosynthesis, were found to play minor roles in P. putida KT2440 biofilm formation and stability under the conditions tested. A P. putida KT2440 derivative devoid of any identifiable exopolysaccharide genes was found to form biofilm with a structure similar to wild-type biofilm, but with a stability lower than that of wild-type biofilm. Based on our data, we suggest that the formation of structured P. putida KT2440 biofilm can occur in the absence of exopolysaccharides; however, exopolysaccharides play a role as structural stabilizers.  相似文献   

14.
A combination of experimental and theoretical approaches was used to investigate the role of nutrient starvation as a potential trigger for biofilm detachment. Experimental observations of detachment in a variety of biofilm systems were made with pure cultures of Pseudomonas aeruginosa. These observations indicated that biofilms grown under continuous-flow conditions detached after flow was stopped, that hollow cell clusters were sometimes observed in biofilms grown in flow cells, and that lysed cells were apparent in the internal strata of colony biofilms. When biofilms were nutrient starved under continuous-flow conditions, detachment still occurred, suggesting that starvation and not the accumulation of a metabolic product was responsible for triggering detachment in this particular system. A cellular automata computer model of biofilm dynamics was used to explore the starvation-dependent detachment mechanism. The model predicted biofilm structures and dynamics that were qualitatively similar to those observed experimentally. The predicted features included centrally located voids appearing in sufficiently large cell clusters, gradients in growth rate within these clusters, and the release of most of the biofilm with simulated stopped-flow conditions. The model was also able to predict biofilm sloughing resulting solely from this detachment mechanism. These results support the conjecture that nutrient starvation is an environmental cue for the release of microbes from a biofilm.  相似文献   

15.
Bacterial biofilms at times undergo regulated and coordinated dispersal events where sessile biofilm cells convert to free-swimming, planktonic bacteria. In the opportunistic pathogen Pseudomonas aeruginosa, we previously observed that dispersal occurs concurrently with three interrelated processes within mature biofilms: (i) production of oxidative or nitrosative stress-inducing molecules inside biofilm structures, (ii) bacteriophage induction, and (iii) cell lysis. Here we examine whether specific reactive oxygen or nitrogen intermediates play a role in cell dispersal from P. aeruginosa biofilms. We demonstrate the involvement of anaerobic respiration processes in P. aeruginosa biofilm dispersal and show that nitric oxide (NO), used widely as a signaling molecule in biological systems, causes dispersal of P. aeruginosa biofilm bacteria. Dispersal was induced with low, sublethal concentrations (25 to 500 nM) of the NO donor sodium nitroprusside (SNP). Moreover, a P. aeruginosa mutant lacking the only enzyme capable of generating metabolic NO through anaerobic respiration (nitrite reductase, DeltanirS) did not disperse, whereas a NO reductase mutant (DeltanorCB) exhibited greatly enhanced dispersal. Strategies to induce biofilm dispersal are of interest due to their potential to prevent biofilms and biofilm-related infections. We observed that exposure to SNP (500 nM) greatly enhanced the efficacy of antimicrobial compounds (tobramycin, hydrogen peroxide, and sodium dodecyl sulfate) in the removal of established P. aeruginosa biofilms from a glass surface. Combined exposure to both NO and antimicrobial agents may therefore offer a novel strategy to control preestablished, persistent P. aeruginosa biofilms and biofilm-related infections.  相似文献   

16.
Biofilms are frequently studied in the context of submerged or aquatic systems. However, much less is known about biofilms in unsaturated systems, despite their importance to such processes as food spoilage, terrestrial nutrient cycling, and biodegradation of environmental pollutants in soils. Using modeling and experimentation, we have described the biodegradation of toluene in unsaturated media by bacterial biofilms as a function of matric water potential, a dominant variable in unsaturated systems. We experimentally determined diffusion and kinetic parameters for Pseudomonas putida biofilms, then predicted biodegradation rates over a range of matric water potentials. For validation, we measured the rate of toluene depletion by intact biofilms and found the results to reasonably follow the model predictions. The diffusion coefficient for toluene through unsaturated P. putida biofilm averaged 1.3 x 10(7) cm(2)/s, which is approximately two orders of magnitude lower than toluene diffusivity in water. Our studies show that, at the scale of the microbial biofilm, the diffusion of toluene to biodegrading bacteria can limit the overall rate of biological toluene depletion in unsaturated systems. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 656-670, 1997.  相似文献   

17.
We report the identification of an ATP-binding cassette (ABC) transporter and an associated large cell-surface protein that are required for biofilm formation by Pseudomonas fluorescens WCS365. The genes coding for these proteins are designated lap for large adhesion protein. The LapA protein, with a predicted molecular weight of approximately 900 kDa, is found to be loosely associated with the cell surface and present in the culture supernatant. The LapB, LapC and LapE proteins are predicted to be the cytoplasmic membrane-localized ATPase, membrane fusion protein and outer membrane protein component, respectively, of an ABC transporter. Consistent with this prediction, LapE, like other members of this family, is localized to the outer membrane. We propose that the lapEBC-encoded ABC transporter participates in the secretion of LapA, as strains with mutations in the lapEBC genes do not have detectable LapA associated with the cell surface or in the supernatant. The lap genes are conserved among environmental pseudomonads such as P. putida KT2440, P. fluorescens PfO1 and P. fluorescens WCS365, but are absent from pathogenic pseudomonads such as P. aeruginosa and P. syringae. The wild-type strain of P. fluorescens WCS365 and its lap mutant derivatives were assessed for their biofilm forming ability in static and flow systems. The lap mutant strains are impaired in an early step in biofilm formation and are unable to develop the mature biofilm structure seen for the wild-type bacterium. Time-lapse microscopy studies determined that the lap mutants are unable to progress from reversible (or transient) attachment to the irreversible attachment stage of biofilm development. The lap mutants were also found to be defective in attachment to quartz sand, an abiotic surface these organisms likely encounter in the environment.  相似文献   

18.
Stability and resilience against environmental perturbations are critical properties of medical and environmental biofilms and pose important targets for their control. Biofilm stability is determined by two mutually exclusive processes: attachment of cells to and detachment from the biofilm matrix. Using Shewanella oneidensis MR-1, an environmentally versatile, Fe(III) and Mn(IV) mineral-reducing microorganism, we identified mxdABCD as a new set of genes essential for formation of a three-dimensional biofilm. Molecular analysis revealed that mxdA encodes a cyclic bis(3',5')guanylic acid (cyclic di-GMP)-forming enzyme with an unusual GGDEF motif, i.e., NVDEF, which is essential for its function. mxdB encodes a putative membrane-associated glycosyl transferase. Both genes are essential for matrix attachment. The attachment-deficient phenotype of a DeltamxdA mutant was rescued by ectopic expression of VCA0956, encoding another diguanylate cyclase. Interestingly, a rapid cellular detachment from the biofilm occurred upon induction of yhjH, a gene encoding an enzyme that has been shown to have phosphodiesterase activity. In this way, it was possible to bypass the previously identified sudden depletion of molecular oxygen as an environmental trigger to induce biofilm dissolution. We propose a model for c-di-GMP as a key intracellular regulator for controlling biofilm stability by shifting the state of a biofilm cell between attachment and detachment in a concentration-dependent manner.  相似文献   

19.
20.
Current models of biofilm formation by Pseudomonas aeruginosa propose that (i) planktonic cells become surface associated in a monolayer, (ii) surface-associated cells form microcolonies by clonal growth and/or aggregation, (iii) microcolonies transition to a mature biofilm comprised of exopolysaccharide-encased macrocolonies, and (iv) cells exit the mature biofilm and reenter the planktonic state. Here we report a new class of P. aeruginosa biofilm mutant that defines the transition from reversible to irreversible attachment and is thus required for monolayer formation. The transposon insertion carried by the sadB199 mutant was mapped to open reading frame PA5346 of P. aeruginosa PA14 and encodes a protein of unknown function. Complementation analysis and phage-mediated transduction demonstrated that the transposon insertion in PA5346 was the cause of the biofilm-defective phenotype. Examination of flow cell-grown biofilms showed that the sadB199 mutant could initiate surface attachment but failed to form microcolonies despite being proficient in both twitching and swimming motility. Closer examination of early attachment revealed an increased number of the sadB199 mutant cells arrested at reversible attachment, functionally defined as adherence via the cell pole. A positive correlation among biofilm formation, irreversible attachment, and SadB level was demonstrated, and furthermore, RpoN and FleR appear to negatively affect SadB levels. Fractionation studies showed that the SadB protein is localized to the cytoplasm, and with the use of GPS-linker scanning mutagenesis, the C-terminal portion of SadB was shown to be dispensable for function, whereas the two putative domains of unknown function and the linker region spanning these domains were required for function. We discuss the results presented here in the context of microbial development as it applies to biofilm formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号