首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Minisatellites are DNA tandem repeats exhibiting size polymorphism among individuals of a population. This polymorphism is generated by two different mechanisms, both in human and yeast cells, "replication slippage" during S-phase DNA synthesis and "repair slippage" associated to meiotic gene conversion. The Saccharomyces cerevisiae genome contains numerous natural minisatellites. They are located on all chromosomes without any obvious distribution bias. Minisatellites found in protein-coding genes have longer repeat units and on the average more repeat units than minisatellites in noncoding regions. They show an excess of cytosines on the coding strand, as compared to guanines (negative GC skew). They are always multiples of three, encode serine- and threonine-rich amino acid repeats, and are found preferably within genes encoding cell wall proteins, suggesting that they are positively selected in this particular class of genes. Genome-wide, there is no statistically significant association between minisatellites and meiotic recombination hot spots. In addition, minisatellites that are located in the vicinity of a meiotic hot spot are not more polymorphic than minisatellites located far from any hot spot. This suggests that minisatellites, in S. cerevisiae, evolve probably by strand slippage during replication or mitotic recombination. Finally, evolution of minisatellites among hemiascomycetous yeasts shows that even though many minisatellite-containing genes are conserved, most of the time the minisatellite itself is not conserved. The diversity of minisatellite sequences found in orthologous genes of different species suggests that minisatellites are differentially acquired and lost during evolution of hemiascomycetous yeasts at a pace faster than the genes containing them.  相似文献   

2.
Cederberg H  Rannug U 《Mutation research》2006,598(1-2):132-143
Minisatellites are tandem repeat loci, with repeat units ranging in size from 5 bp to 100 bp. The total lengths of repeat arrays vary from about 0.5 kb to 30 kb, and excessive variability in allele length at human minisatellite loci is the result of germline-specific complex recombination events generating new length alleles. Minisatellite alleles also mutate to new lengths in somatic cells, but this occurs at a much lower rate than in the germline. Since recombination is involved in minisatellite mutation, the yeast Saccharomyces cerevisiae is a suitable model organism that has been employed to further dissect the molecular basis of mutation events at human minisatellites. These studies have shown that the mutational behaviour of a minisatellite in meiosis is not determined by the intrinsic properties of the repeat array, but are highly dependent on the position of the minisatellite in the genome. The processes for minisatellite mutation in yeast and humans are identical in the sense that mutation is indeed driven by meiotic recombination, but differ with regard to the types of structural changes that are generated by the recombination events. Tetrad analyses showed that inter-allelic transfers of repeats occur by conversion and not crossing over, and that several chromatids can be involved in successive recombination events in one meiosis, resulting in mutant alleles in several spores. It has been demonstrated that the genes SPO11 and RAD50, involved in the initiation of recombination events, are required for human minisatellite mutation in yeast meiosis. Intrinsic properties of the repeat array appear to determine the stability of human minisatellites in yeast mitosis, since mitotic mutation rates in yeast are highly variable between minisatellites. The repair genes RAD27 and DNA2 stabilise human minisatellites in yeast mitosis, while RAD5 has no effect on mitotic stability. MSH2 depresses human minisatellite frequency in meiotic cells of yeast.  相似文献   

3.
var1 Gene on the mitochondrial genome of Torulopsis glabrata   总被引:5,自引:0,他引:5  
We have cloned and sequenced a region of the Torulopsis glabrata mitochondrial genome homologous to the Saccharomyces cerevisiae var1 gene (var1Sc). An open reading frame that could encode a protein of 339 amino acids was found with 72.7% amino acid and 85.3% nucleotide sequence homology to the S. cerevisiae var1 gene. The T. glabrata gene (var1Tg) is transcribed yielding two stable RNAs, a more abundant 13.5 S RNA and a less abundant 18 S species. We have also identified a candidate for a T. glabrata var1 protein among mitochondrial translation products labeled in isolated mitochondria. The var1Tg gene is even more A + T-rich (93%) than var1Sc (89.6%) and has conserved the strong codon bias of var1Sc. Major differences between the two sequences were found. Significant among these are that no GC clusters are found in var1Tg and the sequences surrounding each of the sites where known polymorphisms exist in var1Sc have deletions at the corresponding sites in var1Tg. These data are discussed with respect to possible origins of these var1 genes and translocation of GC clusters in S. cerevisiae mitochondrial DNA.  相似文献   

4.
Stoyan T  Carbon J 《Eukaryotic cell》2004,3(5):1154-1163
The human pathogenic yeast Candida glabrata is the second most common Candida pathogen after Candida albicans, causing both bloodstream and mucosal infections. The centromere (CEN) DNA of C. glabrata (CgCEN), although structurally very similar to that of Saccharomyces cerevisiae, is not functional in S. cerevisiae. To further examine the structure of the C. glabrata inner kinetochore, we isolated several C. glabrata homologs of S. cerevisiae inner kinetochore protein genes, namely, genes for components of the CBF3 complex (Ndc10p, Cep3p, and Ctf13p) and genes for the proteins Mif2p and Cse4p. The amino acid sequence identities of these proteins were 32 to 49% relative to S. cerevisiae. CgNDC10, CgCEP3, and CgCTF13 are required for growth in C. glabrata and are specifically found at CgCEN, as demonstrated by chromatin immunoprecipitation experiments. Cross-complementation experiments revealed that the isolated genes, with the exception of CgCSE4, are species specific and cannot functionally substitute for the corresponding genes in S. cerevisiae deletion strains. Likewise, the S. cerevisiae CBF3 genes NDC10, CEP3, and CTF13 cannot functionally replace their homologs in C. glabrata CBF3 deletion strains. Two-hybrid analysis revealed several interactions between these proteins, all of which were previously reported for the inner kinetochore proteins of S. cerevisiae. Our findings indicate that although many of the inner kinetochore components have evolved considerably between the two closely related species, the organization of the C. glabrata inner kinetochore is similar to that in S. cerevisiae.  相似文献   

5.
Hypermutable minisatellites,a human affair?   总被引:6,自引:0,他引:6  
Bois PR 《Genomics》2003,81(4):349-355
Minisatellites are a class of highly polymorphic GC-rich tandem repeats. They include some of the most variable loci in the human genome, with mutation rates ranging from 0.5% to >20% per generation. Structurally, they consist of 10- to 100-bp intermingled variant repeats, making them ideal tools for dissecting mechanisms of instability at tandem repeats. Distinct mutation processes generate rare intra-allelic somatic events and frequent complex conversion-like germline mutations in these repeats. Furthermore, turnover of repeats at human minisatellites is controlled by intense recombinational activity in DNA flanking the repeat array. Surprisingly, whereas other mammalian genomes possess minisatellite-like sequences, hypermutable loci have not been identified that suggest human-specific turnover processes at minisatellite arrays. Attempts to transfer minisatellite germline instability to the mouse have failed. However, yeast models are now revealing valuable information regarding the mechanisms regulating instability at these tandem repeats. Finally, minisatellites and tandem repeats provide exquisitely sensitive molecular tools to detect genomic insults such as ionizing radiation exposure. Surprisingly, by a mechanism that remains elusive, there are transgenerational increases in minisatellite instability.  相似文献   

6.
The plasmid pSB3 of yeast Zygosacharomyces bisporus has been sequenced. It contains 6,615 base pairs, including a pair of inverted repeats (IR) consisting of 391 base pairs and 3 large open reading frames (ORF). One of the ORFs (A gene) participates in the recombination at the IRs and the other two (B and C genes) are necessary for the stable maintenance of this plasmid. The ARS sequence, which functions in a Saccharomyces cerevisiae host, was localized within 168 base pairs consisting of part of one of the IRs and a unique sequence contiguous to it. pSB3 can be maintained as stably in Z. rouxii as in the natural host Z.bisporus. In contrast, pSB3 is maintained fairly unstably in S.cerevisiae. The reason for this instability was found to be inefficient partitioning of pSB3 in S.cerevisiae. The molecular construction of pSB3 resembles that of 2-micron DNA, however, sequence homology at the DNA level was very poor.  相似文献   

7.
Among genes conserved from bacteria to mammals are those involved in replicating and repairing DNA. Following the complete sequencing of four hemiascomycetous yeast species during the course of the Genolevures 2 project, we have studied the conservation of 106 genes involved in replication, repair, and recombination in Candida glabrata, Kluyveromyces lactis, Debaryomyces hansenii, and Yarrowia lipolytica and compared them with their Saccharomyces cerevisiae orthologues. We found that proteins belonging to the replication fork and to the nucleotide excision repair pathway were-on the average-more conserved than proteins involved in the checkpoint response to DNA damage or in meiotic recombination. The meiotic recombination proteins Spo11p and Mre11p-Rad50p, involved in making meiotic double-strand breaks (DSBs), are conserved as is Mus81p, involved in resolving meiotic recombination intermediates. Interestingly, genes found in organisms in which DSB-repair is required for proper synapsis during meiosis are also found in C. glabrata, K. lactis, and D. hansenii but not in Y. lipolytica, suggesting that two modes of meiotic recombination have been selected during evolution of the hemiascomycetous yeasts. In addition, we found that SGS1 and TOP1, respectively, a DEAD/DEAH helicase and a type I topoisomerase, are duplicated in C. glabrata and that SRS2, a helicase involved in homologous recombination, is tandemly duplicated in K. lactis. Phylogenetic analyses show that the duplicated SGS1 gene evolved faster than the original gene, probably leading to a specialization of function of the duplicated copy.  相似文献   

8.
9.
10.
Minisatellites are repetitive sequences of DNA that are present throughout the genome. Although the origin and function of these minisatellites is still unknown, they found clinical applications as markers of many diseases, including cancer. Also, they are useful tools for DNA fingerprinting and linkage analysis. Kallikreins are serine proteases that appear to be involved in many diseases including brain disorders and malignancy. We have recently characterized the human kallikrein gene locus on chromosome 19q13.4, which includes 15 kallikrein genes. In this study, we examined the kallikrein locus ( approximately 300 Kb) for all known repeat elements. About 50% of this genomic area is occupied by different repeat elements. We also identified unique minisatellite elements that are restricted to chromosome 19q13. Ten clusters of these minisatellites are distributed along the locus on either DNA strand. The clusters are located in the promoters and enhancers of genes, in introns, and in untranslated regions of the mRNA. Analysis of these elements indicates that they are polymorphic, thus they can be useful in linkage analysis and DNA fingerprinting. Our preliminary results indicate also that the distribution of the different alleles of these minisatellites might be associated with malignancy.  相似文献   

11.
Kim  Woe Yeon  Cheong  Na Eun  Je  Dae Yeop  Kim  Min Gab  Lim  Choe Oh  Bahk  Jeong Dong  Cho  Moo Je  Lee  Sang Yeol 《Plant molecular biology》1997,33(6):1025-1035
Two new members (Bsar1a and Bsar1b) of the Sar1 gene family have been identified from a flower bud cDNA library of Brassica campestris and their functional characteristics were analyzed. The two clones differ from each other at 14 positions of the 193 amino acid residues deduced from their coding region. The amino acid sequences of Bsar1a and Bsar1b are most closely related to the Sar1 family, genes that function early in the process of vesicle budding from the endoplasmic reticulum (ER). The sequences contain all the conserved motifs of the Ras superfamily (G1–G4 motifs) as well as the distinctive structural feature near the C-terminus that is Sar1 specific. Our phylogenetic analysis confirmed that these two clones can indeed be considered members of the Sar1 family and that they have a close relationship to the ARF family. The Bsar1 proteins, expressed in Escherichia coli, cross-reacted with a polyclonal antibody prepared against Saccharomyces cerevisiae Sar1 protein. It also exhibited GTP-binding activity. Genomic Southern blot analysis, using the 3'-gene-specific regions of the Bsar1 cDNAs as probes, revealed that the two cDNA clones are members of a B. campestris Sar1 family that consists of 2 to 3 genes. RNA blot analysis, using the same gene-specific probes, showed that both genes are expressed with similar patterns in most tissues of the plant, including leaf, stem, root, and flower buds. Furthermore, when we placed the two Bsar1 genes under the control of the yeast pGK1 promoter into the temperature-sensitive mutant yeast strain S. cerevisiae Sec12-1, they suppressed the mutation which consists of a defect in vesicle transport. The amino acid sequence similarity, the GTP-binding activity, and the functional suppression of the yeast mutation suggest that the Bsar1 proteins are functional homologues of the Sar1 protein in S. cerevisiae and that they may perform similar biological functions.  相似文献   

12.
All of the known self-transmissable plasmids of the Archaea have been found in the genus Sulfolobus. To gain more insight into archaeal conjugative processes, four newly isolated self-transmissable plasmids, pKEF9, pHVE14, pARN3 and pARN4, were sequenced and subjected to a comparative sequence analysis with two earlier sequenced plasmids, pNOB8 and pING1. The analyses revealed three conserved and functionally distinct sections in the genomes. Section A is considered to encode the main components of the conjugative apparatus, where two genes show low but significant sequence similarity to sections of genes encoding bacterial conjugative proteins. A putative origin of replication is located in section B, which is highly conserved in sequence and contains several perfect and imperfect direct and inverted repeats. Further downstream, in section C, an operon encoding six to nine smaller proteins is implicated in the initiation and regulation of replication. Each plasmid carries an integrase gene of the type that does not partition on integration, and there is strong evidence for their integration into host chromosomes, where they may facilitate intercellular exchange of chromosomal genes. Two plasmids contain hexameric short regularly spaced repeats (SRSR), which have been implicated in plasmid maintenance, and each plasmid carries multiple recombination motifs, concentrated in the variable regions, which likely provide sites for genomic rearrangements.  相似文献   

13.
Minisatellites, a class of variable number tandem repeats (VNTRs), are abundant throughout the control region in animal mitochondrial DNA (mtDNA) but rare in other regions of animal mtDNA. Here, we reported a novel minisatellite in fish mitochondrial genomes. We first determined the complete mitochondrial genomes of two schizothoracine fishes (Herzensteinia microcephalus and Schizopygopsis pylzovi) and found a type of minisatellites in a novel region between the tRNA‐Thr and tRNA‐Pro genes in their mtDNA. To explore the origin and evolution of the minisatellites in different schizothoracine and closely related fishes, we analyzed the available 80 fish mitogenomes which represent five closely related tribes of cyprinine fishes. The results from the phylogenetic analyses show that the schizothoracine fishes sensu stricto is not a monophyletic group and is divided into two clades (Schizothoracini and Schizopygopsini); and the minisatellite is only present in Schizopygopsini distributed in the region between the two tRNA genes (tRNA‐Thr and tRNA‐Pro) of the mtDNA. This is the first record of a minisatellite in a non‐control region of fish mitogenome.  相似文献   

14.
15.
16.
Yeast cell wall-associated, lectin-like adhesins form large families that mediate flocculation and host cell recognition. The glycan specificity of individual adhesins is largely unknown. Zupancic et al . (this issue of Molecular Microbiology ) used glycan microarrays to compare the glycan-binding characteristics of individual adhesins (Epa proteins) of the pathogenic yeast Candida glabrata produced in the non-adherent yeast Saccharomyces cerevisiae . By sequence swapping between the conserved PA14 domains of two related Epa proteins, they identified a pentapeptide that determines binding specificity and cell adherence and is located on a surface loop of the known crystal structure of the anthrax toxin PA14 domain.  相似文献   

17.
18.
The Mig1 repressor is a key effector in glucose repression in the yeast Saccharomyces cerevisiae. To gain further insights into structure-function relationships, we have now cloned the MIG1 homologue from the yeast Kluyveromyces marxianus. The amino acid sequence deduced from KmMIG1 differs significantly from ScMig1p outside the highly conserved zinc fingers. However, 12 discrete conserved motifs could be identified in a multiple alignment that also included the K. lactis Mig1p sequence. We further found that KmMig1p is fully functional when expressed in S. cerevisiae. First, it represses the SUC2 promoter almost as well as ScMig1p. This repression requires the Cyc8 and Tup1 proteins and is dependent on a C-terminal region comprising several conserved leucine-proline repeats. Second, KmMig1p is regulated by glucose in S. cerevisiae, and a KmMig1-VP16 hybrid activator is inhibited by the ScSnf1p kinase in the absence of glucose. This suggests that KmMig1p has retained the ability to interact with several S. cerevisiae proteins, and reinforces the notion that the conserved motifs are functionally important. Finally, we found that the physiological role of Mig1p also is conserved in K. marxianus, since KmMig1p represses INU1, the counterpart of SUC2 in this organism. Received: 16 October 1996 / Accepted: 19 February 1997  相似文献   

19.
We identified 34 new ribosomal protein genes in the Schizosaccharomyces pombe database at the Sanger Centre coding for 30 different ribosomal proteins. All contain the Homol D-box in their promoter. We have shown that Homol D is, in this promoter type, the TATA-analogue. Many promoters contain the Homol E-box, which serves as a proximal activation sequence. Furthermore, comparative sequence analysis revealed a ribosomal protein gene encoding a protein which is the equivalent of the mammalian ribosomal protein L28. The budding yeast Saccharomyces cerevisiae has no L28 equivalent. Over the past 10 years we have isolated and characterized nine ribosomal protein (rp) genes from the fission yeast S.pombe . This endeavor yielded promoters which we have used to investigate the regulation of rp genes. Since eukaryotic ribosomal proteins are remarkably conserved and several rp genes of the budding yeast S.cerevisiae were sequenced in 1985, we probed DNA fragments encoding S.cerevisiae ribosomal proteins with genomic libraries of S.pombe . The deduced amino acid sequence of the different isolated rp genes of fission yeast share between 65 and 85% identical amino acids with their counterparts of budding yeast.  相似文献   

20.
Papouskova K  Sychrova H 《FEBS letters》2006,580(8):1971-1976
The family of Nha antiporters mediating the efflux of alkali metal cations in exchange for protons across the plasma membrane is conserved in all yeast species. Yarrowia lipolytica is a dimorphic yeast, phylogenetically very distant from the model yeast Saccharomyces cerevisiae. A search in its sequenced genome revealed two genes (designated as YlNHA1 and YlNHA2) with homology to the S. cerevisiae NHA1 gene, which encodes a plasma membrane alkali metal cation/H+ antiporter. Upon heterologous expression of both YlNHA genes in S. cerevisiae, we showed that Y. lipolytica antiporters differ not only in length and sequence, but also in their affinity for individual substrates. While the YlNha1 protein mainly increased cell tolerance to potassium, YlNha2p displayed a remarkable transport capacity for sodium. Thus, Y. lipolytica is the first example of a yeast species with two plasma membrane alkali metal cation/H+ antiporters differing in their putative functions in cell physiology; cell detoxification vs. the maintenance of stable intracellular pH, potassium content and cell volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号