首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of changes occur in the oxytocin (OT) system during gestation, such as increases in hypothalamic OT mRNA, increased neural lobe and systemic OT, and morphological and electrophysiological changes in OT-containing magnocellular neurons, suggestive of altered neuronal sensitivity, which may be mediated by ovarian steroids. Because central norepinephrine (NE) and histamine (HA) are potent stimulators of OT release during parturition and lactation, the present study investigated the effects of central noradrenergic and histaminergic receptor activation on systemic (NE, HA) and intranuclear (NE) OT release in pregnant rats and in ovariectomized rats treated with ovarian steroids. Plasma OT levels in late gestation were significantly higher compared with all other groups, and neither adrenergic nor histaminergic receptor blockade decreased these elevated levels. Furthermore, the alpha-adrenergic agonist phenylephrine, but not histamine, stimulated systemic OT release to a significantly greater extent in late gestation than in midpregnant, ovariectomized, or steroid-treated females. Although basal extracellular OT levels in the paraventricular nucleus, as measured with microdialysis, were unchanged during pregnancy or steroid treatment, noradrenergic receptor stimulation of intranuclear OT release was significantly elevated in midgestation females compared with all other groups. These studies indicate that sensitivity of intranuclear and systemic OT release to noradrenergic receptor activation differentially varies during the course of gestation.  相似文献   

2.
Central oxytocin receptors (OTR) may be involved in adaptations of the brain oxytocin (OT) system during gestation, which are critical for systemic release of OT during parturition and lactation. We used quantitative autoradiography to determine changes in OTR binding in numerous brain sites during the course of gestation in the rat. Furthermore, to evaluate the importance of ovarian steroids in mediating pregnancy-related changes in OTR binding, we measured binding in ovariectomized animals treated with progesterone and/or estrogen, and in pregnant animals treated with exogenous progesterone during late gestation. We found that OTR binding was significantly increased in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) by midgestation (day 15) compared with control. In addition, there was a further significant increase in OTR binding in these nuclei by late gestation (day 20). The bed nucleus of the stria terminalis (BNST) and the medial preoptic area (MPOA) also showed significant gestation-associated increases in OTR binding, which were similar during mid- and late pregnancy. Treatment with exogenous progesterone throughout pregnancy did not alter the increase in OTR binding characteristic of late gestation in any of these brain sites. Finally, estrogen treatment in ovariectomized animals resulted in increased OTR binding in the SON, BNST, and MPOA, but not the PVN. These data demonstrate that OTR binding in the hypothalamus is increased during mid- and late-gestation, compared with ovariectomized control animals, which may be mediated by increased estradiol.  相似文献   

3.
Parturition in rats is associated with an abrupt and marked increase in myometrial oxytocin (OT) receptor concentrations. In this study, we investigated the role of myometrial OT receptors in the initiation and the process of parturition. We produced chronic OT receptor blockade during the last 3 days of gestation by administration of a specific OT antagonist at 100 micrograms/day and 300 micrograms/day. We also suppressed OT receptor formation by inhibiting prostaglandin synthesis with naproxen sodium at 2 mg/day and 5 mg/day. We found that chronic blockade of OT receptors inhibited the uterotonic response to OT in Day 22 and Day 23 pregnant rats in a dose-dependent manner. OT antagonist treatment did not prolong the gestation period. However, the duration of parturition, fetal mortality, and the mortality incidence were increased in rats treated with the high dose of the OT antagonist compared to controls. Naproxen sodium at both dosage levels prolonged gestation by 24 h or longer, doubled the duration of parturition, and markedly increased fetal mortality and mortality incidence. Combined OT antagonist and naproxen treatment produced adverse outcomes similar to that produced by naproxen treatment alone. Myometrial OT receptor concentrations were markedly increased in all rats immediately postpartum, ranging from 210 to 425 fmol/mg protein compared to the 50 to 100 fmol/mg found in Day 21 and Day 22 pregnant rats. Correlation analyses between OT receptor concentrations and various parameters associated with gestation and parturition showed that there was a correlation between low OT receptor concentrations and long gestation period, prolonged parturition, and high fetal mortality rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Oxytocin (OT) has been implicated in reproductive functions, induction of maternal behavior as well as endocrine and neuroendocrine regulation of the cardiovascular system. Here we demonstrate that neonatal manipulation of OT can modulate the mRNAs expression for OT receptor (OTR), atrial natriuretic peptide (ANP), endothelial nitric oxide synthase (eNOS) and estrogen receptor alpha (ERalpha) in the heart. On the first day of postnatal life, female and male rats were randomly assigned to receive one of the following treatments: (a) 50microl i.p. injection of 7microg OT; (b) 0.7microg of OT antagonist (OTA); or (c) isotonic saline (SAL). Hearts were collected either on postnatal day 1 or day 21 (D1 or D21) and the mRNAs expression of OTR, ANP, inducible NOS (iNOS), eNOS, ERalpha and estrogen receptor beta (ERbeta) were compared by age, treatment, and sex utilizing real time PCR. OT treatment significantly increased heart OTR, ANP and eNOS mRNAs expression on D1 in both males and females, ERalpha increased only in females. While there were significant changes in the relative expression of all types of mRNA between D1 and D21, there were no significant treatment effects observed in D21 animals. OTA treatment significantly decreased basal ANP and eNOS mRNAs expression on D1 in both sexes. The results indicate that during the early postnatal period OT can have an immediate effect on the expression OTR, ANP, eNOS, and ERalpha mRNAs and that these effects are mitigated by D21. Also with the exception of ERalpha mRNA, the effects are the same in both sexes.  相似文献   

5.
The present study examined possible interactions between central glucagon-like peptide-1 (GLP-1) and oxytocin (OT) neural systems by determining whether blockade of GLP-1 receptors attenuates OT-induced anorexia and vice versa. Male rats were acclimated to daily 4-h food access. In the first experiment, rats were infused centrally with GLP-1 receptor antagonist or vehicle, followed by an anorexigenic dose of synthetic OT. Access to food began 20 min later. Cumulative food intake was measured every 30 min for 4 h. In the second experiment, rats were infused with OT receptor blocker or vehicle, followed by synthetic GLP-1 [(7-36) amide]. Subsequent food intake was monitored as before. The anorexigenic effect of OT was eliminated in rats pretreated with the GLP-1 receptor antagonist. Conversely, GLP-1-induced anorexia was not affected by blockade of OT receptors. In a separate immunocytochemical study, OT-positive terminals were found closely apposed to GLP-1-positive perikarya, and central infusion of OT activated c-Fos expression in GLP-1 neurons. These findings implicate endogenous GLP-1 receptor signaling as an important downstream mediator of anorexia in rats after activation of central OT neural pathways.  相似文献   

6.
The objective of this study was to disclose an interaction between Beta(2)-adrenergic (Beta(2)-ARs) and oxytocin (OT) receptors (OTRs) in the late-pregnant rat uterus. We investigated the level of uterine OTR mRNA expression after the administration of Beta(2)-AR agonists fenoterol and hexoprenaline to rats from day 18 to 22 of pregnancy, and also tested the effect of fenoterol on uterine explants. Hexoprenaline induced a maximum 24% increase of OTR mRNA. Fenoterol in vivo elicited a maximum 125% increase of OTR mRNA, in vitro produced a maximum fourfold increase in OTR mRNA. In fenoterol-treated rats the maximal contractility increasing effect of OT on isolated uterine rings was significantly higher than in intact term pregnant rats, but the EC50 values were not statistically different. It was concluded that the enhanced expression of OTR mRNA induced by Beta(2)-agonists in the late-pregnant rat uterus may be a possible drawback to effective therapy of preterm uterine contractions with Beta(2)-agonists.  相似文献   

7.
8.
The neuropeptide oxytocin (OT) and its OT antagonists (OTA) in infant rats affect their behavior as adults. In this study we attempted to determine whether treating rats on the day of birth (postnatal day 1) with OT or OTA would affect brain OT levels of these rats as adults. Rat pups were injected with OT (3 microg), OTA (0.3 microg) or saline vehicle ip on postnatal day 1. As 60-day-old adults, treated rats were killed, and the OT content in their medial preoptic areas (MPOAs), medial hypothalami (MH) and pituitaries were assayed. In females, treatment with OTA on postnatal day 1 significantly decreased pituitary OT levels as adults. In males, by contrast, treatment with OTA on postnatal day 1 resulted in increased pituitary OT levels when they become adults compared to male rats treated with OT on postnatal day 1. There were no significant effects of neonatal treatment on OT levels in either the MH or MPOA. Day 1 postnatal treatment with OT or OTA had a long-term sexually dimorphic effect on OT levels in the pituitary.  相似文献   

9.
There are indications that exposing adolescent rodents to oxytocin (OT) may have positive “trait-changing” effects resulting in increased sociability and decreased anxiety that last well beyond acute drug exposure and into adulthood. Such findings may have relevance to the utility of OT in producing sustained beneficial effects in human psychiatric conditions. The present study further examined these effects using an intermittent regime of OT exposure in adolescence, and using Long Evans rats, that are generally more sensitive to the acute prosocial effects of OT. As OT has substantial affinity for the vasopressin V1a receptor (V1aR) in addition to the oxytocin receptor (OTR), we examined whether a more selective peptidergic OTR agonist – [Thr4, Gly7]-oxytocin (TGOT) – would have similar lasting effects on behavior. Male Long Evans rats received OT or TGOT (0.5–1 mg/kg, intraperitoneal), once every three days, for a total of 10 doses during adolescence (postnatal day (PND) 28–55). Social and anxiety-related behaviors were assessed during acute administration as well as later in adulthood (from PND 70 onwards). OT produced greater acute behavioral effects than TGOT, including an inhibition of social play and reduced rearing, most likely reflecting primary sedative effects. In adulthood, OT but not TGOT pretreated rats displayed lasting increases in social interaction, accompanied by an enduring increase in plasma OT. These findings confirm lasting behavioral and neuroendocrine effects of adolescent OT exposure. However, the absence of such effects with TGOT suggests possible involvement of the V1aR as well as the OTR in this example of developmental neuroplasticity.  相似文献   

10.
Neuropeptides, especially oxytocin (OT) and arginine vasopressin (AVP), have been implicated in several features of monogamy including alloparenting. The purpose of the present study was to examine the role of OT and AVP in alloparental behavior in reproductively na?ve male prairie voles. Males received intracerebroventricular (ICV) injections of artificial cerebrospinal fluid (aCSF), OT, an OT receptor antagonist (OTA), AVP, an AVP receptor antagonist (AVPA), or combinations of OTA and AVPA and were subsequently tested for parental behavior. Approximately 45 min after treatment, animals were tested for behavioral responses to stimulus pups. In a 10-min test, spontaneous alloparental behavior was high in control animals. OT and AVP did not significantly increase the number of males that showed parental behavior, although more subtle behavioral changes were observed. Combined treatment with AVPA and OTA (10 ng each) significantly reduced male parental behavior and increased attacks; following a lower dose (1 ng OTA/1 ng AVPA), males were less likely to display kyphosis and tended to be slower to approach pups than controls. Since treatment with only one antagonist did not interfere with the expression of alloparenting, these results suggest that access to either OT or AVP receptors may be sufficient for the expression of alloparenting.  相似文献   

11.
In previous studies, central administration of the oxytocin (OT) antagonist d(CH2)5[Tyr(Me)2, Thr4, Tyr-NH(9)2]OVT (OTA1) blocked receptive and proceptive components of female sexual behavior (FSB) and increased male-directed agonistic behavior when given before progesterone (P) treatment in estradiol-primed female rats but not when given shortly before behavioral testing 4-6 h after P. Because the considerable V(1a) antagonist potency of OTA1 may have contributed to these results, we tested the effects of the far more selective OT antagonist desGly-NH2, d(CH2)5[d-Tyr2, Thr4]OVT (OTA2). In ovariectomized, estradiol benzoate-primed (1 microg x 2 days sc) rats, icv infusion of OTA2 (1 microg) prior to P injection (250 microg sc) significantly suppressed lordosis and hops and darts and trended toward significantly increasing male-directed kicks during testing at 4 and 6 h. Infusion of OTA2 3 h and 40 min after P did not alter behavior at 4 and 6 h after P but significantly decreased lordosis as well as hops and darts and increased male-directed kicks 8-12 h after P. These results provide further evidence that central OT receptor activation shortly after P treatment contributes to the subsequent onset and early expression of FSB and demonstrate, for the first time, that OT receptor activation at later time points also contributes to maintaining FSB. The FSB-stimulating effect of central OT appears to persist for several hours.  相似文献   

12.
Social interest reflects the motivation to approach a conspecific for the assessment of social cues and is measured in rats by the amount of time spent investigating conspecifics. Virgin female rats show lower social interest towards unfamiliar juvenile conspecifics than virgin male rats. We hypothesized that the neuropeptide oxytocin (OT) may modulate sex differences in social interest because of the involvement of OT in pro-social behaviors. We determined whether there are sex differences in OT system parameters in the brain and whether these parameters would correlate with social interest. We also determined whether estrus phase or maternal experience would alter low social interest and whether this would correlate with changes in OT system parameters. Our results show that regardless of estrus phase, females have significantly lower OT receptor (OTR) binding densities than males in the majority of forebrain regions analyzed, including the nucleus accumbens, caudate putamen, lateral septum, bed nucleus of the stria terminalis, medial amygdala, and ventromedial hypothalamus. Interestingly, male social interest correlated positively with OTR binding densities in the medial amygdala, while female social interest correlated negatively with OTR binding densities in the central amygdala. Proestrus/estrus females showed similar social interest to non-estrus females despite increased OTR binding densities in several forebrain areas. Maternal experience had no immediate or long-lasting effects on social interest or OT brain parameters except for higher OTR binding in the medial amygdala in primiparous females. Together, these findings demonstrate that there are robust sex differences in OTR binding densities in multiple forebrain regions of rats and that OTR binding densities correlate with social interest in brain region- and sex-specific ways.  相似文献   

13.
14.
Oxytocin (OT) is a versatile neuropeptide that is involved in a variety of mammalian behaviors, and its role in reproductive function and behavior has been well established. The majority of pharmacological studies of the effects of OT on male sexual behavior have focused on the paraventricular nucleus (PVN), ventral tegmental area (VTA), hippocampus, and amygdala. Less attention has been given to the medial preoptic area (MPOA), a major integrative site for male sexual behavior. The present study investigated the effects of intra-MPOA administration of OT and (d(CH2)51, Tyr(Me)2, Thr4, Orn8, Tyr-NH29)-vasotocin, an OT antagonist (OTA), on copulation in the male rat. The relationship between OT receptor (OTR) binding levels in the MPOA and sexual efficiency was also explored. Microinjection of OT into the MPOA facilitated copulation in sexually experienced male rats, whereas similar injections of an OTA inhibited certain aspects of copulation but had no significant effect on locomotor activity in an open field. Contrary to expectation, sexually efficient males had lower levels of OTR binding in the rostral MPOA compared to inefficient animals. The present data suggest that OT activity in the MPOA is not necessary for the expression of male sexual behavior but is sufficient to facilitate copulatory behaviors and improve sexual efficiency in sexually experienced male rats. These data also suggest that OTR activity in the MPOA stimulates anogenital investigation, facilitates the initiation of copulation, and plays a role in the sensitization effect of the first ejaculation on subsequent ejaculations.  相似文献   

15.
Myometrial quiescence during pregnancy is maintained by progesterone, which suppresses the expression of labor-associated genes such as connexin 43 (Cx43) and the oxytocin receptor (OTR). Parathyroid hormone-related protein (PTHrP) is a smooth muscle relaxant that inhibits myometrial contractions and therefore may act in synergy with progesterone to maintain myometrial quiescence during late pregnancy. We investigated the possibility that PTHrP, like progesterone, could act to suppress the expression of labor-associated genes. Pregnant rats were treated starting on Day 19 with daily i.p. injections of 100 microg/kg PTHrP (human synthetic fragment 1-34). On Day 22 of gestation, there was a significant reduction in the expression of Cx43 (mRNA and protein) and OTR (mRNA) in the myometrium of PTHrP-treated animals, whereas on Day 23 (labor) the expression of both Cx43 and OTR was unchanged by PTHrP treatment. Treatment of pregnant rats with PTHrP did not affect the time of delivery, concentrations of progesterone in maternal plasma, or levels of c-fos, fra-2, or parathyroid hormone/PTHrP receptor mRNA on any gestational day. Because PTHrP treatment delayed the dramatic increase in the expression of Cx43 and OTR, it may be an important factor in the maintenance of the quiescent state of the myometrium at a time when the concentrations of progesterone in maternal circulation decrease. PTHrP treatment did not prevent the increase in Cx43 and OTR gene expression on Day 23 or the timing of labor, suggesting that the effects of PTHrP signaling are overridden with the onset of labor.  相似文献   

16.
Oxytocin (OT) is a deeply conserved nonapeptide that acts both peripherally and centrally to modulate reproductive physiology and sociosexual behavior across divergent taxa, including humans. In vertebrates, the distribution of the oxytocin receptor (OTR) in the brain is variable within and across species, and OTR signaling is critical for a variety of species-typical social and reproductive behaviors, including affiliative and pair bonding behaviors in multiple socially monogamous lineages of fishes, birds, and mammals. Early work in prairie voles suggested that the endogenous OT system modulates mating-induced partner preference formation in females but not males; however, there is significant evidence that central OTRs may modulate pair bonding behavior in both sexes. In addition, it remains unclear how transient windows of central OTR signaling during sociosexual interaction modulate neural activity to produce enduring shifts in sociobehavioral phenotypes, including the formation of selective social bonds. Here we re-examine the role of the central OT system in partner preference formation in male prairie voles using a selective OTR antagonist delivered intracranially. We then use the same antagonist to examine how central OTRs modulate behavior and immediate early gene (Fos) expression, a metric of neuronal activation, in males during brief sociosexual interaction with a female. Our results suggest that, as in females, OTR signaling is critical for partner preference formation in males and enhances correlated activation across sensory and reward processing brain areas during sociosexual interaction. These results are consistent with the hypothesis that central OTR signaling facilitates social bond formation by coordinating activity across a pair bonding neural network.  相似文献   

17.
We aimed to determine the short-term effects of early-life stress in the form of maternal separation (MS) on anxiety-like behavior in male rat pups. In order to assess anxiety, we measured 40 kHz separation-induced ultrasonic vocalizations (USV) on postnatal day (PND) 11. We further aimed to evaluate the potential involvement of two neurochemical systems known to regulate social and anxiety-like behaviors throughout life: oxytocin (OT) and fibroblast growth factor 2 (FGF2). For these purposes, we tested the effects of neonatal administration (on PND1) of an acute dose of FGF2 on USV and its potential interaction with MS. In addition, we validated the anxiolytic effects of OT and measured oxytocin receptor (OTR) gene expression, binding and epigenetic regulation via histone acetylation. Our results show that MS potentiated USV while acute administration of OT and FGF2 attenuated them. Further, we found that both FGF2 and MS increased OTR gene expression and the association of acH3K14 with the OTR promoter in the bed nucleus of the stria terminalis (BNST). Comparable changes, though not as pronounced, were also found for the central amygdala (CeA). Our findings suggest that FGF2 may exert its anxiolytic effects in male MS rats by a compensatory increase in the acetylation of the OTR promoter to overcome reduced OT levels in the BNST.  相似文献   

18.
These studies examined the receptors involved in angiotensin II (Ang II) stimulated secretion of systemic oxytocin (OT) and the role of this peptide in release of OT during suckling. Plasma OT concentrations were measured following intracerebroventricular (icv) injection of vehicle, Ang II, or Ang II following pretreatment with a selective AT1 (Losartan) or AT2 (PD 123319) receptor antagonist. Furthermore, we measured Ang II-induced OT release during central alpha-adrenergic receptor blockade (phentolamine). Finally, plasma OT concentrations before and during suckling were evaluated following central administration of Ang II receptor antagonists. The increase in systemic OT following central Ang II was abolished by AT1 receptor blockade and inhibited by the AT2 receptor antagonist. Furthermore, pretreatment with phentolamine significantly diminished systemic OT release in response to icv Ang II. Finally, central Ang II receptor blockade did not alter the increase in circulating OT during suckling. These data demonstrate that Ang II evoked OT release is mediated through activation of both AT1 and AT2 receptors and suggest that a component of Ang II-induced OT stimulation is due to norepinephrine release. Furthermore, central angiotensin systems do not have a direct role in stimulating OT release during suckling.  相似文献   

19.
In Wistar rats, increasing cerebrospinal fluid (CSF) Na+ concentration ([Na+]) by intracerebroventricular (ICV) infusion of hypertonic saline causes sympathetic hyperactivity and hypertension that can be prevented by blockade of brain mineralocorticoid receptors (MR). To assess the role of aldosterone produced locally in the brain in the activation of MR in the central nervous system (CNS), Wistar rats were infused ICV with artificial CSF (aCSF), Na+ -rich (800 mmol/l) aCSF, aCSF plus the aldosterone synthase inhibitor FAD286 (100 microg x kg(-1) x day(-1)), or Na+ -rich aCSF plus FAD286. After 2 wk of infusion, rats treated with Na+ -rich aCSF exhibited significant increases in aldosterone and corticosterone content in the hypothalamus but not in the hippocampus, as well as increases in resting blood pressure (BP) and sympathoexcitatory responses to air stress, and impairment of arterial baroreflex function. Concomitant ICV infusion of FAD286 prevented the Na+ -induced increase in hypothalamic aldosterone but not corticosterone and prevented most of the increases in resting BP and sympathoexcitatory and pressor responses to air stress and the baroreflex impairment. FAD286 had no effects in rats infused with ICV aCSF. In another set of rats, 24-h BP and heart rate were recorded via telemetry before and during a 14-day ICV infusion of Na+ -rich aCSF with or without FAD286. Na+ -rich aCSF without FAD286 caused sustained increases ( approximately 10 mmHg) in resting mean arterial pressure that were absent in the rats treated with FAD286. These data suggest that in Wistar rats, an increase in CSF [Na+] may increase the biosynthesis of corticosterone and aldosterone in the hypothalamus, and mainly aldosterone activates MR in the CNS leading to sympathetic hyperactivity and hypertension.  相似文献   

20.
Oxytocin (OT) is a primitive neurohypophyseal hormone that plays a primary and indispensible role in mammalian lactation. We have shown recently that OT also regulates bone remodeling, mainly bone formation, with remarkable sensitivity. We now show that OT, apart from its neurohypophyseal origin, is produced in abundance by both human and murine osteoblasts. Production of osteoblast OT is under the control of estrogen, which acts by activating the MAP kinase Erk. This non-genomic mechanism of estrogen action is in stark contrast to its genomic control of OT receptor (OTR) expression. We surmise that there is a local feed-forward loop in bone marrow through which the OT so produced from osteoblasts in response to estrogen acts upon its receptor to exert a potent anabolic action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号