首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Calnexin is a membrane protein of the endoplasmic reticulum (ER) that functions as a molecular chaperone and as a component of the ER quality control machinery. Calreticulin, a soluble analog of calnexin, is thought to possess similar functions, but these have not been directly demonstrated in vivo. Both proteins contain a lectin site that directs their association with newly synthesized glycoproteins. Although many glycoproteins bind to both calnexin and calreticulin, there are differences in the spectrum of glycoproteins that each binds. Using a Drosophila expression system and the mouse class I histocompatibility molecule as a model glycoprotein, we found that calreticulin does possess apparent chaperone and quality control functions, enhancing class I folding and subunit assembly, stabilizing subunits, and impeding export of assembly intermediates from the ER. Indeed, the functions of calnexin and calreticulin were largely interchangeable. We also determined that a soluble form of calnexin (residues 1-387) can functionally replace its membrane-bound counterpart. However, when calnexin was expressed as a soluble protein in L cells, the pattern of associated glycoproteins changed to resemble that of calreticulin. Conversely, membrane-anchored calreticulin bound to a similar set of glycoproteins as calnexin. Therefore, the different topological environments of calnexin and calreticulin are important in determining their distinct substrate specificities.  相似文献   

2.
Sendai virus envelope glycoproteins, F and HN, mature during their transport through the endoplasmic reticulum (ER) and Golgi complex. To better understand their maturation processes in the ER, we investigated the time course of their interactions with three ER- resident molecular chaperones, BiP, calnexin (CNX), and calreticulin (CRT), in Sendai virus-infected HeLa cells. Pulse-chase and immunoprecipitation analyses using antibodies against each virus glycoprotein or ER chaperone revealed that F precursor interacted with CNX transiently (t(1/2)=8 min), while HN protein displayed longer and sequential interactions with BiP (t(1/2)=8 min), CNX (t(1/2)=15 min), and CRT (t(1/2)=20 min). HN interacted with the three ER chaperones not only as a monomer but also as a tetramer for several hours, suggesting mechanism(s) to undergo chaperone-mediated quality control of an assembled HN oligomer in the ER. The kinetics of dissociation of the HN-chaperone complexes exhibited a marked delay in the presence of proteasome inhibitors, suggesting that a part of HN associated with BiP, CNX, and CRT is destined to be degraded in the proteasome-dependent pathway. Further, the associations between virus glycoproteins and CNX or CRT were impaired by castanospermine, an inhibitor of ER glucosidase I and II, confirming that these interactions require monoglucosylated oligosaccharide on F(0) and HN peptides. These findings together suggest that newly synthesized F protein undergoes rapid maturation in the ER through a transient interaction with CNX, whereas HN protein requires more complex processes involving prolonged association with BiP, CNX, and CRT for its quality control in the ER.  相似文献   

3.
I Wada  M Kai  S Imai  F Sakane    H Kanoh 《The EMBO journal》1997,16(17):5420-5432
Calnexin, an abundant membrane protein, and its lumenal homolog calreticulin interact with nascent proteins in the endoplasmic reticulum. Because they have an affinity for monoglucosylated N-linked oligosaccharides which can be regenerated from the aglucosylated sugar, it has been speculated that this repeated oligosaccharide binding may play a role in nascent chain folding. To investigate the process, we have developed a novel assay system using microsomes freshly prepared from pulse labeled HepG2 cells. Unlike the previously described oxidative folding systems which required rabbit reticulocyte lysates, the oxidative folding of transferrin in isolated microsomes could be carried out in a defined solution. In this system, addition of a glucose donor, UDP-glucose, to the microsomes triggered glucosylation of transferrin and resulted in its cyclic interaction with calnexin and calreticulin. When the folding of transferrin in microsomes was analyzed, UDP-glucose enhanced the amount of folded transferrin and reduced the disulfide-linked aggregates. Analysis of transferrin folding in briefly heat-treated microsomes revealed that UDP-glucose was also effective in elimination of heat-induced misfolding. Incubation of the microsomes with an alpha-glucosidase inhibitor, castanospermine, prolonged the association of transferrin with the chaperones and prevented completion of folding and, importantly, aggregate formation, particularly in the calnexin complex. Accordingly, we demonstrate that repeated binding of the chaperones to the glucose of the transferrin sugar moiety prevents and corrects misfolding of the protein.  相似文献   

4.
ER-60 domains responsible for interaction with calnexin and calreticulin   总被引:2,自引:0,他引:2  
Urade R  Okudo H  Kato H  Moriyama T  Arakaki Y 《Biochemistry》2004,43(27):8858-8868
ER-60 is a thiol oxidoreductase family protein of the endoplasmic reticulum that facilitates the oxidative folding of glycoproteins via interaction with calnexin (CNX) and calreticulin (CRT). In this study, we tried to identify the site of interaction with CNX and CRT in the ER-60 molecule. ER-60 was shown to be composed of at least four domains, named a, b, b', and a', by limited proteolysis. Recombinant fragments of ER-60, a, b', and a'c, were each expressed in Escherichia coli as an individual soluble folded protein that underwent a cooperative unfolding transition along a urea gradient. These fragments each gave the circular dichroism (CD) spectrum of the folded protein. On the other hand, fragment b, which did not undergo the cooperative unfolding transition along a urea gradient gel, did not show any sign of the folded structure on the CD measurement. However, subtraction of the spectra showed that the b domain was folded in wild-type ER-60 or abb'. Both a and a'c, which have a catalytic center CGHC motif, showed activity almost equivalent to half of that of wild-type ER-60. Extension from a or a'c to ab and abb' or b'a'c had little effect on their isomerase activity, suggesting that the b and b' domains hardly contribute to the catalytic activity of ER-60. The contribution of both the b and b' domains to the binding with CNX and CRT was revealed by surface plasmon resonance analysis and oxidative-refolding experiments of monoglucosylated RNase B with addition of the luminal domain of CNX.  相似文献   

5.
Before peptide binding in the endoplasmic reticulum, the class I heavy (H) chain-beta(2)-microglobulin complexes are detected in association with TAP and two chaperones, TPN and CRT. Recent studies have shown that the thiol-dependent reductase, ERp57, is also present in this peptide-loading complex. However, it remains controversial whether the association of ERp57 with MHC class I molecules precedes their combined association with the peptide-loading complex or whether ERp57 only associates with class I molecules in the presence of TPN. Resolution of this controversy could help determine the role of ERp57 in class I folding and/or assembly. To define the mouse class I H chain structures involved in interaction with ERp57, we tested chaperone association of L(d) mutations at residues 134 and 227/229 (previously implicated in TAP association), residues 86/88 (which ablate an N-linked glycan), and residue 101 (which disrupts a disulfide bond). The association of ERp57 with each of these mutant H chains showed a complete concordance with CRT, TAP, and TPN but not with calnexin. Furthermore, ERp57 failed to associate with H chain in TPN-deficient.220 cells. These combined data demonstrate that, during the assembly of the peptide-loading complex, the association of ERp57 with mouse class I is TPN dependent and parallels that of CRT and not calnexin.  相似文献   

6.
Del Bem LE 《Genetica》2011,139(2):255-259
Calreticulin and calnexin are Ca2+-binding chaperones localized in the endoplasmic reticulum of eukaryotes acting in glycoprotein folding quality control and Ca2+ homeostasis. The evolutionary histories of calreticulin and calnexin gene families were inferred by comprehensive phylogenetic analyses using 18 completed genomes and ESTs covering the major green plants groups, from green algae to angiosperms. Calreticulin and calnexin possibly share a common origin, and both proteins are present along all green plants lineages. The calreticulin founder gene within green plants duplicated in early tracheophytes leading to two possible groups of orthologs with specialized functions, followed by lineage-specific gene duplications in spermatophytes. Calnexin founder gene in land plants was inherited from basal green algae during evolution in a very conservative copy number. A comprehensive classification in possible groups of orthologs and a catalog of calreticulin and calnexin genes from green plants are provided.  相似文献   

7.
Calnexin and calreticulin are membrane-bound and soluble chaperones, respectively, of the endoplasmic reticulum (ER) which interact transiently with a broad spectrum of newly synthesized glycoproteins. In addition to sharing substantial sequence identity, both calnexin and calreticulin bind to monoglucosylated oligosaccharides of the form Glc(1)Man(5-9)GlcNAc(2), interact with the thiol oxidoreductase, ERp57, and are capable of acting as chaperones in vitro to suppress the aggregation of non-native proteins. To understand how these diverse functions are coordinated, we have localized the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. Recent structural studies suggest that both proteins consist of a globular domain and an extended arm domain comprised of two sequence motifs repeated in tandem. Our results indicate that the primary lectin site of calnexin and calreticulin resides within the globular domain, but the results also point to a much weaker secondary site within the arm domain which lacks specificity for monoglucosylated oligosaccharides. For both proteins, a site of interaction with ERp57 is centered on the arm domain, which retains approximately 50% of binding compared with full-length controls. This site is in addition to a Zn(2+)-dependent site located within the globular domain of both proteins. Finally, calnexin and calreticulin suppress the aggregation of unfolded proteins via a polypeptide binding site located within their globular domains but require the arm domain for full chaperone function. These findings are integrated into a model that describes the interaction of glycoprotein folding intermediates with calnexin and calreticulin.  相似文献   

8.
Calnexin and calreticulin are homologous lectin chaperones that assist maturation of cellular and viral glycoproteins in the mammalian endoplasmic reticulum. Calnexin and calreticulin share the same specificity for monoglucosylated protein-bound N-glycans but associate with a distinct set of newly synthesized polypeptides. We report here that most calnexin substrates do not associate with calreticulin even upon selective calnexin inactivation, while BiP associates more abundantly with nascent polypeptides under these conditions. Calreticulin associated more abundantly with orphan calnexin substrates only in infected cells and preferentially with polypeptides of viral origin, showing stronger dependence of model viral glycoproteins on endoplasmic reticulum lectins. This may explain why inactivation of the calnexin cycle affects viral replication and infectivity but not viability of mammalian cells.  相似文献   

9.
The low-density lipoprotein receptor-related protein (LRP) is a large (>600 kDa) multi-ligand-binding cell surface receptor that is now known to participate in a diverse range of cellular events. To accomplish this diverse role, LRP is composed of repetitive amino acid motifs consisting of complement-type and EGF precursor-type repeats. Within these repeats are six conserved cysteine residues that form the core disulfide bond structure of each repeat. To accommodate the intricate folding that such a complex structure dictates, a specialized chaperone is present in the endoplasmic reticulum (ER) called the receptor-associated protein (RAP) that binds to LRP immediately following its biosynthesis and assists in its exocytic transport. Interestingly, RAP -/- mice show reduced LRP expression in certain cell types, but not a more global affect on LRP expression that was expected. Such a tissue-restricted effect by RAP prompted an investigation if other ER chaperones associate with LRP to assist in its complex folding requirements and compensate for the absence of RAP in RAP -/- cells. Fibroblasts obtained from RAP -/- mice demonstrate similar LRP expression levels and subcellular distribution as RAP +/+ fibroblasts. Moreover, RAP -/- cells show an identical exocytic trafficking rate for LRP as RAP +/+ cells and comparable cell surface internalization kinetics. In RAP -/- cells, three well-known ER chaperones, calnexin, calreticulin, and protein disulfide isomerase (PDI), associate with LRP and likely compensate for the absence of RAP.  相似文献   

10.
Tyrosinase is a type I membrane protein regulating the pigmentation process in humans. Mutations of the human tyrosinase gene cause the tyrosinase negative type I oculocutaneous albinism (OCAI). Some OCAI mutations were shown to delete the transmembrane domain or to affect its hydrophobic properties, resulting in soluble tyrosinase mutants that are retained in the endoplasmic reticulum (ER). To understand the specific mechanisms involved in the ER retention of soluble tyrosinase, we have constructed a tyrosinase mutant truncated at its C-terminal end and investigated its maturation process. The mutant is retained in the ER, and it is degraded through the proteasomal pathway. We determined that the mannose trimming is required for an efficient degradation process. Moreover, this soluble ER-associated degradation substrate is stopped at the ER quality control checkpoint with no requirements for an ER-Golgi recycling pathway. Co-immmunoprecipitation experiments showed that soluble tyrosinase interacts with calreticulin and BiP/GRP78 (and not calnexin) during its ER transit. Expression of soluble tyrosinase in calreticulin-deficient cells resulted in the export of soluble tyrosinase of the ER, indicating the calreticulin role in ER retention. Taken together, these data show that OCAI soluble tyrosinase is an ER-associated degradation substrate that, unlike other albino tyrosinases, associates with calreticulin and BiP/GRP78. The lack of specificity for calnexin interaction reveals a novel role for calreticulin in OCAI albinism.  相似文献   

11.
Calnexin and calreticulin are lectin-like molecular chaperones that promote folding and assembly of newly synthesized glycoproteins in the endoplasmic reticulum. While it is well established that they interact with substrate monoglucosylated N-linked oligosaccharides, it has been proposed that they also interact with polypeptide moieties. To test this notion, glycosylated forms of bovine pancreatic ribonuclease (RNase) were translated in the presence of microsomes and their folding and association with calnexin and calreticulin were monitored. When expressed with two N-linked glycans in the presence of micromolar concentrations of deoxynojirimycin, this small soluble protein was found to bind firmly to both calnexin and calreticulin. The oligosaccharides were necessary for association, but it made no difference whether the RNase was folded or not. This indicated that unlike other chaperones, calnexin and calreticulin do not select their substrates on the basis of folding status. Moreover, enzymatic removal of the oligosaccharide chains using peptide N-glycosidase F or removal of the glucoses by ER glucosidase II resulted in dissociation of the complexes. This indicated that the lectin-like interaction, and not a protein-protein interaction, played the central role in stabilizing RNase-calnexin/calreticulin complexes.  相似文献   

12.
Calreticulin and calnexin are homologous lectins that serve as molecular chaperones for glycoproteins in the endoplasmic reticulum of eukaryotic cells. Here we show that calreticulin depletion specifically accelerates the maturation of cellular and viral glycoproteins with a modest decrease in folding efficiency. Calnexin depletion prevents proper maturation of some proteins such as influenza hemagglutinin but does not interfere appreciably with the maturation of several others. A dramatic loss of stringency in the ER quality control with transport at the cell surface of misfolded glycoprotein conformers is only observed when substrate access to both calreticulin and calnexin is prevented. Although not fully interchangeable during assistance of glycoprotein folding, calreticulin and calnexin may work, independently, as efficient and crucial factors for retention in the ER of nonnative polypeptides.  相似文献   

13.
Wang J  White AL 《Biochemistry》2000,39(30):8993-9000
Apolipoprotein(a) [apo(a)] is a component of atherogenic lipoprotein(a) [Lp(a)]. Differences in the extent of endoplasmic reticulum (ER) associated degradation (ERAD) of apo(a) allelic variants contribute to the >1000-fold variation in plasma Lp(a) levels. Using human apo(a) transgenic mouse hepatocytes, we analyzed the role of the ER chaperones calnexin (CNX) and calreticulin (CRT), and ER mannosidase I in apo(a) intracellular targeting. Co-immunoprecipitation and pulse-chase analyses revealed similar kinetics of apo(a) interaction with CNX and CRT, peaking 15-30 min after apo(a) synthesis. Trapping of apo(a) N-linked glycans in their monoglucosylated form, by posttranslational inhibition of ER glucosidase activity with castanospermine (CST), enhanced apo(a)-CNX/CRT interaction and prevented both apo(a) secretion and ERAD. Delay of CST addition until 20 or 30 min after apo(a) synthesis [when no apo(a) had yet undergone degradation or Golgi-specific carbohydrate modification] allowed a portion of apo(a) to be secreted or degraded. These results are consistent with a transient apo(a)-CNX/CRT association and suggest that events downstream of CNX/CRT interaction determine apo(a) intracellular targeting. Inhibition of ER mannosidase I with deoxymannojirimycin or kifunensine had no effect on apo(a) secretion, but inhibited proteasome-mediated apo(a) ERAD even under conditions where apo(a)-CNX/CRT interaction was prevented. These results suggest a role for an additional, mannose-specific, ER lectin in targeting secretory proteins to the proteasome for destruction.  相似文献   

14.
Isocupressic acid (ICA) [15-hydroxylabda-8 (17), 13E-dien-19-oic acid], a labdane diterpene acid, isolated from ponderosa pine (Pinus ponderosa), Lodgepole pine (Pinus contorta), common juniper (Juniperus communis) and Monterey cypress (Cupressus macrocarpa), induces abortion in pregnant cows when ingested primarily during the last trimester. The objective of this study was to investigate the effects of isocupressic acid on bovine oocyte maturation (in vitro maturation (IVM)-Experiment I) and preimplantation embryo development (in vitro culture (IVC)-Experiment II) using in vitro embryo production techniques and to subsequently evaluate viability and developmental competence of ICA-cultured embryos via embryo transfer to recipient heifers (Experiment III). A complete randomized block experimental design was used. In Experiment I and II, isocupressic acid was added to IVM or IVC media at 0 (TRT1, control), 1.3 (TRT2), and 2.6 microg/ml (TRT3) Results from Experiment I and II indicated that ICA did not inhibit oocyte maturation and did not adversely affect preinpiantation embryo development. Furthermore, results from Experiment II demonstrated that isocupressic acid enhanced bovine preimplantation embryo development in vitro in a dose dependent manner. Subsequently, Day 8 (Day 0 = IVF) blastocysts cultured in vitro in the medium containing 2.6 microg/ml ICA were transferred to recipient heifers and resulted in normal pregnancies as determined by ultrasound imaging. Subsequently, all but two births were normal as evaluated by post natal veterinary examination. In conclusion, ICA showed no adverse effects on oocyte maturation and preimplantation embryo development in vitro or subsequent viability in vivo using the ICA concentrations and in vitro culture parameters of this study.  相似文献   

15.
Calnexin (CNX) is a membrane protein of the endoplasmic reticulum that has been defined primarily as a lectin, yet is capable of functioning as a molecular chaperone with non-glycosylated proteins in vitro. Here, we assess the relative contributions of the oligosaccharide- and polypeptide-binding sites of CNX to its in vitro chaperone functions by comparing it with the Hsp70 chaperone of the endoplasmic reticulum, BiP. Both proteins were equally effective in preventing the aggregation of non-glycosylated citrate synthase, indicating that the polypeptide-binding site of CNX is capable of functioning at a level similar to that of Hsp70. However, when confronted with glycoprotein substrates, the lectin site of CNX provided a significant advantage over BiP in suppressing aggregation. CNX also cooperated with BiP and the J domain of Sec63p in the ATP-dependent refolding of glycoprotein and non-glycosylated substrates. The lectin site of CNX was essential for refolding of the glycoprotein. These findings reinforce the function of CNX as a bona fide chaperone and illustrate how its lectin site confers advantages relative to other chaperones when confronted with glycoprotein substrates.  相似文献   

16.
Autoantibodies interacting with purified native thyrotropin receptor.   总被引:1,自引:0,他引:1  
Native thyrotropin receptor (TSHR) was purified by immunoaffinity chromatography from membrane extracts of stably transfected L cells. An ELISA test was devised to study anti-TSHR autoantibodies directly. Comparison of native TSHR with bacterially expressed, denatured TSHR showed that the latter was not recognized by the autoantibodies, suggesting that they bind to conformational epitopes only present on the native receptor. The use of deglycosylated TSHR and of purified receptor ectodomain (alpha-subunit) showed that the autoantibodies recognized only the protein backbone moiety of the receptor and that their epitopes were localized entirely in its ectodomain. Autoantibodies were detected in 45 of 48 subjects with untreated Graves' disease and in 26 of 47 healthy volunteers. The affinity for the receptor was similar in the two groups (Kd = 0.25-1 x 10-10 M) and the autoantibodies belonged to the IgG class in all cases. Although the concentration of autoantibodies was higher in Graves' disease patients (3.50 +/- 0.36 mg.L-1) than in control subjects (1.76 +/- 0.21) (mean +/- SEM), there was an overlap between the groups. Receptor-stimulating autoantibodies (TSAb) were studied by measuring cAMP synthesis in stably transfected HEK 293 cells. Their characteristics (recognition of alpha-subunit, of deglycosylated TSHR, nonrecognition of bacterially expressed denatured receptor) were similar to those of the antibodies detected by the ELISA test. TSAb were only found in individuals with Graves' disease. The ELISA test measures total anti-TSHR antibodies, whereas the test using adenylate cyclase stimulation measures antibodies that recognize specific epitopes involved in receptor activation. Our observations thus disprove the hypothesis according to which Graves' disease is related to the appearance of anti-TSHR antibodies not present in normal subjects. Actually, anti-TSHR antibodies exist in many euthyroid subjects, in some cases even at concentrations higher than those found in patients with Graves' disease. What distinguishes the latter from normal subjects is the existence of subpopulation(s) of antibodies directed against specific epitope(s) of the receptor involved in its activation.  相似文献   

17.
Sindbis virus codes for two membrane glycoproteins, E1 and PE2, which assemble into heterodimers within the endoplasmic reticulum. We have examined the role of the molecular chaperone BiP (grp78) in the maturation of these two proteins. E1, which folds into its mature conformation via at least three intermediates differing in the configurations of their disulfide bonds, was found to interact strongly and transiently with BiP after synthesis. ATP depletion mediated by carbonyl cyanide m-chlorophenylhydrazone treatment results in the stabilization of complexes between BiP and E1. The depletion of intracellular ATP levels also greatly inhibits conversions between the E1 folding intermediates and results in the slow incorporation of E1 into disulfide-stabilized aggregates. These results suggest that the ATP-regulated binding and release of BiP have a role in modulating disulfide bond formation during E1 folding. In comparison with E1, very little PE2 is normally recovered in association with BiP. However, under conditions in which E1 folding is aberrant, increased amounts of PE2 become directly associated with BiP. The formation of these BiP-PE2 interactions occurs after E1 begins to misfold or fails to fold efficiently. We propose that nascent PE2 is stable prior to pairing with E1 for only a limited period of time, after which unpaired PE2 becomes recognized by BiP. This implies that the productive association of PE2 and E1 must occur within a restricted time frame and only after E1 has accomplished certain folding steps mediated by BiP binding and release. Kinetic studies which show that the pairing of E1 with PE2 is delayed after translocation support this conclusion.  相似文献   

18.
19.
As a part of a exploring the N-glycan-mediated glycoprotein quality control in endoplasmic reticulum, 2-fluorinated derivative Glcalpha1 --> 3Man(F) 1, Glcalpha1 --> 3Man(F)alpha1 --> 2Man2, and Glcalpha1 --> 3Man(F)alpha1 --> 2Manalpha1 --> 2Man 3 were synthesized in a concise manner. These oligosaccharides were subjected to binding studies with calreticulin by using isothermal titration calorimetry. It was revealed that disaccharide 1 was a poor ligand, while tri- (2) and tetrasaccharide (3) had observable affinity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号