首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study investigated the potential of Bacillus thuringiensis isolates obtained in the Cerrado region of the Brazilian state of Maranhão for the biological control of Aedes aegypti larvae. The isolates were obtained from soil samples and the identification of the B. thuringiensis colonies was based on morphological characteristics. Bioassays were run to assess the pathogenicity and toxicity of the different strains of the B. thuringiensis against third-instar larvae of A. aegypti. Protein profiles were obtained by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Polymerase chain reaction assays were used to detect the toxin genes found in the bacterial isolates. Overall, 12 (4.0%) of the 300 isolates obtained from 45 soil samples were found to present larvicidal activity, with the BtMA-104, BtMA-401 and BtMA-560 isolates causing 100% of mortality. The BtMA-401 isolate was the most virulent, with the lowest median lethal concentration (LC50) (0.004 × 107 spores/mL), followed by the Bacillus thuringiensis var. israelensis standard (0.32 × 107 spores/mL). The protein profiles of BtMA-25 and BtMA-401 isolates indicated the presence of molecular mass consistent with the presence of the proteins Cry4Aa, Cry11Aa and Cyt1, similar to the profile of Bacillus thuringiensis var. israelensis IPS-82. Surprisingly, however, none of the cry and cyt genes analyzed were amplified in the isolate BtMA-401. The results of the present study revealed the larvicidal potential of B. thuringiensis isolates found in the soils of the Cerrado region from Maranhão, although further research will be necessary to better elucidate and describe other genes associated with the production of insecticidal toxins in these isolates.  相似文献   

2.
Cry2Aa, one of the major insecticidal proteins produced by Bacillus thuringiensis subsp. kurstaki HD1, is known to be active against both lepidopteran and dipteran larvae. In order to determine whether Cry2Aa could enhance or synergize the mosquitocidal activity of B. thuringiensis subsp. israelensis, we constructed a plasmid vector that harbored the cry2Aa operon and transformed crystalliferous and acrystalliferous strains of this bacterium. The wild-type B. thuringiensis subsp. israelensis, a recombinant B. thuringiensis subsp. israelensis producing Cry2A along with its native major mosquitocidal proteins, and a recombinant B. thuringiensis subsp. israelensis producing Cry2Aa alone were tested against three major mosquito species — Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus. Our results demonstrated that Cry2Aa does not synergize or enhance the mosquitocidal activity of B. thuringiensis subsp. israelensis against these important vectors of disease.  相似文献   

3.
Bioassays to determine LC50 values of spores and crystals of four varieties of Bacillus thuringiensis grown on nutrient agar plates were carried out against neonate and 6-day-old European corn borer, Ostrinia nubilalis, larvae. The four bacterial varieties were equally toxic against the neonates, but only B. thuringiensis var. kenyae, var. galleriae, and var. kurstaki were toxic to 6-day-old larvae. B. thuringiensis var. tolworthi was inactive against 6-day-old larvae. Different ratios of pure spores and crystals of the bacteria also were tested against neonate and 6-day-old larvae. Pure spores are not pathogenic to neonates or 6-day-old larvae. Pure crystals were toxic to both ages of the larvae, but a combination of spores and crystals was necessary for maximum larval mortality.  相似文献   

4.
Susceptibility of Bacillus thuringiensis spores and toxins to the UV-B range (280–330 nm) of the solar spectrum reaching Earth's surface may be responsible for its inactivation and low persistence in nature. Spores of the mosquito larvicidal B. thuringiensis subsp. israelensis were significantly more resistant to UV-B than spores of the lepidopteran-active subsp. kurstaki. Spores of subsp. israelensis were as resistant to UV-B as spores of B. subtilis and more resistant than spores of the closely related B. cereus and another mosquito larvicidal species B. sphaericus. Sensitivity of B. thuringiensis subsp. israelensis spores to UV-B radiation depended upon their culture age; 24-h cultures, approaching maximal larvicidal activity, were still sensitive. Maximal resistance to UV-B was achieved only at 48 h. Received: 13 December 2000/Accepted: 19 January 2001  相似文献   

5.
Egg masses of the European corn borer, Ostrinia nubilalis, were collected from caged corn plants to study the bacterial diseases of egg masses and first-instar larvae. In 1972, a reduction in the percentage hatch, indicative of a disease epizootic, was noted among the first-generation egg masses. Bioassays of the bacteria on first-instar larvae and egg masses showed that Bacillus thuringiensis var. kurstaki was pathogenic only to larvae. Bacillus megaterium was active primarily against the egg stage.  相似文献   

6.
Insecticidal Activity of Bacillus laterosporus   总被引:2,自引:0,他引:2       下载免费PDF全文
The Bacillus laterosporus strains 921 and 615 were shown to have toxicity for larvae of the mosquitoes Aedes aegypti, Anopheles stephensi, and Culex pipiens. The larvicidal activity of B. laterosporus was associated with spores and crystalline inclusions. Purified B. laterosporus 615 crystals were highly toxic for Aedes aegypti and Anopheles stephensi.  相似文献   

7.
Summary A novel strain of Bacillus thuringiensis was isolated from soybean grain dust from Kansas and found to be toxic to larvae of Leptinotarsa decemlineata (Colorado potato bectle). The strain (EG2158) synthesized two parasporal crystals: a rhomboid crystal composed of a 73115 dalton protein and a flat, diamond-shaped crystal composed of a protein of approximately 30 kDa. Plasmid transfer and gene cloning experiments demonstrated that the 73 kDa protein was encoded on an 88 MDa plasmid and that the protein was toxic to the larvae of Colorado potato beetle (CPB). The sequence of the 73 kDa protein, as deduced from the sequence of its gene (cryC), was found to have regions of similarity with several B. thuringiensis crystal proteins: the lepidopteran-toxic P1 proteins of var. kurstaki and berliner, the lepidopteran- and dipteran-toxic P2 (or CRYB1) protein of var. kurstaki, and the dipteran-toxic 130 kDa protein of var. israelensis. While B. megaterium cells harboring the cryC gene from EG2158 synthesized significant amounts of the 73 kDa CRYC protein, Escherichia coli cells did not. The cryC-containing B. megaterium cells produced rhomboid crystals that were toxic to CPB larvae.  相似文献   

8.
The insecticidal activities of the exotoxin produced by three varieties of Bacillus thuringiensis grown in six fermentation media were determined by testing the supernatants against larvae of the house fly, Musca domestica, and the black cutworm, Agrotis ipsilon. The activities of the exotoxins from the isolates varied when they were grown in the same medium and also when they were grown in different media. When an isolate of B. thuringiensis var. thuringiensis, and of var. tolworthi were grown in proflo broth, the supernatants produced were more toxic to house fly than to black cutworm larvae, indicating the presence of more than one exotoxin. Autoclaving the supernatants for 15 and 30 min further demonstrated the presence of several exotoxins.  相似文献   

9.
Two Bacillus thuringiensis strains isolated from diseased Spodoptera frugiperda larvae collected in the northwest of Argentina were molecularly and phenotypically characterized. Insecticidal activity against Spodoptera frugiperda larvae was also determined. Both strains were highly toxic against first instar larvae. One strain (Bacillus thuringiensis LSM) was found to be even more toxic than the reference strain Bacillus thuringiensis var. kurstaki 4D1. This strong biological effect was represented by both a higher mortality which reached 90%, and a shorter LT50. Molecular characterization showed that Bacillus thuringiensis LSM carried a cry gene profile identical to that of Bacillus thuringiensis var. kurstaki 4D1. Evaluation of length polymorphism of the intergenic transcribed spacers between the 16S and 23S rDNA genes revealed an identical pattern between native strains and Bacillus thuringiensis var. kurstaki 4D1. In contrast, phenotypic characterization allowed differentiation among the isolates by means of their extracellular esterase profiles. Lytic activity that would contribute to Bacillus thuringiensis effectiveness was also studied in both strains. Analyses like those presented in the current study are essential to identify the most toxic strains and to allow the exploitation of local biodiversity for its application in biological control programmes.  相似文献   

10.
Hypertoxic mutant strains of Bacillus thuringiensis var. israelensis were isolated by mutagenesis of the parent strain. The correlation, if any, between hyper-production of insecticidal crystal protein (δ-endotoxin) by hypertoxic mutant strains of Bacillus thuringiensis var. israelensis and sporulation-specific biochemical functions was studied. No increase in sporulation-specific biochemical markers was observed in the hypertoxic mutant strains. Asporogenous mutants of hypertoxic mutant strains blocked at different stages of sporulation were isolated, and larvicidal activity was studied. The hypertoxic parent strains and the sporulation-deficient, hypertoxic mutant strains showed almost identical larvicidal activity. Therefore, the increased production of toxin is not related to sporulation-specific biochemical changes. Received: 14 February 2000 / Accepted: 21 March 2000  相似文献   

11.
Laboratory experiments with 4th-instar larvae of Aedes aegypti and Anopheles albimanus (Diptera: Culicidae) demonstrated that the entomocidal bacterium, Bacillus thuringiensis var. israelensis, can grow vegetatively, sporulate, and produce toxin in cadavers of mosquito larvae. In A. aegypti, spore counts rose from 2 × 102/cadaver 4 hr after treatment to 1.4 × 105/cadaver approximately 72 hr later, whereas in A. albimanus spore counts per cadaver increased from 2.2 × 103 between 4 and 24 hr to 3.2 × 105 at 72 hr post-treatment. Bioassays of larval cadavers indicated that toxicity associated with sporulation of B. thuringiensis var. israelensis reached a maximum level approximately 72 hr after treatment. These results demonstrate that under appropriate conditions B. thuringiensis var. israelensis can use the substrates available in larval cadavers for growth and sporulation.  相似文献   

12.
Bacillus thuringiensis strains that belong to B. thuringiensis, B. kurstaki and soil-isolated B.t. were assessed in the following phytopathogenic: Rhizoctonia solani, that had their mycelial growth decreased after incubation in the presence of the bacterial strains. The bacteria have also pathogenic effect against the insect pest Spodoptera littoralis. The isolate B.t. D-1 and the B.t. kurstaki HD-203 were found to be inhibiting R. solani, the strain B. kurstaki HD-203 displayed the highest percentage of inhibition (64%) and B.t. D-1 showed 49% of inhibition. Antagonistic activity was maintained up to pH 8.5, and the antifungal activity was stable to heat at 70?°C for 1?h. Minimal inhibitory concentrations were 152 and 131?μl/ ml for B.t. D-1 and B. kurstaki HD-203, respectively. The two strains also have high efficacy against S. littoralis larvae, B.t. D-1 gave 70% and the B. kurstaki HD-203 strain gave 80% mortality after seven days of treatment.  相似文献   

13.
The tobacco budworm, Heliothis virescens, was reared on diets containing various low concentrations of the spore-δ-endotoxin complex of Bacillus thuringiensis var. kurstaki. As the concentration of the complex was increased, the development time increased, pupal weights of the surviving larvae decreased, and the numbers of larvae able to complete the cycle and reach adulthood was reduced. In all these cases, the changes were directly proportional to the log of the concentration of the complex in the diet. Fertility and fecundity were reduced in adult tobacco budworms emerging from larvae reared in the presence of the toxin, but these effects seemed to result indirectly from the general debilitation produced by the toxin, since their occurrence was not related to the concentration of the toxin in the diet.  相似文献   

14.
Strains of Bacillus sphaericus exhibit varying levels of virulence against mosquito larvae. The most potent strain, B. sphaericus 2362, which is the active ingredient in the commercial product VectoLex®, together with another well-known larvicide Bacillus thuringiensis subsp. israelensis, is used to control vector and nuisance mosquito larvae in many regions of the world. Although not all strains of B. sphaericus are mosquitocidal, lethal strains produce one or two combinations of three different types of toxins. These are (1) the binary toxin (Bin) composed of two proteins of 42 kDa (BinA) and 51 kDa (BinB), which are synthesized during sporulation and co-crystallize, (2) the soluble mosquitocidal toxins (Mtx1, Mtx2 and Mtx3) produced during vegetative growth, and (3) the two-component crystal toxin (Cry48Aa1/Cry49Aa1). Non-mosquitocidal toxins are also produced by certain strains of B. sphaericus, for example sphaericolysin, a novel insecticidal protein toxic to cockroaches. Larvicides based on B. sphaericus-based have the advantage of longer persistence in treated habitats compared to B. thuringiensis subsp. israelensis. However, resistance is a much greater threat, and has already emerged at significant levels in field populations in China and Thailand treated with B. sphaericus. This likely occurred because toxicity depends principally on Bin rather than various combinations of crystal (Cry) and cytolytic (Cyt) toxins present in B. thuringiensis subsp. israelensis. Here we review both the general characteristics of B. sphaericus, particularly as they relate to larvicidal isolates, and strategies or considerations for engineering more potent strains of this bacterium that contain built-in mechanisms that delay or overcome resistance to Bin in natural mosquito populations.  相似文献   

15.
Most strains of the insecticidal bacterium Bacillus thuringiensis have a combination of different protoxins in their parasporal crystals. Some of the combinations clearly interact synergistically, like the toxins present in B. thuringiensis subsp. israelensis. In this paper we describe a novel joint activity of toxins from different strains of B. thuringiensis. In vitro bioassays in which we used pure, trypsin-activated Cry1Ac1 proteins from B. thuringiensis subsp. kurstaki, Cyt1A1 from B. thuringiensis subsp. israelensis, and Trichoplusia ni BTI-Tn5B1-4 cells revealed contrasting susceptibility characteristics. The 50% lethal concentrations (LC50s) were estimated to be 4,967 of Cry1Ac1 per ml of medium and 11.69 ng of Cyt1A1 per ml of medium. When mixtures of these toxins in different proportions were assayed, eight different LC50s were obtained. All of these LC50s were significantly higher than the expected LC50s of the mixtures. In addition, a series of bioassays were performed with late first-instar larvae of the cabbage looper and pure Cry1Ac1 and Cyt1A1 crystals, as well as two different combinations of the two toxins. The estimated mean LC50 of Cry1Ac1 was 2.46 ng/cm2 of diet, while Cyt1A1 crystals exhibited no toxicity, even at very high concentrations. The estimated mean LC50s of Cry1Ac1 crystals were 15.69 and 19.05 ng per cm2 of diet when these crystals were mixed with 100 and 1,000 ng of Cyt1A1 crystals per cm2 of diet, respectively. These results indicate that there is clear antagonism between the two toxins both in vitro and in vivo. Other joint-action analyses corroborated these results. Although this is the second report of antagonism between B. thuringiensis toxins, our evidence is the first evidence of antagonism between toxins from different subspecies of B. thuringiensis (B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. israelensis) detected both in vivo and in vitro. Some possible explanations for this relationship are discussed.  相似文献   

16.
A total of 28 autoagglutinating strains of Bacillus thuringiensis were isolated from different ecologic niches and distinct sites. Twenty-six strains demonstrated toxicity to mosquito larvae of Aedes aegypti and Culex quinquefasciatus. The electrophoretic protein profiles of the crystal components were studied. Twenty-three out of the 28 strains showed the same larvicidal activity and the same protein profiles as B. thuringiensis serovar israelensis. Using isoenzyme analysis (MLEE), it was observed the presence of three electrophoretic types (ETs). The mosquitocidal strains grouped into one ET. The random amplified polymorphic DNA analysis (RAPD) was evaluated using six primers, which demonstrated three different patterns for the 28 autoagglutinating strains, allowing correlation of the profiles obtained with the toxicity observed in the bioassays. The RAPD patterns for mosquitocidal strains were identical to the one of serovar israelensis. However, to strains of low toxicity, each primer generated distinctive RAPD patterns, which demonstrated that these strains belong to different serovars. Although the antigenic classification the 26 autoagglutinating strains of B. thuringiensis could not be determined by classical flagellar serotyping, MLEE and RAPD profiles proved these strains to be compatible with B. thuringiensis serovar israelensis.  相似文献   

17.
Bacillus thuringiensis subsp. israelensis, serovar H14, when applied as a primary commercial powder, caused the rapid death of Aedes aegypti larvae. Mortality started 6 min after application of 4 μg/ml of the pathogen and reached a maximum 27 min later. When the LC50 (10 ng/ml) was applied, mortality began after 37 min and reached a maximum 120 min later. Histopathological changes in B. thuringiensis israelensis-treated larvae could be observed only in the midgut and caeca. In B. thuringiensis israelensis-treated “dead larvae”, the epithelial layer is disorganized, most of the cells have disappeared and the peritrophic membrane is broken. The epithelium in the B. thuringiensis israelensis-treated “living larvae” still maintains its monolayer structure, but with marked cellular hypertrophy and vacuolized cytoplasm. Also, the “brush border” is thinner and disrupted. Based on the fact that mortality of A. aegypti is a quick process, and because the histopathological changes caused by B. thuringiensis israelensis are similar to those found in lepidopterous larvae treated with pure δ-endotoxin of other B. thuringiensis variants, it is suggested that larvicidal activity of B. thuringiensis israelensis in A. aegypti is due to its δ-endotoxin.  相似文献   

18.
The characterization of selected Bacillus thuringiensis strains isolated from different Latin America countries is presented. Characterization was based on their insecticidal activity against Aedes aegypti, Culex quinquefasciatus, and Anopheles albimanus larvae, scanning electron microscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and plasmid profiles as well as PCR analysis using novel general and specific primers for cry and cyt genes encoding proteins active against mosquitoes (cyt1, cyt2, cry2, cry4A, cry4B, cry10, cry11, cry17, cry19, cry24, cry25, cry27, cry29, cry30, cry32, cry39, and cry40). Strains LBIT315, LBIT348, and IB604 showed threefold higher mosquitocidal activity against A. aegypti and C. quinquefasciatus larvae than B. thuringiensis subsp. israelensis and displayed high similarities with the B. thuringiensis subsp. israelensis used in this study with regard to protein and plasmid profiles and the presence of cry genes. Strain 147-8906 has activity against A. aegypti similar to that of B. thuringiensis subsp. israelensis but has different protein and plasmid profiles. This strain, harboring cry11, cry30, cyt1, and cyt2 genes, could be relevant for future resistance management interventions. Finally, the PCR screening strategy presented here led us to identify a putative novel cry11B gene.  相似文献   

19.
The fate of Bacillus thuringiensis subsp. israelensis in a natural aquatic habitat was studied in a model system by using laboratory-simulated field waters and a mutant of the bacterium resistant to three antibiotics. Contact with mud of a sporal culture of the mutant resulted in an immediate disappearance of the larvicidal activity but had no influence on viability. The cessation of toxicity was caused by bacterial adsorption on soil particles, since 99.8% of the bacteria was found in the mud fraction within 45 min, with concurrent disappearance from the supernatant. When the mud was stirred, the bacteria could be redetected. The viability count of the mud suspension remained practically constant for at least 22 days, indicating that the spores were still fully viable but were incapable of germinating and multiplying in the mud under our experimental conditions. Approximately 8% of the colony forming ability of the bacteria could be separated from the mud by vigorous mixing followed by immediate filtration. The filtrated spores retained their toxicity, killing 90% of the larval populations even after 22 days incubation in the soil. The inactivation of the toxic activity of B. thuringiensis subsp. israelensis in the mud was therefore a reversible process and was probably due to masking of the bacteria, thus making the bacteria and their toxin inaccessible to the larvae. In the simulated field waters without mud, we observed only a very slow inhibition of the larvicidal activity. In contrast to the activity in the mud suspension, this activity could not be restored.  相似文献   

20.
We studied the effects of combinations of Bacillus thuringiensis spores and toxins on the mortality of diamondback moth (Plutella xylostella) larvae in leaf residue bioassays. Spores of B. thuringiensis subsp. kurstaki increased the toxicity of crystals of B. thuringiensis subsp. kurstaki to both resistant and susceptible larvae. For B. thuringiensis subsp. kurstaki, resistance ratios were 1,200 for a spore-crystal mixture and 56,000 for crystals without spores. Treatment of a spore-crystal formulation of B. thuringiensis subsp. kurstaki with the antibiotic streptomycin to inhibit spore germination reduced toxicity to resistant larvae but not to susceptible larvae. In contrast, analogous experiments with B. thuringiensis subsp. aizawai revealed no significant effects of adding spores to crystals or of treating a spore-crystal formulation with streptomycin. Synergism occurred between Cry2A and B. thuringiensis subsp. kurstaki spores against susceptible larvae and between Cry1C and B. thuringiensis subsp. aizawai spores against resistant and susceptible larvae. The results show that B. thuringiensis toxins combined with spores can be toxic even though the toxins and spores have little or no independent toxicity. Results reported here and previously suggest that, for diamondback moth larvae, the extent of synergism between spores and toxins of B. thuringiensis depends on the strain of insect, the type of spore, the set of toxins, the presence of other materials such as formulation ingredients, and the concentrations of spores and toxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号