首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we introduce a method to construct a Reduced-Order Model (ROM) to study the physiological flow and the Wall Shear Stress (WSS) conditions in Abdominal Aortic Aneurysms (AAA). We start the process by running a training case using Computational Fluid Dynamics (CFD) simulations with time-varying flow parameters, such that these parameters cover the range of parameters that we would like to consider in our ROM. We use the inflow angle as the variable parameter in the current study. Then we use the snapshot Proper Orthogonal Decomposition (POD) to construct the reduced-order bases, which are subsequently enhanced using a QR-factorization technique to satisfy the relevant fluid boundary conditions. The resulting ROM enables us to study the flow pattern and the WSS distribution over a range of system parameters computationally very efficiently. We have used this method to show how the WSS varies significantly for an AAA with a simplified geometry, over a range of inflow angles usually considered mild in clinical terms. We have validated the ROM results with CFD results. This approach enables comprehensive analysis of the model system across a range of inflow angles and frequencies without the need to re-compute the simulation for small changes.  相似文献   

2.
《Journal of biomechanics》2014,47(15):3695-3703
Most computational fluid dynamic (CFD) simulations of aneurysm hemodynamics assume constant (Newtonian) viscosity, even though blood demonstrates shear-thinning (non-Newtonian) behavior. We sought to evaluate the effect of this simplifying assumption on hemodynamic forces within cerebral aneurysms, especially in regions of low wall shear stress, which are associated with rupture. CFD analysis was performed for both viscosity models using 3D rotational angiography volumes obtained for 26 sidewall aneurysms (12 with blebs, 12 ruptured), and parametric models incorporating blebs at different locations (inflow/outflow zone). Mean and lowest 5% values of time averaged wall shear stress (TAWSS) computed over the dome were compared using Wilcoxon rank-sum test. Newtonian modeling not only resulted in higher aneurysmal TAWSS, specifically in areas of low flow and blebs, but also showed no difference between aneurysms with or without blebs. In contrast, for non-Newtonian analysis, bleb-bearing aneurysms showed significantly lower 5% TAWSS compared to those without (p=0.005), despite no significant difference in mean dome TAWSS (p=0.32). Non-Newtonian modeling also accentuated the differences in dome TAWSS between ruptured and unruptured aneurysms (p<0.001). Parametric models further confirmed that realistic non-Newtonian viscosity resulted in lower bleb TAWSS and higher focal viscosity, especially when located in the outflow zone. The results show that adopting shear-thinning non-Newtonian blood viscosity in CFD simulations of intracranial aneurysms uncovered hemodynamic differences induced by bleb presence on aneurysmal surfaces, and significantly improved discriminant statistics used in risk stratification. These findings underline the possible implications of using a realistic model of blood viscosity in predictive computational hemodynamics.  相似文献   

3.
Indices of the intra-aneurysm hemodynamic environment have been proposed as potentially indicative of their longitudinal outcome. To be useful, the indices need to be used to stratify large study populations and tested against known outcomes. The first objective was to compile the diverse hemodynamic indices reported in the literature. Furthermore, as morphology is often the only patient-specific information available in large population studies, the second objective was to assess how the ranking of aneurysms in a population is affected by the use of steady flow simulation as an approximation to pulsatile flow simulation, even though the former is clearly non-physiological. Sixteen indices of aneurysmal hemodynamics reported in the literature were compiled and refined where needed. It was noted that, in the literature, these global indices of flow were always time-averaged over the cardiac cycle. Steady and pulsatile flow simulations were performed on a population of 198 patient-specific and 30 idealised aneurysm models. All proposed hemodynamic indices were estimated and compared between the two simulations. It was found that steady and pulsatile flow simulations had a strong linear dependence (r ≥ 0.99 for 14 indices; r ≥ 0.97 for 2 others) and rank the aneurysms in an almost identical fashion (ρ ≥ 0.99 for 14 indices; ρ ≥ 0.96 for other 2). When geometry is the only measured piece of information available, stratification of aneurysms based on hemodynamic indices reduces to being a physically grounded substitute for stratification of aneurysms based on morphology. Under such circumstances, steady flow simulations may be just as effective as pulsatile flow simulation for estimating most key indices currently reported in the literature.  相似文献   

4.
Endovascular coiling aims to isolate the aneurysm from blood circulation by altering hemodynamics inside the aneurysm and triggering blood coagulation. Computational fluid dynamics (CFD) techniques have the potential to predict the post-operative hemodynamics and to investigate the complex interaction between blood flow and coils. The purpose of this work is to study the influence of blood viscosity on hemodynamics in coiled aneurysms. Three image-based aneurysm models were used. Each case was virtually coiled with a packing density of around 30%. CFD simulations were performed in coiled and untreated aneurysm geometries using a Newtonian and a Non-Newtonian fluid models. Newtonian fluid slightly overestimates the intra-aneurysmal velocity inside the aneurysm before and after coiling. There were numerical differences between fluid models on velocity magnitudes in coiled simulations. Moreover, the non-Newtonian fluid model produces high viscosity (>0.007>0.007 [Pa s]) at aneurysm fundus after coiling. Nonetheless, these local differences and high-viscous regions were not sufficient to alter the main flow patterns and velocity magnitudes before and after coiling. To evaluate the influence of coiling on intra-aneurysmal hemodynamics, the assumption of a Newtonian fluid can be used.  相似文献   

5.
Flow instability has emerged as a new hemodynamic metric hypothesized to have potential value in assessing the rupture risk of cerebral aneurysms. However, diverse findings have been reported in the literature. In the present study, high-resolution hemodynamic simulations were performed retrospectively on 35 aneurysms (10 ruptured & 25 unruptured) located at the internal carotid artery (ICA). Simulated hemodynamic parameters were statistically compared between the ruptured and unruptured aneurysms, with emphasis on examining the correlation of flow instability with the status of aneurysm rupture. Pronounced flow instability was detected in 20% (2 out of 10) of the ruptured aneurysms, whereas in 44% (11 out of 25) of the unruptured aneurysms. Statistically, the flow instability metric (quantified by the temporally and spatially averaged fluctuating kinetic energy over the aneurysm sac) did not differ significantly between the ruptured and unruptured aneurysms. In contrast, low wall shear stress area (LSA) and pressure loss coefficient (PLC) exhibited significant correlations with the status of aneurysm rupture. In conclusion, the present study suggests that the presence of flow instability may not correlate closely with the status of aneurysm rupture, at least for ICA aneurysms. On the other hand, the retrospective nature of the study and the small sample size may have to some extent compromised the reliability of the conclusion, and therefore large-scale prospective studies would be needed to further address the issue.  相似文献   

6.
《Journal of biomechanics》2014,47(16):3882-3890
Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic quantities that have been shown to predict aneurysm rupture, as well as maximal WSS (MWSS), energy loss (EL) and pressure loss coefficient (PLc). Sixteen pulsatile CFD simulations were carried out on four typical saccular aneurysms using 4 different waveforms and an identical inflow rate as inlet boundary conditions. Our results demonstrated that under the same mean inflow rate, different waveforms produced almost identical WSS distributions and WSS magnitudes, similar OSI distributions but drastically different OSI magnitudes. The OSI magnitude is correlated with the pulsatility index of the waveform. Furthermore, there is a linear relationship between aneurysm-averaged OSI values calculated from one waveform and those calculated from another waveform. In addition, different waveforms produced similar MWSS, EL and PLc in each aneurysm. In conclusion, inlet waveform has minimal effects on WSS, OSI distribution, MWSS, EL and PLc and a strong effect on OSI magnitude, but aneurysm-averaged OSI from different waveforms has a strong linear correlation with each other across different aneurysms, indicating that for the same aneurysm cohort, different waveforms can consistently stratify (rank) OSI of aneurysms.  相似文献   

7.
Computational fluid dynamics (CFD) simulations can be employed to gain a better understanding of hemodynamics in cerebral aneurysms and improve diagnosis and treatment. However, introduction of CFD techniques into clinical practice would require faster simulation times. The aim of this study was to evaluate the use of computationally inexpensive steady flow simulations to approximate the aneurysm's wall shear stress (WSS) field. Two experiments were conducted. Experiment 1 compared for two cases the time-averaged (TA), peak systole (PS) and end diastole (ED) WSS field between steady and pulsatile flow simulations. The flow rate waveform imposed at the inlet was varied to account for variations in heart rate, pulsatility index, and TA flow rate. Consistently across all flow rate waveforms, steady flow simulations accurately approximated the TA, but not the PS and ED, WSS field. Following up on experiment 1, experiment 2 tested the result for the TA WSS field in a larger population of 20 cases covering a wide range of aneurysm volumes and shapes. Steady flow simulations approximated the space-averaged WSS with a mean error of 4.3%. WSS fields were locally compared by calculating the absolute error per node of the surface mesh. The coefficient of variation of the root-mean-square error over these nodes was on average 7.1%. In conclusion, steady flow simulations can accurately approximate the TA WSS field of an aneurysm. The fast computation time of 6 min per simulation (on 64 processors) could help facilitate the introduction of CFD into clinical practice.  相似文献   

8.
9.
Treatment of intracranial aneurysms with flow-diverting stents is a safe and minimally invasive technique. The goal is stable embolisation that facilitates stent endothelialisation, and elimination of the aneurysm. However, it is not fully understood why some aneurysms fail to develop a stable clot even with sufficient levels of flow reduction. Computational prediction of thrombus formation dynamics can help predict the post-operative response in such challenging cases. In this work, we propose a new model of thrombus formation and platelet dynamics inside intracranial aneurysms. Our novel contribution combines platelet activation and transport with fibrin generation, which is key to characterising stable and unstable thrombus. The model is based on two types of thrombus inside aneurysms: red thrombus (fibrin- and erythrocyte-rich) can be found in unstable clots, while white thrombus (fibrin- and platelet-rich) can be found in stable clots. The thrombus generation model is coupled to a CFD model and the flow-induced platelet index (FiPi) is defined as a quantitative measure of clot stability. Our model is validated against an in vitro phantom study of two flow-diverting stents with different sizing. We demonstrate that our model accurately predicts the lower thrombus stability in the oversized stent scenario. This opens possibilities for using computational simulations to improve endovascular treatment planning and reduce adverse events, such as delayed haemorrhage of flow-diverted aneurysms.  相似文献   

10.
Local hemodynamics has been identified as one main determinant in the onset and progression of atherosclerotic lesions at coronary bifurcations. Starting from the observation that atherosensitive hemodynamic conditions in arterial bifurcation are majorly determined by the underlying anatomy, the aim of the present study is to investigate how peculiar coronary bifurcation anatomical features influence near-wall and intravascular flow patterns. Different bifurcation angles and cardiac curvatures were varied in population-based, idealized models of both stenosed and unstenosed bifurcations, representing the left anterior descending (LAD) coronary artery with its diagonal branch. Local hemodynamics was analyzed in terms of helical flow and exposure to low/oscillatory shear stress by performing computational fluid dynamics simulations.Results show that bifurcation angle impacts lowly hemodynamics in both stenosed and unstenosed cases. Instead, curvature radius influences the generation and transport of helical flow structures, with smaller cardiac curvature radius associated to higher helicity intensity. Stenosed bifurcation models exhibit helicity intensity values one order of magnitude higher than the corresponding unstenosed cases. Cardiac curvature radius moderately affects near-wall hemodynamics of the stenosed cases, with smaller curvature radius leading to higher exposure to low shear stress and lower exposure to oscillatory shear stress. In conclusion, the proposed controlled benchmark allows investigating the effect of various geometrical features on local hemodynamics at the LAD/diagonal bifurcation, highlighting that cardiac curvature influences near wall and intravascular hemodynamics, while bifurcation angle has a minor effect.  相似文献   

11.
Boundary conditions (BCs) are an essential part in computational fluid dynamics (CFD) simulations of blood flow in large arteries. Although several studies have investigated the influence of BCs on predicted flow patterns and hemodynamic wall parameters in various arterial models, there is a lack of comprehensive assessment of outlet BCs for patient-specific analysis of aortic flow. In this study, five different sets of outlet BCs were tested and compared using a subject-specific model of a normal aorta. Phase-contrast magnetic resonance imaging (PC-MRI) was performed on the same subject and velocity profiles extracted from the in vivo measurements were used as the inlet boundary condition. Computational results obtained with different outlet BCs were assessed in terms of their agreement with the PC-MRI velocity data and key hemodynamic parameters, such as pressure and flow waveforms and wall shear stress related indices. Our results showed that the best overall performance was achieved by using a well-tuned three-element Windkessel model at all model outlets, which not only gave a good agreement with in vivo flow data, but also produced physiological pressure waveforms and values. On the other hand, opening outlet BCs with zero pressure at multiple outlets failed to reproduce any physiologically relevant flow and pressure features.  相似文献   

12.
Computational characterizations of aortic valve hemodynamics have typically discarded the effects of coronary flow. The objective of this study was to complement our previous fluid–structure interaction aortic valve model with a physiologic coronary circulation model to quantify the impact of coronary flow on aortic sinus hemodynamics and leaflet wall shear stress (WSS). Coronary flow suppressed vortex development in the two coronary sinuses and altered WSS magnitude and directionality on the three leaflets, with the most substantial differences occurring in the belly and tip regions.  相似文献   

13.
A risk-factor criterion, based on near-wall haemodynamic conditions, for the assessment of vascular pathology risk is developed and tested. This criterion has its foundation on experimentally observed vascular wall responses to oscillatory and swirling wall shear stress patterns and is applied to the results of computational simulations. We test this model on two anatomically accurate vascular segments, where pathologies are either commonplace or have already been developed, i.e. a healthy carotid bifurcation and a cerebral fusiform aneurysm. In the case of the former, the risk-assessment criterion predicts the emergence of atherosclerosis of the same locations that the disease is usually encountered. In the case of the latter, the risk factor shows increased probability for the appearance of secondary, “baby”, aneurysms at certain locations.  相似文献   

14.
15.
The haemodynamic behaviour of blood inside a coronary artery after stenting is greatly affected by individual stent features as well as complex geometrical properties of the artery including tortuosity and curvature. Regions at higher risk of restenosis, as measured by low wall shear stress (WSS < 0.5 Pa), have not yet been studied in detail in curved stented arteries. In this study, three-dimensional computational modelling and computational fluid dynamics methodologies were used to analyse the haemodynamic characteristics in curved stented arteries using several common stent models. Results in this study showed that stent strut thickness was one major factor influencing the distribution of WSS in curved arteries. Regions of low WSS were found behind struts, particularly those oriented at a large angle relative to the streamwise flow direction. These findings were similar to those obtained in studies of straight arteries. An uneven distribution of WSS at the inner and outer bends of curved arteries was observed where the WSS was lower at the inner bend. In this study, it was also shown that stents with a helical configuration generated an extra swirling component of the flow based on the helical direction; however, this extra swirl in the flow field did not cause significant changes on the distribution of WSS under the current setup.  相似文献   

16.
The application of physical stimuli to cell populations in tissue engineering and regenerative medicine may facilitate significant scientific and clinical advances. However, for the most part, these stimuli are evaluated in isolation, rather than in combination. This study was designed to combine two physical stimuli. The first being a microstructured tissue culture polystyrene substrate, known to produce changes in cell shape and orientation, and the second being laminar shear stress in a parallel plate flow chamber. The combined effects of these stimuli on endothelial cell monolayers cells were evaluated in a parallel plate flow chamber and using a computational fluid dynamics (CFD) model. The topography of the cell monolayers cultured on different microstructured surfaces was determined using confocal laser scanning microscopy (CLSM), and this topographic information was used to construct the CFD model. This research found that while the specific underlying structures were effectively planarized by the cell monolayer, significant differences in cell shape and orientation were observed on the different microstructured surfaces. Cells cultured on grooved substrates aligned in the direction of the grooves and showed higher retention after 1-h LSS conditioning than those cultured on pillars. The modeled shear stress distributions also showed differences. While minor differences in the magnitude of shear stress were noted, aligned cell monolayers experienced significantly lower spatial gradients of shear stress when compared with cells that were not pre-aligned by surface features. The results presented here provide an analysis of how one form of physical stimulus can be moderated by another and also provide a methodology by which the understanding of cell responses to topographic and mechanical stimuli can be further advanced.  相似文献   

17.
Patient-specific inflow rates are rarely available for computational fluid dynamics (CFD) studies of intracranial aneurysms. Instead, inflow rates are often estimated from parent artery diameters via power laws, i.e. Q ∝ Dn, reflecting adaptation of conduit arteries to demanded flow. The present study aimed to validate the accuracy of these power laws. Internal carotid artery (ICA) flow rates were measured from 25 ICA aneurysm patients via 2D phase contrast MRI. ICA diameters, derived from 3D segmentation of rotational angiograms, were used to estimate inflow rates via power laws from the aneurysm CFD literature assuming the same inlet wall shear stress (WSS) (n = 3), velocity (n = 2) or flow rate (n = 0) for all cases. To illustrate the potential impact of errors in flow rate estimates, pulsatile CFD was carried out for four cases having large errors for at least one power law. Flow rates estimated by n = 3 and n = 0 power laws had significant (p < 0.01) mean biases of −22% to +32%, respectively, but with individual errors ranging from −78% to +120%. The n = 2 power law had no significant bias, but had non-negligible individual errors of −58% to +71%. CFD showed similarly large errors for time-averaged sac WSS; however, these were reduced after normalizing by parent artery WSS. High frequency WSS fluctuations, evident in 2/4 aneurysms, were also sensitive to inflow rate errors. Care should therefore be exercised in the interpretation of aneurysm CFD studies that rely on power law estimates of inflow rates, especially if absolute (vs. normalized) WSS, or WSS instabilities, are of interest.  相似文献   

18.
Wall shear stress (WSS) on anchored cells affects their responses, including cell proliferation and morphology. In this study, the effects of the directionality of pulsatile WSS on endothelial cell proliferation and morphology were investigated for cells grown in a Petri dish orbiting on a shaker platform. Time and location dependent WSS was determined by computational fluid dynamics (CFD). At low orbital speed (50 rpm), WSS was shown to be uniform (0-1 dyne/cm(2)) across the bottom of the dish, while at higher orbital speed (100 and 150 rpm), WSS remained fairly uniform near the center and fluctuated significantly (0-9 dyne/cm(2)) near the side walls of the dish. Since WSS on the bottom of the dish is two-dimensional, a new directional oscillatory shear index (DOSI) was developed to quantify the directionality of oscillating shear. DOSI approached zero for biaxial oscillatory shear of equal magnitudes near the center and approached one for uniaxial pulsatile shear near the wall, where large tangential WSS dominated a much smaller radial component. Near the center (low DOSI), more, smaller and less elongated cells grew, whereas larger cells with greater elongation were observed in the more uniaxial oscillatory shear (high DOSI) near the periphery of the dish. Further, cells aligned with the direction of the largest component of shear but were randomly oriented in low magnitude biaxial shear. Statistical analyses of the individual and interacting effects of multiple factors (DOSI, shear magnitudes and orbital speeds) showed that DOSI significantly affected all the responses, indicating that directionality is an important determinant of cellular responses.  相似文献   

19.
Endothelial cells (ECs) respond to flow stress via a variety of mechanisms, leading to various intracellular responses that can modulate the vessel wall and lead to diseases if the flow is disturbed. Mechano-microRNAs (miRNAs) are a subset of miRNAs in the ECs that are flow responsive. Mechano-miRNAs were shown to be related to atherosclerosis pathophysiology, and a number of them were identified as pathologic. Here, we exposed human carotid ECs to different wall shear stresses (WSS), high and low, and evaluated the response of miRNAs by microarray and quantitative polymerase chain reaction analysis. We discovered five new mechano-miRNAs that were not reported in that context previously to the best of our knowledge. Moreover, functional pathway analysis revealed that under low WSS conditions, several pathways regulating apoptosis are affected. In addition, KLF2 and KLF4, known atheroprotective genes, were downregulated under low WSS and upregulated under high WSS. KLF2 and VCAM1, both angiogenic, were upregulated under high WSS. NOS3, which is vascular protective, was also upregulated with higher WSS. On the contrary, ICAM-1 and E-selectin, both atherogenic and proinflammatory, were upregulated with high WSS. Collectively, the epigenetic landscape with the gene expression analysis reveals that low WSS is associated with a proapoptotic state, while high WSS is associated with a proliferative and proinflammatory state.  相似文献   

20.
搅拌桨是高好氧高黏度微生物发酵实现高效反应必不可少的因素之一,不同搅拌桨组合对发酵过程的影响十分重要。威兰胶是由产碱杆菌在高耗氧高粘度发酵体系下合成的胞外微生物多糖,广泛应用于水泥、石油、油墨、食品等行业中。本研究借助于计算流体力学(Computational fluid dynamics,CFD)的方法,以威兰胶发酵液体系为研究体系,研究了6种不同搅拌桨组合在反应器内流体速率分布、剪切速率、和气含率等参数。将模拟效果较好的3种组合用于威兰胶发酵过程。研究表明MB-4-6搅拌桨组合对改善发酵罐内部的溶氧及流场分布效果最明显,威兰胶产量水平提高了13%。同时在该组合下威兰胶的产品粘度得到有效提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号