首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The in vivo assembly of ribosomal subunits requires assistance by auxiliary proteins that are not part of mature ribosomes. More such assembly proteins have been identified for the assembly of the 50S than for the 30S ribosomal subunit. Here, we show that the RimP protein (formerly YhbC or P15a) is important for the maturation of the 30S subunit. A rimP deletion (ΔrimP135) mutant in Escherichia coli showed a temperature-sensitive growth phenotype as demonstrated by a 1.2-, 1.5-, and 2.5-fold lower growth rate at 30, 37, and 44 °C, respectively, compared to a wild-type strain. The mutant had a reduced amount of 70S ribosomes engaged in translation and showed a corresponding increase in the amount of free ribosomal subunits. In addition, the mutant showed a lower ratio of free 30S to 50S subunits as well as an accumulation of immature 16S rRNA compared to a wild-type strain, indicating a deficiency in the maturation of the 30S subunit. All of these effects were more pronounced at higher temperatures. RimP was found to be associated with free 30S subunits but not with free 50S subunits or with 70S ribosomes. The slow growth of the rimP deletion mutant was not suppressed by increased expression of any other known 30S maturation factor.  相似文献   

3.
Abstract

Colicin E3 kills Escherichia coli cells by ribonucleolytic cleavage in the 16S rRNA. The cleavage occurs at the ribosomal decoding A-site between nucleotides A1493 and G1494. The breaking of this single phosphodiester bond results in a complete termination of protein biosynthesis leading to cell death. A model structure of the complex of the ribosomal subunit 30S and colicin E3 was constructed by means of a new weighted-geometric docking algorithm, in which interactions involving specified parts of the molecular surface can be up-weighted, allowing incorporation of experimental data in the docking search. Our model, together with available experimental data, predicts the role of the catalytic residues of colicin E3. In addition, it suggests that bound acidic immunity protein inhibits the enzymatic activity of colicin E3 by electrostatic repulsion of the negatively charged substrate.  相似文献   

4.
The highly conserved bacterial ybeY gene is a heat shock gene whose function is not fully understood. Previously, we showed that the YbeY protein is involved in protein synthesis, as Escherichia coli mutants with ybeY deleted exhibit severe translational defects in vivo. Here we show that the in vitro activity of the translation machinery of ybeY deletion mutants is significantly lower than that of the wild type. We also show that the lower efficiency of the translation machinery is due to impaired 30S small ribosomal subunits.Many heat shock proteins are chaperones and proteases that constitute the protein quality control system (4, 5, 13, 18). Recent studies demonstrated that beyond protein quality control, the heat shock response includes proteins implemented in the translation machinery (16, 17), such as FtsJ (2, 3) and Hsp15 (11).FtsJ catalyzes methylation of U2552 in 23S rRNA (3). This modification occurs during the final steps of 50S biogenesis and is important for the structural stability of the 50S subunit (2). ftsJ deletion mutants accumulate ribosomal subunits at the expense of polysomes (2). Consequently, crude ribosome extracts prepared from ftsJ deletion mutants are far less active than wild-type preparations (3). Hsp15 recognizes and binds with high affinity to the aberrant state of the 50S subunit in complex with peptidyl tRNA positioned at the A site (10), which is more frequent at high temperatures (10). It has been proposed that Hsp15 participates in releasing the bound peptide and thereby helps recycle the 50S subunit (8, 10). Thus, heat shock proteins play a significant role both in the biogenesis of ribosomes and in the translation process.YbeY is a 17-kDa heat shock protein, highly conserved among bacteria, that belongs to the UPF0054 family of metal-dependent hydrolases, suggesting that it may have a potential hydrolytic function (14, 21). In Aquifex aeolicus, analysis of YbeY structure homology showed similarity to eukaryotic extracellular proteinases such as collagenase and gelatinase. However, in vitro experiments could not detect collagenase, gelatinase, or other hydrolase activity in YbeY (14).Recently, we showed that ybeY deletion mutants exhibit severe translational defects manifested by a very low level of polysomes and accumulation of free ribosomes and ribosomal subunits, indicating that most ribosomes in the cell are not engaged in translation. This translational defect intensifies at elevated temperatures (42°C) and results in growth arrest (17).Here we present in vitro studies indicating that the activity of the translation machinery prepared from ybeY deletion mutants is lower than in the wild type. In addition, we show that this lower activity stems specifically from a defective 30S ribosomal subunit.  相似文献   

5.
A comparative study of the 30S ribosomal subunit in the complex with protein S1 and the subunit depleted of this protein has been carried out by the hot tritium bombardment method. Differences in exposure of some ribosomal proteins within the 30S subunit depleted of S1 and within the 30S–S1 complex were found. It was concluded that protein S1 binds in the region of the neck of the 30S ribosomal subunit inducing a conformational change of its structure.  相似文献   

6.
Ribonuclease T(1) treatment of 30S ribosomes of Escherichia coli converts a large region at the 3' OH end of 16S ribosomal ribonucleic acid (rRNA) to low-molecular-weight RNA. The final 25 nucleotides at the 3' terminus of the molecule emerge relatively intact, whereas most of the region "upstream," for about 150 nucleotides, is converted to oligonucleotides. Identical enzyme treatment generates a fragment of about 60 nucleotides from the middle of 16S rRNA (section D'). To determine whether there are similar sequences in other bacteria, which occupy similar accessible surface locations, we treated 30S ribosomes from Azotobacter vinelandii and Bacillus stearothermophilus with RNase T(1). In each case, a fragment of RNA about 25 nucleotides in length containing the 3' OH end of 16S rRNA and a fragment of about 60 nucleotides in length similar, but not identical, in oligonucleotide composition to section D' of E. coli 16S rRNA were obtained from nuclease-treated 30S ribosomes. These data indicate that, although the primary structure at the 3' end and the middle (section D') of the various 16S rRNA's is not completely conserved, their respective conformations are conserved. A number of identical oligonucleotides were found in the low-molecular-weight fraction obtained from RNase T(1)-treated E. coli, A. vinelandii, and B. stearothermophilus 30S ribosomes. These results show that identical RNase T(1)-sensitive sequences are present in all three bacteria. Hydrolysis of these regions leads to the production of the fragments 25 and 60 nucleotides in length.  相似文献   

7.
Abstract

E. coli 30S ribosomes in the inactive conformation were irradiated at 390 nm in the presence of 4′ -aminomethyl-4,5′,8-trimethylpsoralen (AMT). This produces monoadducts in which AMT is attached to only one strand of an RNA duplex region. After unbound AMT was removed, some ribosomes were activated and then subjected to 360 nm irradiation; others were reirradiated without activation. Electron microscopic examination of 16S rRNA extracted from these two samples showed covalent rRNA loops indicative of rRNA crosslinks. The general pattern of loops closely matched that seen previously after direct psoralen crosslinking of 30S particles. However, the frequency of occurrence of one major class of loops formed by crosslinks between residues near position 500 and the 3′ end was substantially lower for the activated samples, implying that the structure of the 16S rRNA in active and inactive 30S particles is different.  相似文献   

8.
Linezolid is an oxazolidinone compound that has been shown to have impressive antimicrobial activity against a number of Gram-positive bacteria. It inhibits an initiation step of protein synthesis, and its binding site has been shown to be on the 50S ribosomal subunit. Linezolid was tested to see whether would interfere with the formation of the 50S subunit in Staphylococcus aureus cells, since a number of other 50S-specific antibiotics have this second inhibitory function. Linezolid inhibited protein synthesis in S. aureus cells with an IC50 of 0.3 μg/ml. A concentration-dependent decline in cell number with an increase in generation time was found. Pulse-chase labeling studies revealed a specific inhibitory effect on 50S particle formation, with no effect on 30S subunit assembly. The compound inhibited 50S synthesis with an IC50 of 0.6 μg/ ml, indicating an equivalent effect on translation and particle assembly. A postantibiotic effect of 1 h was found when cells were initially treated with the drug at 2 μg/ ml. 50S particle numbers recovered more rapidly than translational capacity, consistent with the increase in viable cell numbers. The inhibitory activities of this novel antimicrobial agent in cells are discussed. Received: 28 June 2001 / Accepted: 27 August 2001  相似文献   

9.
10.
30 S subunits of Escherichia coli ribosomes washed with 3 m-NH4C1 lose proteins S2, S3, S9, S10, S14, S20 and S21, as well as their ability to bind S1 with high affinity (Laughrea and Moore, 1978). Binding activity is restored when the split proteins are added back to the protein-deficient cores. Here we show that, among the split proteins, S9 is by far the most effective in restoring S1 binding capability to 3 m-NH4Cl cores.  相似文献   

11.
On SDS-polyacrylamide gel electrophoresis, sesame seed 13S globulin was separated into three intermediary subunits termed IS1 IS2 and IS3. Following a treatment with 0.2M 2-mercaptoethanol, the globulin was separated into three acidic subunits termed AS1 AS2 and AS3, and four basic subunits termed BS1 BS2, BS3 and BS4. Two dimensional SDS-gel electrophoresis before and after treatment with 0.2 M 2-mercaptoethanol revealed that IS1 was composed of two combinations of acidic and basic subunits, these being S1 and BS2, and AS2 and BS2. IS2 was found to be composed of AS3 and BS1, and IS3 was composed of AS2 and BS3, and AS2 and BS4. These combinations were consistent with the reactivity of each subunit to a fluorescent thiol reagent. The amino acid compositions were similar among the three acidic subunits and also among the four basic subunits. However, between the acidic and basic subunits, there were great differences in the amino acid composition, especially in the amount of glutamic acid.  相似文献   

12.
The acidic and the basic subunits were shown to be present in equimolar amounts in the 11S globulin molecule by the densitometric scanning of the SDS gel and the molecular weight consideration. The four acidic subunits (A1, A2, A3 and A4) were found to be present in the approximate molar ratio of 1:1:2:2. Four basic subunits separated and designated as B1, B2, B3 and B4 based on the relative mobilities in the acidic gel in 7 m urea were found to be present in the approximate molar ratio of 1:1:2:2. The four basic subunits were fractionated in approximately same amounts into three different peaks, peak I (B1 and B2), peak II (B3) and peak III (B4) by CM-Sephadex C–50 column chromatography in the presence of 6 m urea. Three kinds of intermediary subunits of 11S globulin were fractionated with DEAE-Sephadex A–50 in the absence of reducing agents in 6 m urea, and disulfide bonds appeared to participate in the binding between the acidic and the basic subunits in the molar ratio of 1: 1 with the following combinations; A1 and A2 combined with B3, A3 with B1 and B2, and A4 with B4. In view of the above results and molecular weight consideration, a new model of subunit structure was proposed for 11S globulin.  相似文献   

13.
Individual proteins from the 30S ribosome of Salmonella typhimurium were isolated and compared with their counterparts in Escherichia coli. Amino acid composition data reveal either no significant differences, or only minor differences in a few residues between paired proteins. Tryptic peptide fingerprints were used to amplify any possible differences between protein pairs.  相似文献   

14.
The reliable repair of pre-mutagenic U/G mismatches that originated from hydrolytic cytosine deamination is crucial for the maintenance of the correct genomic information. In most organisms, any uracil base in DNA is attacked by uracil DNA glycosylases (UDGs), but at least in Methanothermobacter thermautotrophicus ΔH, an alternative strategy has evolved. The exonuclease III homologue Mth212 from the thermophilic archaeon M. thermautotrophicus ΔH exhibits a DNA uridine endonuclease activity in addition to the apyrimidinic/apurinic site endonuclease and 3′ → 5′exonuclease functions. Mth212 alone compensates for the lack of a UDG in a single-step reaction thus substituting the two-step pathway that requires the consecutive action of UDG and apyrimidinic/apurinic site endonuclease.In order to gain deeper insight into the structural basis required for the specific uridine recognition by Mth212, we have characterized the enzyme by means of X-ray crystallography. Structures of Mth212 wild-type or mutant proteins either alone or in complex with DNA substrates and products have been determined to a resolution of up to 1.2 Å, suggesting key residues for the uridine endonuclease activity. The insertion of the side chain of Arg209 into the DNA helical base stack resembles interactions observed in human UDG and seems to be crucial for the uridine recognition. In addition, Ser171, Asn153, and Lys125 in the substrate binding pocket appear to have important functions in the discrimination of aberrant uridine against naturally occurring thymidine and cytosine residues in double-stranded DNA.  相似文献   

15.
The aim of this study was to compare the usefulness of complete small and large subunit rRNA, and a combination of both molecules, for reconstructing stramenopile evolution. To this end, phylogenies from species of which both sequences are known Acre constructed with the neighbor-joining, maximum parsimony, and maximum likelihood methods. Also the use of structural features of the rRNAs was evaluated. The large subunit rRNA from the diatom Skeletonema pseudocostatum was sequenced in order to have a more complete taxon sampling, and a group I intron was identified. Our results indicated that heterokont algae are monophyletic, with diatoms diverging first. However, as the analysis was restricted to a particular data set containing merely six taxa, the outcome has limited value for elucidating stramenopile relationships. On the other hand, this approach permits comparison of the performance of both rRNA molecules without interference from other factors, such as a different species selection for each molecule. For the taxa used, the large subunit rRNA clearly contained more phylogenetic information than the small subunit rRNA. Although this result can definitely not be generalized and depends on the phvlogeny to be studied, in some cases determining complete large subunit rRNA sequences certainly seems worthwhile.  相似文献   

16.
17.
SecA is an ATP-dependent molecular motor pumping secretory and outer membrane proteins across the cytoplasmic membrane in bacteria. SecA associates with the protein-conducting channel, the heterotrimeric SecYEG complex, in a so-called posttranslational manner. A recent study further showed binding of a monomeric state of SecA to the ribosome. However, the true oligomeric state of SecA remains controversial because SecA can also form functional dimers, and high-resolution crystal structures exist for both the monomer and the dimer. Here we present the cryo-electron microscopy structures of Escherichia coli SecA bound to the ribosome. We show that not only a monomeric SecA binds to the ribosome but also that two copies of SecA can be observed that form an elongated dimer. Two copies of SecA completely surround the tunnel exit, providing a unique environment to the nascent polypeptides emerging from the ribosome. We identified the N-terminal helix of SecA required for a stable association with the ribosome. The structures indicate a possible function of the dimeric form of SecA at the ribosome.  相似文献   

18.
Ribosomal protein L3 is an evolutionarily conserved protein that participates in the assembly of early pre-60S particles. We report that the rpl3[W255C] allele, which affects the affinity and function of translation elongation factors, impairs cytoplasmic maturation of 20S pre-rRNA. This was not seen for other mutations in or depletion of L3 or other 60S ribosomal proteins. Surprisingly, pre-40S particles containing 20S pre-rRNA form translation-competent 80S ribosomes, and translation inhibition partially suppresses 20S pre-rRNA accumulation. The GTP-dependent translation initiation factor Fun12 (yeast eIF5B) shows similar in vivo binding to ribosomal particles from wild-type and rpl3[W255C] cells. However, the GTPase activity of eIF5B failed to stimulate processing of 20S pre-rRNA when assayed with ribosomal particles purified from rpl3[W255C] cells. We conclude that L3 plays an important role in the function of eIF5B in stimulating 3′ end processing of 18S rRNA in the context of 80S ribosomes that have not yet engaged in translation. These findings indicate that the correct conformation of the GTPase activation region is assessed in a quality control step during maturation of cytoplasmic pre-ribosomal particles.  相似文献   

19.
The cellulosome complex is composed of a conglomerate of subunits, each of which comprises a set of interacting functional modules. Scaffoldin (Sca), a major cellulosomal subunit, is responsible for organizing the cellulolytic subunits into the complex. This is accomplished by the interaction of two complementary classes of modules—a cohesin (Coh) module on the Sca subunit and a dockerin module on each of the enzymatic subunits. Although individual Coh modules from different cellulosomal scaffoldins have been subjected to intensive structural investigation, the Sca subunit in its entirety has not, and there remains a paucity of information on the arrangement and interactions of Cohs within the Sca subunit. In the present work, we describe the crystal structure of a type II Coh dyad from the ScaB “adaptor” Sca of Acetivibrio cellulolyticus. The ScaB Cohs are oriented in an “antiparallel” manner relative to one another, with their dockerin-interacting surfaces (β-strands 8-3-6-5) facing the same direction—aligned on the same plane. A set of extensive hydrophobic and hydrogen-bond contacts between the Cohs and the short interconnecting linker segment between them stabilizes the modular orientation. This Coh dyad structure provides novel information about Coh-Coh association and arrangement in the Sca and further insight into intermodular linker interactions. Putative structural arrangements of a hexamodular complex, composed of the Coh dyad bound to two X-dockerin modules, were suggested.  相似文献   

20.
Russian Journal of Bioorganic Chemistry - Synchronized operation of various parts of the ribosome during protein synthesis implies the presence of a coordinating pathway, however, this is still...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号