共查询到20条相似文献,搜索用时 15 毫秒
1.
Different studies have analyzed the potential of the off-the-shelf Microsoft Kinect, in its different versions, to estimate spatiotemporal gait parameters as a portable markerless low-cost alternative to laboratory grade systems. However, variability in populations, measures, and methodologies prevents accurate comparison of the results. The objective of this study was to determine and compare the reliability of the existing Kinect-based methods to estimate spatiotemporal gait parameters in healthy and post-stroke adults. Forty-five healthy individuals and thirty-eight stroke survivors participated in this study. Participants walked five meters at a comfortable speed and their spatiotemporal gait parameters were estimated from the data retrieved by a Kinect v2, using the most common methods in the literature, and by visual inspection of the videotaped performance. Errors between both estimations were computed. For both healthy and post-stroke participants, highest accuracy was obtained when using the speed of the ankles to estimate gait speed (3.6–5.5 cm/s), stride length (2.5–5.5 cm), and stride time (about 45 ms), and when using the distance between the sacrum and the ankles and toes to estimate double support time (about 65 ms) and swing time (60–90 ms). Although the accuracy of these methods is limited, these measures could occasionally complement traditional tools. 相似文献
2.
The objective was to assess the intra-tester, within and between day reliability of measurement of hip adduction (HADD) and frontal plane projection angles (FPPA) during single leg squat (SLS) and single leg landing (SLL) using 2D video and the validity of these measurements against those found during 3D motion capture. 15 healthy subjects had their SLS and SLL assessed using 3D motion capture and video analysis. Inter-tester reliability for both SLS and SLL when measuring FPPA and HADD show excellent correlations (ICC2,1 0.97–0.99). Within and between day assessment of SLS and SLL showed good to excellent correlations for both variables (ICC3,1 0.72–91). 2D FPPA measures were found to have good correlation with knee abduction angle in 3-D (r = 0.79, p = 0.008) during SLS, and also to knee abduction moment (r = 0.65, p = 0.009). 2D HADD showed very good correlation with 3D HADD during SLS (r = 0.81, p = 0.001), and a good correlation during SLL (r = 0.62, p = 0.013). All other associations were weak (r < 0.4). This study suggests that 2D video kinematics have a reasonable association to what is being measured with 3D motion capture. 相似文献
3.
Background
Routine ergonomic assessment of postures and gestures in the workplace are mostly conducted by visual observations, either direct or based on video recordings. Nowadays, low-cost three-dimensional cameras like Microsoft Kinect offers the possibility of recording the full kinematics of workers in a non-intrusive way, providing a more precise, and reliable assessment of their motor strategies.Methods
We have developed a tracking application using the Kinect SDK for Windows in C?, allowing the simultaneous recording of the three-dimensional coordinates of all the body points tracked by the Microsoft Kinect at a sampling frequency of 30 Hz and an expected accuracy of 3 cm. Measurements are performed on violinists, whose playing is representative of a work situation involving repeated gestures and postures that can be described as non-ergonomic.Results
Microsoft Kinect can be efficiently used to quantify the motion performed by the violinists. Playing strategies can even be noticed despite the low-cost nature of the sensor used.Conclusion
Low-cost three-dimensional cameras can be a useful aid in ergonomic risk assessment of developing musculoskeletal disorders and give the example of the repetition of movements and postural items included in the OCRA checklist, whose scoring can be facilitated by such a device. 相似文献4.
Greene BR Foran TG McGrath D Doheny EP Burns A Caulfield B 《Journal of applied biomechanics》2012,28(3):349-355
This study compares the performance of algorithms for body-worn sensors used with a spatiotemporal gait analysis platform to the GAITRite electronic walkway. The mean error in detection time (true error) for heel strike and toe-off was 33.9 ± 10.4 ms and 3.8 ± 28.7 ms, respectively. The ICC for temporal parameters step, stride, swing and stance time was found to be greater than 0.84, indicating good agreement. Similarly, for spatial gait parameters--stride length and velocity--the ICC was found to be greater than 0.88. Results show good to excellent concurrent validity in spatiotemporal gait parameters, at three different walking speeds (best agreement observed at normal walking speed). The reported algorithms for body-worn sensors are comparable to the GAITRite electronic walkway for measurement of spatiotemporal gait parameters in healthy subjects. 相似文献
5.
It has been shown that gait parameters vary systematically with the slope of the surface when walking uphill (UH) or downhill (DH) (Andriacchi et al., 1977; Crowe et al., 1996; Kawamura et al., 1991; Kirtley et al., 1985; McIntosh et al., 2006; Sun et al., 1996). However, gait trials performed on inclined surfaces have been subject to certain technical limitations including using fixed speed treadmills (TMs) or, alternatively, sampling only a few gait cycles on inclined ramps. Further, prior work has not analyzed upper body kinematics. This study aims to investigate effects of slope on gait parameters using a self-paced TM (SPTM) which facilitates more natural walking, including measuring upper body kinematics and gait coordination parameters.Gait of 11 young healthy participants was sampled during walking in steady state speed. Measurements were made at slopes of +10°, 0° and −10°. Force plates and a motion capture system were used to reconstruct twenty spatiotemporal gait parameters. For validation, previously described parameters were compared with the literature, and novel parameters measuring upper body kinematics and bilateral gait coordination were also analyzed.Results showed that most lower and upper body gait parameters were affected by walking slope angle. Specifically, UH walking had a higher impact on gait kinematics than DH walking. However, gait coordination parameters were not affected by walking slope, suggesting that gait asymmetry, left-right coordination and gait variability are robust characteristics of walking. The findings of the study are discussed in reference to a potential combined effect of slope and gait speed. Follow-up studies are needed to explore the relative effects of each of these factors. 相似文献
6.
Water footprint assessment for service sector: A case study of gaming industry in water scarce Macao
Although numerous studies have been carried out to investigate the water footprint of different economies at global, national and regional scales, the research on water footprint of individual economic sector, which is the elementary part of each economy, is still lacking. To fill the gap, this paper for the first time employs a hybrid method to evaluate the water footprint of gaming industry in water scarce Macao, based on the latest statistics and most exhaustive embodied water intensity databases. The results show that direct water use only accounts for extremely small fraction of the gaming industry's water footprint, indicating that the exchange of water embodied in product and service between different sectors is also a useful mean to satisfy individual sector's demand for water resources. As Macao's demand for water is growing, integrated plans including economic instruments and measures like reducing the scale of commission input and promoting efficiency would ease Macao's water pressure. Water footprint assessment in this study brings along new perspectives on gaming industry's water management and encourages wise use of goods, materials and services in a sustainable way. 相似文献
7.
Participation in running events has increased recently, with a concomitant increase in the rate of running related injuries (RRI). Mechanical overload is thought to be a primary cause of RRI, it is often detected using motion analysis to examine running mechanics during either overground or treadmill running. In treadmill running, no clear consensus for the number of strides required to establish stable kinematic data exists. The aim of this study was to establish the number of strides needed for stable data when analysing gait kinematics in the stance phase of treadmill running. Twenty healthy, masters age group, club runners completed a high intensity interval training run (HIIT) and an energy-expenditure matched medium intensity continuous run (MICR). Thirty consecutive strides at start and end of each run were identified. Sequential averaging was employed to determine the number of strides required to establish a stable value. No significant differences existed in the number of strides required to achieve stable values. Twenty consecutive strides are required to be 95% confident stable values exist for maximum angle, angle at initial foot contact, and range of motion at the ankle, knee, and hip joints variables at the ankle, knee, and hip joints, in all three planes of motion, and spatiotemporal regardless of running speed and time of capture. 相似文献
8.
RGB-D cameras provide 3-D body joint data in a low-cost, portable and non-intrusive way, when compared with reference motion capture systems used in laboratory settings. In this contribution, we evaluate the validity of both Microsoft Kinect versions (v1 and v2) for motion analysis against a Qualisys system in a simultaneous protocol. Two different walking directions in relation to the Kinect (towards – WT, and away – WA) were explored. For each gait trial, measures related with all body parts were computed: velocity of all joints, distance between symmetrical joints, and angle at some joints. For each measure, we compared each Kinect version and Qualisys by obtaining the mean true error and mean absolute error, Pearson’s correlation coefficient, and optical-to-depth ratio. Although both Kinect v1 and v2 and/or WT and WA data present similar accuracy for some measures, better results were achieved, overall, when using WT data provided by the Kinect v2, especially for velocity measures. Moreover, the velocity and distance presented better results than angle measures. Our results show that both Kinect versions can be an alternative to more expensive systems such as Qualisys, for obtaining distance and velocity measures as well as some angles metrics (namely the knee angles). This conclusion is important towards the off-lab non-intrusive assessment of motor function in different areas, including sports and healthcare. 相似文献
9.
Evaluation of a method to scale muscle strength for gait simulations of children with cerebral palsy
Cerebral palsy (CP) is a neurological disorder that results in life-long mobility impairments. Musculoskeletal models used to investigate mobility deficits for children with CP often lack subject-specific characteristics such as altered muscle strength, despite a high prevalence of muscle weakness in this population. We hypothesized that incorporating subject-specific strength scaling within musculoskeletal models of children with CP would improve accuracy of muscle excitation predictions in walking simulations. Ten children (13.5 ± 3.3 years; GMFCS level II) with spastic CP participated in a gait analysis session where lower-limb kinematics, ground reaction forces, and bilateral electromyography (EMG) of five lower-limb muscles were collected. Isometric strength was measured for each child using handheld dynamometry. Three musculoskeletal models were generated for each child including a ‘Default’ model with the generic musculoskeletal model’s muscle strength, a ‘Uniform’ model with muscle strength scaled allometrically, and a ‘Custom’ model with muscle strength scaled based on handheld dynamometry strength measures. Muscle-driven gait simulations were generated using each model for each child. Simulation accuracy was evaluated by comparing predicted muscle excitations and measured EMG signals, both in the duration of muscle activity and the root-mean-square difference (RMSD) between signals. Improved agreement with EMG were found in both the ‘Custom’ and ‘Uniform’ models compared to the ‘Default’ model indicated by improvement in RMSD summed across all muscles, as well as RMSD and duration of activity for individual muscles. Incorporating strength scaling into musculoskeletal models can improve the accuracy of walking simulations for children with CP. 相似文献
10.
The Harmonic Ratio (HR) is an index based on the spectral analysis of lower trunk accelerations that is commonly used to assess the quality of gait. However, it presents several issues concerning reliability and interpretability. As a consequence, the literature provides very different values albeit corresponding to the same populations. In the present work, an improved harmonic ratio (iHR) was defined, relating the power of the intrinsic harmonics (i.e. associated with the symmetric component of gait) to the total power of the signal for each stride, leading to a normalised index ranging from 0 to 100%. The effect of the considered number of harmonics and strides on the estimate of both HR and iHR was assessed. The gait of three groups of volunteers was investigated: young healthy adults, elderly women and male trans-femoral amputees. Both HR and iHR were able to discriminate gait deviations from the gait of young healthy adults. Moreover, iHR proved to be more robust with respect to the number of considered harmonics and strides, and to exhibit a lower inter-stride variability. Additionally, using a normalised index as iHR led to a more straightforward interpretation and improved comparability. The importance of standardised conditions for the index evaluation was unveiled, and, in order to enhance the future comparability of the index, the following guidelines were presented: considering at least 20 harmonics and 20 strides; expressing the acceleration components in a repeatable, anatomical, local system of reference; and evaluating the iHR index, rather than the traditional HR. 相似文献
11.
12.
A reanalysis of locomotor data from functional, energetic, mechanical and ecological perspectives reveals that limb posture has major effects on limb biomechanics, energy-saving mechanisms and the costs of locomotion. Regressions of data coded by posture (crouched vs. erect) reveal nonlinear patterns in metabolic cost, limb muscle mass, effective mechanical advantage, and stride characteristics. In small crouched animals energy savings from spring and pendular mechanisms are inconsequential and thus the metabolic cost of locomotion is driven by muscle activation costs. Stride frequency appears to be the principal functional parameter related to the decreasing cost of locomotion in crouched animals. By contrast, the shift to erect limb postures invoked a series of correlated effects on the metabolic cost of locomotion: effective mechanical advantage increases, relative muscle masses decrease, metapodial limb segments elongate dramatically (as limbs shift from digitigrade to unguligrade designs) and biological springs increase in size and effectiveness. Each of these factors leads to decreases in the metabolic cost of locomotion in erect forms resulting from real and increasing contributions of pendular savings and spring savings. Comparisons of the relative costs and ecological relevance of different gaits reveal that running is cheaper than walking in smaller animals up to the size of dogs but running is more expensive than walking in horses. Animals do not necessarily use their cheapest gaits for their predominant locomotor activity. Therefore, locomotor costs are driven more by ecological relevance than by the need to optimize locomotor economy. 相似文献
13.
David B. Burr Dennis P. Van Gerven Bonnie L. Gustav 《American journal of physical anthropology》1977,47(2):273-278
The present research was undertaken to determine the effects of sexual dimorphism in the human pelvis and femur on the mechanics of human locomotion. The analysis was based on six biomechanical variables determined from 25 male and 32 female skeletal remains from the Dickson Mound site. Discriminant function analysis indicates that the mechanical variables which primarily contribute to dimorphism are the moment arm of the gluteus medius and the torque produced by the abductors at the hip. These mechanical aspects of hip function produce greater pressure on the femoral head in females. 相似文献
14.
The dynamic properties of instrumented treadmills influence the force measurement of the embedded force platform. We investigated these properties using a frequency response function, which evaluates the ratio between the measured and applied forces in the frequency domain. For comparison, the procedure was also performed on the gold-standard ground-embedded force platform. A predictive model of the systematic error of both types of force platform was then developed and tested against different input signals that represent three types of running patterns. Results show that the treadmill structure distorts the measured force signal. We then modified this structure with a simple stiffening frame in an attempt to reduce measurement error. Consequently, the overall absolute error was reduced (−22%), and the error in force-derived metrics was also sufficiently reduced: −68% for average loading rate error and −80% for impact peak error. Our procedure shows how to measure, predict, and reduce systematic dynamic error associated with treadmill-installed force platforms. We suggest this procedure should be implemented to appraise data quality, and frequency response function values should be included in research reports. 相似文献
15.
16.
Statistical inference for bounds of random variables 总被引:5,自引:0,他引:5
17.
The use of inertial measurement units (IMUs) for gait analysis has emerged as a tool for clinical applications. Shank gyroscope signals have been utilized to identify heel-strike and toe-off, which serve as the foundation for calculating temporal parameters of gait such as single and double limb support time. Recent publications have shown that toe-off occurs later than predicted by the dual minima method (DMM), which has been adopted as an IMU-based gait event detection algorithm. In this study, a real-time algorithm, Noise-Zero Crossing (NZC), was developed to accurately compute temporal gait parameters. Our objective was to determine the concurrent validity of temporal gait parameters derived from the NZC algorithm against parameters measured by an instrumented walkway. The accuracy and precision of temporal gait parameters derived using NZC were compared to those derived using the DMM. The results from Bland-Altman Analysis showed that the NZC algorithm had excellent agreement with the instrumented walkway for identifying the temporal gait parameters of Gait Cycle Time (GCT), Single Limb Support (SLS) time, and Double Limb Support (DLS) time. By utilizing the moment of zero shank angular velocity to identify toe-off, the NZC algorithm performed better than the DMM algorithm in measuring SLS and DLS times. Utilizing the NZC algorithm’s gait event detection preserves DLS time, which has significant clinical implications for pathologic gait assessment. 相似文献
18.
Sunwoo Park Kihong Ryu Jungyoon Kim Jongsang Son 《Computer methods in biomechanics and biomedical engineering》2013,16(11):1129-1135
In this study, we have analysed heel strike (HS) and toe off (TO) of normal individuals and hemiplegic patients, taking advantage of output curves acquired from various sensors, and verified the validity of sensor detection methods and their effectiveness when they were used for hemiplegic gaits. Gait phase detections using three different motion sensors were valid, since they all had reliabilities more than 95%, when compared with foot velocity algorithm. Results showed that the tilt sensor and the gyrosensor could detect gait phase more accurately in normal individuals. Vertical acceleration could detect HS most accurately in hemiplegic patient group A. The gyrosensor could detect HS and TO most accurately in hemiplegic patient groups A and B. The detection of TO from all sensor signals was valid in both the patient groups A and B. However, the vertical acceleration detected HS validly in patient group A and the gyrosensor detected HS validly in patient group B. 相似文献
19.
New research and development efforts using computational chemistry in studying an assessment of the validity of different quantum chemical methods to describe the molecular and electronic structures of some corrosion inhibitors were introduced. The standard and the highly accurate CCSD method with 6-311++G(d,p), ab initio calculations using the HF/6-31G++(d,p) and MP2 with 6-311G(d,p), 6-31++G(d,p), and 6-311++G(2df,p) methods as well as DFT method at the B3LYP, BP86, B3LYP*, M06L, and M062x/6-31G++(d,p) basis set level were performed on some triazole derivatives and sulfur containing compounds used as corrosion inhibitors. Quantum chemical parameters, such as the energy of the highest occupied molecular orbital energy (EHOMO), the energy of the lowest unoccupied molecular orbital energy (ELUMO), energy gap (ΔE), dipole moment (μ), sum of total negative charges (TNC), chemical potential (Pi), electronegativity (χ), hardness (η), softness (σ), local softness (s), Fukui functions (f +,f ?), electrophilicity (ω), the total energy change (?ET) and the solvation energy (S.E), were calculated. Furthermore, the accuracy and the applicability of these methods were estimated relative to the highest accuracy and standard CCSD with 6-311++G(d,p) method. Good correlations between the quantum chemical parameters and the corresponding inhibition efficiency (IE%) were found. 相似文献
20.
In vivo estimates of tibiotalar and the subtalar joint kinematics can unveil unique information about gait biomechanics, especially in the presence of musculoskeletal disorders affecting the foot and ankle complex. Previous literature investigated the ankle kinematics on ex vivo data sets, but little has been reported for natural walking, and even less for pathological and juvenile populations. This paper proposes an MRI-based morphological fitting methodology for the personalised definition of the tibiotalar and the subtalar joint axes during gait, and investigated its application to characterise the ankle kinematics in twenty patients affected by Juvenile Idiopathic Arthritis (JIA). The estimated joint axes were in line with in vivo and ex vivo literature data and joint kinematics variation subsequent to inter-operator variability was in the order of 1°. The model allowed to investigate, for the first time in patients with JIA, the functional response to joint impairment. The joint kinematics highlighted changes over time that were consistent with changes in the patient’s clinical pattern and notably varied from patient to patient. The heterogeneous and patient-specific nature of the effects of JIA was confirmed by the absence of a correlation between a semi-quantitative MRI-based impairment score and a variety of investigated joint kinematics indexes. In conclusion, this study showed the feasibility of using MRI and morphological fitting to identify the tibiotalar and subtalar joint axes in a non-invasive patient-specific manner. The proposed methodology represents an innovative and reliable approach to the analysis of the ankle joint kinematics in pathological juvenile populations. 相似文献