首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The oestrous cycles of fourteen red deer hinds (six yearling; eight more than 2 years old) were synchronized during the early breeding season by removal of a progesterone-containing intravaginal device and blood samples were taken at intervals of 3 h commencing 13 or 25 h later and continued for 54 h. The controlled internal drug release devices (CIDRs) were removed at 08:00 h (group 1; three yearlings and four adults) or 12 h later at 20:00 h (group 2; three yearlings and four adults). There was no significant effect of time of removal of CIDR on the interval to the onset of oestrus (group 1, 34.5 +/- 4.05 h; group 2, 42.14 +/- 7.8 h) on the time of peak concentration (group 1, 41.81 +/- 5.69 h; group 2, 41.71 +/- 7.81 h) or on duration of the luteinizing hormone (LH) surge (group 1, 15.00 +/- 0.95 h; group 2, 14.57 +/- 0.78 h). The six yearling animals exhibited oestrus and LH surge significantly later than the adults (55 +/- 4.2 versus 32 +/- 6.3 h for the LH surge for yearling and adult females, respectively). In a further experiment, 20 hinds were synchronized during the breeding season by removal of CIDR at two times of day 12 h apart and placed with a stag. Mating took place at a mean time of 42.1 +/- 2.4 h and 37.0 +/- 1.3 h later in the two groups. There was no significant effect of time of removal of CIDR upon time to onset of oestrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The impact of male presence or absence on the timing of the preovulatory LH surge and estrus was studied in 3 experimental groups (n = 6/group) of Eld's deer hinds pretreated with intravaginal progesterone-releasing devices (CIDR-type G) as follows: Group 1 = indirect male contact barn; Group 2 = direct male contact barn; and Group 3 = male isolation barn. For all hinds, the duration of the preovulatory LH surge averaged 2.5+/-0.5 h, whereas mean peak preovulatory and basal LH concentrations were 2.9+/-0.2 ng mL(-1) and 0.27+/-0.03 ng mL(-1), respectively. Nine of 12 male-exposed hinds exhibited a preovulatory LH surge within 24 to 32 h postCIDR device withdrawal, whereas 0 of 6 male-isolated hinds exhibited a preovulatory LH surge during the same time period. Onset of behavioral estrus (45.2+/-2.3, 52.7+/-5.7 and 66.3+/-1.8 h, respectively) was significantly advanced (P<0.05) after CIDR device withdrawal in male exposed hinds (Groups 1 and 2) compared with male isolated hinds (Group 3). These data suggest that stag exposure is important for modulating the timing of the preovulatory LH surge and behavioral estrus after synchronization of estrus with exogenous progestagens.  相似文献   

3.
A study was conducted to determine the timing of ovulation relative to the onset of oestrus and the preovulatory LH surge in fallow deer. Mature fallow does were randomly allocated to two treatments (N = 10 per treatment) designed to synchronize oestrus on or about 17 May. Does assigned to Group 1 (prostaglandin-induced oestrus) each initially received single intravaginal CIDR [Controlled Internal Drug Release] devices for 13 days followed by an i.m. injection of 750 mg cloprostenol on Day 12 (15 May) of the subsequent luteal cycle. Does assigned to Group 2 (progesterone-induced oestrus) each received CIDR devices for 13 days, with withdrawal occurring on 15 May. All does were run with crayon-harnessed bucks (10:1 ratio) from the start of synchronization (18:00 h 15 May). Ten does (5 per group) were blood sampled via indwelling jugular cannulae every 2 h for 72 h from cloprostenol injection or CIDR device withdrawal and the plasma was analysed for concentrations of progesterone and LH by radioimmunoassay. Does within each treatment were randomly allocated to an ovarian examination time of 12, 16, 20 or 24 h after the onset of oestrus. Laparoscopy was repeated at 12-h intervals until ovulation was recorded. The ovaries of does failing to exhibit oestrus were examined 72 and 86 h after cloprostenol injection or CIDR device withdrawal. A total of 17 does were observed to exhibit oestrus at a mean (+/- s.e.m.) interval from treatment of 44.6 +/- 3.6 h for Group 1 (N = 9) and 34.1 +/- 2.5 h for Group 2 (N = 8).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Considering that there is limited information about the preovulatory LH surge in Zebu cattle (Bos indicus), the purpose of the present work was to assess the LH surge in Nelore cows during the estrous cycle and after ovarian superestimulation of ovarian follicular development with FSH. This information is particularly important to improve superovulatory protocols associated with fixed-time artificial insemination. Nelore cows (n=12) had their estrus synchronized with an intravaginal device containing progesterone (CIDR-B) associated with estradiol benzoate administration (EB, 2.5 mg, i.m., Day 0). Eight days later all animals were treated with PGF2alpha (Day 8) in the morning (8:00 h) and at night, when CIDR devices were removed (20:00 h). Starting 38h after the first PGF2alpha injection, blood sampling and ovarian ultrasonography took place every 4h, during 37 consecutive hours. Frequent handling may have resulted in a stress-induced suppression of LH secretion resulting in only 3 of 12 cows having ovulations at 46.7+/-4.9 and 72.3+/-3.8 h, respectively, after removal of CIDR-B. Thirty days later, the same animals received the described hormonal treatment associated with FSH (Folltropin), total dose=200 mg) administered twice a day, during 4 consecutive days, starting on Day 5. Thirty-six hours after the first injection of PGF2alpha, to minimize stress, only seven blood samples were collected at 4h interval each, and ultrasonography was performed every 12 h until ovulation. In 11 of 12 cows (92%) the LH surge and ovulation were observed 34.6+/-1.6 and 59.5+/-1.9 h, respectively, after removal of progesterone source. The maximum values for LH in those animals were 19.0+/-2.6 ng/ml (mean+/-S.E.M.). It is concluded that, in Nelore cows submitted to a ovarian superstimulation protocol, the LH surge occurs approximately 35 h after removal of intravaginal device containing progesterone, and approximately 12h before the LH surge observed after an induced estrus without ovarian superstimulation.  相似文献   

5.
Père David's deer hinds were treated with GnRH, administered as intermittent i.v. injections (2.0 micrograms/injection at 2-h intervals) for 4 days, or as a continuous s.c. infusion (1.0 micrograms/h) for 14 days. These treatments were given early (February-March) and late (May-June) in the period of seasonal anoestrus. The administration of repeated injections of GnRH increased mean LH concentrations from pretreatment values of 0.54 +/- 0.09 to 2.10 +/- 0.25 ng/ml over the first 8 h of treatment in early anoestrus, and from 0.62 +/- 0.11 to 2.73 +/- 0.49 ng/ml in late anoestrus. The mean amplitude of GnRH-induced LH episodes was greater (P less than 0.01) in late (4.03 +/- 0.28 ng/ml) than in early (3.12 +/- 0.26 ng/ml) anoestrus, but within each replicate (early or late anoestrus), neither mean LH episode amplitude nor mean plasma LH concentrations differed significantly between the four periods of intensive blood sampling. On the basis of their progesterone profiles, 6/12 hinds had ovulated in response to treatment with injections of GnRH (1/6 in early anoestrus and 5/6 in late anoestrus), and oestrus and a preovulatory LH surge were recorded in all of these animals. Oestrus and a preovulatory LH surge were also recorded in one other animal treated in early anoestrus in which progesterone concentrations remained low. The mean times of onset of oestrus (91.0 +/- 1.00 and 62.4 +/- 0.98 h) and of the preovulatory LH surge (85.8 +/- 3.76 and 59.4 +/- 0.25 h) both occurred significantly earlier (P less than 0.001) in animals treated in late anoestrus. Continuous infusion of GnRH to seasonally anoestrous hinds resulted in an increase in mean plasma LH concentrations, but this response did not differ significantly between early (2.15 +/- 0.28 ng/ml) and late (2.48 +/- 0.26 ng/ml) anoestrus. Ovulation, based on progesterone profiles, occurred in 2/7 hinds in early anoestrus and in 4/6 hinds in late anoestrus. Oestrus was detected in all except one of these hinds. The mean time of onset of oestrus occurred earlier in animals treated in late anoestrus (66.2 +/- 0.32 h and 46.7 +/- 0.67 h, P less than 0.01). The administration of GnRH, given either intermittently or continuously, will induce ovulation in a proportion of seasonally anoestrous Père David's deer. However, more animals ovulate in response to this treatment in late than in early anoestrus (75% compared with 23%).  相似文献   

6.
Eighteen ovariectomized fallow deer does and two adult bucks were used to investigate the effect of exogenous progesterone and oestradiol benzoate on oestrous behaviour and secretion of luteinizing hormone (LH). In Expts 1 and 2, conducted during the breeding season (April-September), does were treated with intravaginal Controlled Internal Drug Release (CIDR) devices (0.3 g progesterone per device) for 12 days and differing doses of oestradiol benzoate administered 24 h after removal of the CIDR device. The dose had a significant effect on the proportion of does that exhibited oestrus within the breeding season (P less than 0.001), the incidence of oestrus being 100% with 1.0, 0.1 and 0.05 mg, 42% for 0.01 mg and 0% for 0.002 mg oestradiol benzoate. There was a significant log-linear effect of dose on the log duration of oestrus, which was 6-20, 2-14, 2-12 and 2 h after treatment with 1, 0.1, 0.05 and 0.01 mg of oestradiol benzoate, respectively. Dose had a significant effect on the peak plasma LH concentration (P less than 0.01), mean (+/- s.e.m.) surge peaks of 27.7 +/- 2.3, 25.9 +/- 1.8 and 18.6 +/- 3.4 ng/ml being observed following treatment with 1, 0.1 and 0.01 mg oestradiol benzoate respectively. In Expt 3, also conducted during the breeding season, progesterone treatment (0 vs. 6-12 days) before the administration of 0.05 mg oestradiol benzoate had a significant effect on the incidence of oestrus (0/6 vs. 10/12, P less than 0.05), but not on LH secretion. The duration of progesterone treatment (6 vs. 12 days) had no effect on oestrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The ability of ram introduction (RI) and progesterone pre-treatment to induce increases in LH secretion and ovulation, and the ability of progesterone pre-treatment with or without estrogen to induce estrus and ovulation in fall-born ewe lambs during seasonal anestrus was investigated. In early July, lambs of mixed breeds (41.8+/-0.6 kg and 250.7+/-1.3 days of age) were assigned to receive no treatment (C, n=7), to be introduced to rams (7:1 ewe:ram ratio; R, n=7), to be treated with progesterone (a used CIDR device) for 5 days (P, n=5), to be treated with progesterone and introduced to rams at CIDR removal (PR, n=11), or to receive the latter treatment plus an injection of estradiol benzoate (25 microg, E2beta i.m.) 24 h after CIDR withdrawal/RI (PER, n=11). Blood samples were collected from all lambs every 4h for 60 h beginning at RI/CIDR withdrawal (0 h), to characterize the LH surge profile and in groups R and C every 15 min for 8 h between 12 and 20 h for determination of LH pulse frequencies. Ultrasonographic examinations of the ovaries were conducted at 0, 36 and 60 h. In ram-exposed groups lambs were also observed for raddle marks every 4h from 0 to 60 h. The LH pulse frequency (pulses/8 h) was higher in group R (P<0.01; 7.7+/- 0.5) than group C lambs (2.7+/- 0.8). More lambs in groups exposed to rams than in the C or P groups showed an LH surge (P<0.05; 0, 100, 0, 72.7 and 100%, for C, R, P, PR and PER groups, respectively). Time from RI/CIDR removal to initiation of the LH surge was greater in lambs in the PR (43.5+/- 3.8h) than in the R (32.6+/- 4.6h; P=0.08) or PER (33+/- 1.2h; P<0.01). Diameter of the largest follicle at 0 h (3.2+/- 0.2mm) was not different among groups. Growth rate of the largest follicle between 0 and 36 h was greater (P<0.05) in RI than in C or P groups. Diameter of the largest follicle at 36 h was larger (P<0.05) in lambs in R (5.6+/- 0.2mm) and PR (5.1+/- 0.5mm) than C (4.0+/- 0.6mm) or P (3.8+/- 0.4mm) groups, and in R than PER (4.3+/- 0.4mm) treatment groups. Only lambs in the RI groups ovulated. Among RI groups the percentage of lambs ovulating was greater in the R (P<0.05; 85.7%) than PR (33.3%) groups with an intermediate response observed in lambs in treatment group PER (71.4%). The estrous response in progesterone pre-treated groups was greater (P<0.05) in lambs also treated with estrogen (PER; 81.8%), than in lambs introduced to rams alone (PR; 45.5%). In conclusion, ram introduction by itself, but not progesterone treatment alone, induces increases in LH pulse frequency, follicular development, and ovulation in fall-born ewe lambs during seasonal anestrus, further, P4 pre-treatment and RI when combined with E2 results in a high estrous response.  相似文献   

8.
The ovarian response to an empirically derived treatment protocol used commercially for fixed-time insemination in wapiti (Cervus elaphus) was evaluated by transrectal ultrasonography in hinds during transition into the ovulatory season. On September 29, hinds (n=7) were given an intravaginal progesterone-releasing device (CIDR-B, 1.9 g of progesterone) or left untreated (controls, n=9). Fourteen days later, hinds in the treated group were given 200 IU eCG and the CIDR was removed. Hinds in the control group ovulated randomly over a 15 day period. In the treated group, five hinds ovulated 3 days after eCG treatment, one ovulated 7 days after treatment, and one failed to ovulate by November 1. All extant dominant follicles ceased growth and/or began to regress within 2 days of CIDR placement. Two waves of follicular development were detected between CIDR insertion and removal; the first emerged 5.1+/-0.5 days after CIDR insertion and the second at 11.0+/-0.7 days. Serum progesterone concentration was 0.6+/-0.5 ng/mL (range 1.0-0.3 ng/mL) before CIDR placement, remained above 6 ng/mL during CIDR placement, and fell to 0.8+/-0.9 ng/mL after CIDR removal. In the control group, maximal luteal-phase progesterone concentration was lower (1.1+/-0.1 ng/mL; P<0.05) and emergence of the first follicular wave was more variable (P=0.05) than in the treated group. The protocol to synchronize ovulation was effective in 5/7 (71%) hinds, and 4/7 (57%) became pregnant and calved. The pregnancy rate (6/9) and calving rate (5/9) was similar in the control group. In conclusion, synchronization with CIDR-B was effective; however, the protocol may be improved by shortening the interval of CIDR placement to < or = 7 days and by reducing the circulating concentrations of progesterone to physiologic concentrations (< 4 ng/mL).  相似文献   

9.
The objective of the current study was to develop an ovine animal model for consistent study of uterine blood flow (UBF) changes during synchronized ovarian cycles regardless of season. Sheep were surgically bilaterally instrumented with uterine artery blood flow transducers and 5-7 days later implanted with a vaginal progesterone (P(4))-controlled internal drug-releasing device (CIDR; 0.3 g) for 7 days. On Day 6 of P(4), sheep were given two prostaglandin F(2 alpha) injections (7.5 mg i.m. 4 h apart). At CIDR removal, Experimental Day 0, zero (n = 9), 500 IU (n = 8), or 1000 IU (n = 7) eCG was injected i.m.; UBF was monitored continuously for 55-75 h. Jugular blood was sampled every 8 h to evaluate levels of P(4), estradiol-17 beta (E(2)beta) and luteinizing hormone (LH). The inhibitor of nitric oxide synthase, L-nitro-arginine methyl ester (L-NAME) was infused in a stepwise fashion unilaterally into one uterine artery at 48-50 h after 500 IU eCG and the effects on UBF were examined (n = 7). The zero-eCG group gradually increased UBF from a baseline of 17.4 +/- 3.9 to 80.5 +/- 1.1 ml/min. The 500-IU-eCG group increased UBF between 10 and 15 h from a baseline of 11 +/- 3.3 to 83.3 +/- 1.0 ml/min, whereas UBF for the 1000-IU-eCG group was higher (100.1 +/- 1.7 ml/min) than that seen in either of the other groups. Plasma P(4) fell to baseline within 8 h of CIDR removal, while E(2)beta rose gradually in association with elevations in UBF. LH surges occurred between 32 and 56 h after CIDR removal and the LH surge occurred earlier in the 1000-IU-eCG group than the other two groups (P < 0.01). L-NAME infusion dose dependently reduced maximum levels of UBF ipsilaterally by 54.6% +/- 6.2%, but contralaterally only by 27.4% +/- 8.5%. Regardless of season, either dose of eCG will result in analogous UBF responses. During the follicular phase, elevations in UBF are in part locally controlled by the de novo production of nitric oxide.  相似文献   

10.
Hypothalamic unresponsiveness to an estradiol surge appears to be an underlying cause of large follicle anovular condition (follicular cysts), but progesterone exposure for 7 days resolves this condition. In this study, dairy cows with induced (Experiment 1) or naturally occurring (Experiment 2) follicular cysts were treated for different times with progesterone. In Experiment 1, 16 of 26 cows (62%) were induced into anovulation by causing a GnRH/LH surge when no ovulatory follicle was on the ovary. Anovular cows (n = 16) were assigned to one of four treatment groups ( 0, 1, 3, or 7 days of progesterone treatment) using an intravaginal, progesterone-releasing implant (CIDR). All anovular cows had low circulating progesterone concentrations before controlled internal drug releasing (CIDR) and greater concentrations that reached steady state (1.3 +/- 0.1 ng/mL progesterone) by 3 h after CIDR insertion. Circulating progesterone decreased to basal concentrations by 4 h after CIDR removal. Cows were treated with 5mg estradiol benzoate (EB) 12 h after CIDR removal. None (n = 4) of the control cows (0 day) had an LH surge after EB. All of the 3 days (5/5) and 7 days (4/4) CIDR-treated cows had an LH surge following EB, but only one of the 1 day (1/3) CIDR-treated cows. Magnitude of the LH peak was similar in the 3 and 7 days cows. All cows treated for 7 days ovulated (4/4), whereas, ovulation occurred in only 3/5, 1/3, and 0/4 of the cows treated for 3, 1, and 0 day, respectively. The two cows in the 3 days group that did not ovulate had a normal LH surge, but these two cows had a smaller maximal follicle size than cows that ovulated. In Experiment 2, naturally anovular lactating dairy cows (24 of 248) were identified using weekly ultrasonography. All anovular cows grew follicles to >12 mm, with 54% (13 of 24) having follicles larger than ovular size (15-24 mm) and 33% (8 of 24) having follicles that would be considered cystic (>25 mm). Anovular cows were randomly assigned to CIDR treatment for 0, 1, or 3 days. All (7/7) of 3 days, 33% (3/9) of 1 day, and 25% (2/8) of control (0 day) cows ovulated by 1 week after CIDR removal. Thus, 3 days but not 1 day of progesterone exposure appears to be sufficient to reinitiate estradiol responsiveness of the hypothalamus.  相似文献   

11.
Hair sheep ewes (St. Croix White and Barbados Blackbelly) were used to evaluate 3 methods of estrus synchronization for use with transcervical artificial insemination (TAI). To synchronize estrus, ewes (n = 18) were treated with PGF2alpha (15 mg, im) 10 d apart, with controlled internal drug release (CIDR) devices containing 300 mg progesterone for 12 d (n = 18), or with intravaginal sponges containing 500 mg progesterone for 12 d (n = 18). On the day of the second PGF2alpha injection or at CIDR or sponge removal, sterile rams were placed with the ewes. Jugular blood samples were collected from the ewes at 6-h intervals until the time of ovulation, and daily for 16 d after estrus (Day 0). Plasma was harvested and stored at -20 degrees C until LH, and progesterone concentrations were determined by RIA. There was no difference (P>0.10) in time to estrus among the CIDR-, PGF2alpha- or sponge-treated ewes. All of the ewes in the CIDR group and 94.4% of the sponge treated ewes exhibited estrus by 36 h after ram introduction, while only 72.2% of PGF2alpha-treated ewes showed signs of estrus by this time (P<0.06). The time from ram introduction to ovulation was not different (P>0.10) among the CIDR-, PGF2alpha- or sponge-treated ewes. The time to the preovulatory LH surge was similar (P>0.10) among CIDR, PGF2alpha and sponge treated ewes. Progesterone levels through Day 16 after the synchronized estrus were not different (P>0.10) among treatment groups. Hair sheep ewes (n = 23) were synchronized using PGF2alpha and bred by TAI using frozen-thawed semen 48 h after the second injection. The conception rate to TAI was 2/23 (8.7%) and produced 3 ram lambs. In a subsequent trial, 17 ewes were synchronized with CIDR devices and bred by TAI using frozen-thawed semen 48 h after CIDR removal, resulting in a conception rate of 52.9% (9/17). It is possible to synchronize estrus in hair sheep using either CIDRs, sponges or PGF2alpha. Even though there were no significant differences in the timing of ovulation or the LH surge among the treatment groups, a higher conception rate was achieved in ewes synchronized with CIDR devices during the second trial. This may reflect an increase in the skill level of the TAI technician.  相似文献   

12.
Semen collected from wapiti (Cervus elaphus) in Canada in 1983 was frozen in two extenders. In 1988, the semen was used to inseminate 200 red deer hinds on 2 farms in New Zealand. Oestrus was synchronized in the hinds with progesterone-impregnated intravaginal devices (CIDR); 200 iu pregnant mares' serum gonadotrophin was given to each hind on Day 11. The CIDRs were removed on Day 12 at 20/h, as the numbers of the hinds were recorded. On Day 14, 54-56 h after CIDR removal, the hinds were brought into the yards in the same batches and laparoscopically inseminated. Semen from three sires was used. The overall conception rate was 51%. Gestation length ranged from 239 to 247 days. One hind was lost at calving, 3 calves had to be hand raised and there were 2 neonatal calf deaths.  相似文献   

13.
Primiparous cows with low body condition at calving have an extended anovulatory period. Induction of ovulation and oestrus is possible with progesterone treatment but the response to this treatment differs between Friesian and Jersey breeds. The objective of this study was to describe changes in pulsatile LH secretion and the synchrony of developing ovarian follicles that occur during a progesterone treatment period of 5 days in primiparous anovulatory cows. The experimental model compared the progesterone treatment with spontaneous post-partum changes as well as a breed comparison in a factorial design.Thirty-six cows (Jersey n=19 and Friesian n=17) were managed to calve with a low body condition score (BCS<4. 5). Daily changes in ovarian follicle size were observed with transrectal ultrasonography in each cow from 8 days post-partum. Thirty of these cows were diagnosed to be anovulatory at 12-18 days post-partum (day 0) and allocated to a treatment (n=16) or a control group (n=14), balanced for breed. Each treated cow had a progesterone-releasing controlled internal drug-releasing (CIDR) device inserted vaginally for 5 days while control cows were left untreated. Changes in plasma LH concentrations were measured with intensive blood sampling over 8 h on days -1, 1, and 4. Blood samples were also collected daily (06:00 h) for determination of plasma progesterone as well as oestradiol concentrations on days 6 and 8.Treatment with progesterone was associated with a transient initial decrease (day 1) in both LH pulse frequency and mean LH concentrations after device insertion, but both had returned to pre-treatment levels by day 4. Jersey cows had a greater pulse frequency, but there was no breed difference in mean LH concentrations. Patterns of ovarian follicle growth were affected by progesterone treatment with an increase in diameter of the dominant follicle (DF) identified after treatment initiation. This followed an earlier emergence of a new DF after device insertion. Follicular response to progesterone was dependent on the diameter of the DF present at treatment initiation. Those follicles >/=9 mm were replaced by a new DF during treatment such that the DF observed at the time of device removal was large (>/=9 mm) and growing in 13/16 cases.Progesterone was not effective for the induction of an LH surge, ovulation and oestrus in anovulatory cows with a low BCS. However, treatment was associated with synchronous development of a DF so that it was large and growing at the end of the treatment period in most cases. This synchronous development may be due to the transient suppression of LH and the presence of an LH-dependent DF.  相似文献   

14.
An experiment was designed to evaluate a) the effect of a progesterone-estradiol combined treatment on ovarian follicular dynamics in postpartum beef cows, and b) ovulation and the subsequent luteal activity after short-term calf removal and GnRH agonist treatment. Multiparous Angus cows (25 to 40 d after calving) were assigned to the following treatments: untreated (Control, n = 9); short term calf removal (CR, n = 8); progesterone (CIDR, n = 9) and progesterone plus estradiol-17 beta (CIDR + E-17 beta, n = 9). Progesterone treatment (CIDR) lasted 8 d and the day of device insertion was considered as Day 0. Cows in the CIDR + E-17 beta group also received an i.m. injection of 5 mg of E-17 beta on Day 1. On Day 8, calves were removed for 48 h (CR, CIDR and CIDR + E-17 beta groups) and 6 h before the end of calf removal these cows also received an i.m. injection of 8 micrograms of Busereline (GnRH). Anestrus was confirmed in all cows by the absence of luteal tissue and progesterone concentrations below 1 ng ml-1 at the beginning of the experiment. Although mean (+/- SEM) interval from the beginning of the experiment (Day 0) to wave emergence did not differ (P > 0.05) among treatment groups (Control, 1.9 +/- 1.0, range -2 to 7 d; CR, 3.9 +/- 0.7, range 0 to 6 d; CIDR, 2.8 +/- 0.5, range 0 to 4 d and CIDR + E-17 beta, 4.1 +/- 0.2, range 3 to 5), the variability was less (P < 0.05) in the CIDR + E-17 beta group. The proportion of cows ovulating 24 to 48 h after GnRH administration tended (P = 0.08) to be higher in cows from CIDR + E-17 beta group (8/9) than in those of CR (5/8) or CIDR (6/9) groups, respectively and was associated with a higher proportion (P < 0.05) of CIDR + E-17 beta treated cows (9/9) that had a dominant follicle in the growing/early static phase at the time of GnRH treatment compared to the other GnRH treated groups (5/8, and 4/9 for CR and CIDR groups, respectively). Two CR cows ovulated 0-24 h after GnRH and only one Control cow ovulated the day before the time of GnRH administration. Cows pretreated with progesterone had longer (P < 0.05) luteal lifespan (CIDR, 14.5 +/- 0.7, CIDR + E-17 beta, 13.9 +/- 0.6 d) than those not treated with CIDR (Control, 5, CR, 4.0 +/- 0.4). We conclude that progesterone plus estradiol treatment results in tightly synchronized wave emergence and high GnRH-induced ovulation rate with normal luteal activity in postpartum beef cattle.  相似文献   

15.
Estradiol cypionate (ECP) was used in beef heifers receiving a controlled internal drug release (CIDR; insertion = Day 0) device for fixed-time AI (FTAI) in four experiments. In Experiment 1, heifers (n = 24) received 1mg ECP or 1mg ECP plus 50mg commercial progesterone (CP) preparation i.m. on Day 0. Eight or 9 days later, CIDR were removed, PGF was administered and heifers were allocated to receive 0.5mg ECP i.m. concurrently (ECP0) or 24h later (ECP24). There was no effect of treatment (P = 0.6) on mean (+/-S.E.M.) day of follicular wave emergence (3.9+/-0.4 days). Interval from CIDR removal to ovulation was affected (P<0.05) only by duration of CIDR treatment (88.3+/-3.8h versus 76.4+/-4.1h; 8 days versus 9 days, respectively). In Experiment 2, 58 heifers received 100mg progesterone and either 5mg estradiol-17beta or 1mg ECP i.m. (E-17beta and ECP groups, respectively) on Day 0. Seven (E-17beta group) or 9 days (ECP group) later, CIDR were removed, PGF was administered and heifers received ECP (as in Experiment 1) or 1mg EB 24h after CIDR removal, with FTAI 58-60h after CIDR removal. Follicular wave emergence was later (P<0.02) and more variable (P<0.002) in heifers given ECP than in those given E-17beta (4.1+/-0.4 days versus 3.3+/-0.1 days), but pregnancy rate was unaffected (overall, 69%; P = 0.2). In Experiment 3, 30 heifers received a CIDR device and 5mg E-17beta, with or without 100mg progesterone (P) i.m. on Day 0. On Day 7, CIDR were removed and heifers received ECP as described in Experiment 1 or no estradiol (Control). Intervals from CIDR removal to ovulation were shorter (P<0.05) in ECP0 (81.6+/-5.0h) and ECP24 (86.4+/-3.5h) groups than in the Control group (98.4+/-5.6h). In Experiment 4, heifers (n = 300) received a CIDR device, E-17beta, P, and PGF (as in Experiment 3) and after CIDR removal were allocated to three groups (as in Experiment 2), with FTAI 54-56h (ECP0) or 56-58h (ECP24 and EB24) after CIDR removal. Pregnancy rate did not differ among groups (overall, 63.6%, P = 0.96). In summary, although 1mg ECP (with or without progesterone) was less efficacious than 5mg E-17beta plus 100mg progesterone for synchronizing follicular wave emergence, 0.5mg ECP (at CIDR removal or 24h later) induced a synchronous ovulation with an acceptable pregnancy rate to fixed-time AI.  相似文献   

16.
Three separate embryo culture systems were evaluated for their ability to support development of early cleavage stage red deer (Cervus elaphus ) embryos: ligated sheep oviducts (Treatment A); cervine oviduct epithelial monolayer in TCM 199 + 10% deer serum (Treatment B); synthetic oviduct fluid + 20% human serum at 7% O(2) atmosphere (Treatment Q. In addition, 2 superovulation protocols were compared for their efficacy in producing early cleavage stage embryos. Twenty red deer (2 to 7 yr old) were synchronized in April with intravaginal CIDR devices for 12 d. All animals received a total of 0.4 units of ovine FSH administered in 8 equal doses, 12 h apart, beginning 72 h before removal of CIDR devices. The deer additionally received 200 IU PMSG, either with the first FSH injection (Group 1, n = 10) or with the last FSH injection (Group 2, n = 10). Hinds were placed with fertile stags following withdrawal of CIDR devices. Ova were collected by surgical recovery 63 h post CIDR removal. At the time of collection, animals in Group 2 had a significantly greater mean (+/- SEM) ovulation rate (11.2 +/- 2.4 vs 5.3 +/- 2.4), with more animals responding to treatment (>1 ovulation), than the animals in Group 1 (10/10 vs 4/10). Late in the breeding season (June), 10 additional red deer (Group 3, Experiment 2) were superovulated using the same protocol as for the deer in Group 2, with ova collection advanced by 24 h. Mean (+/- SEM) ovulation rate was 6.4 +/- 1.2 with 9 10 animals responding. Ova recovery did not differ among the groups (range 73 to 87%). Superovulation treatment did not affect cultured embryo development to the morula/blastocyst stage. Furthermore, there was no difference among the 3 culture systems in their support of development either to the morula (range 50 to 58%) or to the blastocyst (range 22 to 26%) stage. After laparoscopic transfer of 4 morula/blastocyst embryos to recipient red deer (2 from Treatment B and 2 from Treatment C) 2 live calves were born from embryos cultured in Treatment B.  相似文献   

17.
The temporal relationships among oocyte maturation, gamete transport and fertilisation following the pre-ovulatory luteinsing hormone surge in red deer were established; and secondly, early preimplantation development to the blastocyst stage in relation to the onset of oestrus was determined for red deer. In the first series of observations, oestrus was synchronised in April (N=22), for the fixed time recovery of gametes from 0 to 36 h after the estimated pre-ovulatory LH peak. Matings were observed and the time of the LH peak was determined from the retrospective analysis of blood plasma collected at 3h intervals. Gametes were recovered surgically and the meiotic status of follicular and ovulated oocytes assessed. Spermatozoa were recovered from the oviduct and their motility analysed by videomicroscopy. Nineteen of 22 hinds exhibited a pre-ovulatory LH surge and were observed to mate. Oocyte metaphase I occurred between 11 and 18 h, and metaphase II was completed within the follicle between 20 and 25 h following the pre-ovulatory LH peak. Fertilised ova were recovered from 30 to 36 h in both the ampulla and isthmic portions of the oviduct. Motile spermatozoa were first recovered from the isthmus and the ampulla at 13 and 21 h, respectively, after the LH peak. Hyperactive spermatozoa were observed in both the isthmus and the ampulla flushings but only from the eight hinds that had ovulated. In the second series of observations, 16 mature hinds were synchronised and allocated to groups for embryo collection on days 3, 5 and 7 after oestrus. Eight embryos were recovered; an 8-cell at 90 h, 3 morulae at 137, 138 and 186 h, and 4 blastocysts at 180, 182 and 190 h post-mating. Blastocysts were only recovered from the uterine horns and the mean+/-S.E.M. number of nuclei per blastocyst was 93.5+/-10.0 with a range of 66-114 cells. The results of this study will improve the application of assisted reproductive technologies to red deer as they indicate that oocyte maturation, fertilisation and early embryonic development of the red deer is similar to other domestic ruminants with the exception that the red deer embryo enters the uterus at the blastocyst stage.  相似文献   

18.
The effect of the so-called Short-Term Protocol (5-day progesterone treatment+PGF(2)alpha) on ovarian activity and LH surge was studied in goats. The goats received 250IU eCG at the time of device withdrawal (eCG group; n=7), or 200microg of EB (estradiol benzoate) 24h after device withdrawal (EB group; n=8), or received neither eCG nor EB (control group; n=8). The Short-Term Protocol induced greater (4.1+/-1.1ng/ml) progesterone serum concentrations at 24h after start of the treatment, that declined to 0.2+/-0.1ng/ml at 12h after device withdrawal. In all of the groups, the maximum concentration of estradiol-17beta was reached at about 36h after device withdrawal. Maximum concentration was greater in the EB group (76.9+/-24.6pmol/l) than in the control group (41.8+/-9.0pmol/l; P<0.01), with the eCG group showing intermediate concentration (70.3+/-32.5pmol/l; P=NS). The LH peak occurred earlier in the eCG group (38.4+/-2.0h after device withdrawal) and in the EB group (41.0+/-4.1h), than in the control group (46.3+/-5.1h; P<0.05). Ovulation occurred earlier in the eCG group (5/7) and in the EB group (8/8) (58.8+/-2.7h and 63.0+/-5.6h, respectively), than in the control group (7/8) (70.2+/-8.3h; P<0.05). In summary, the Short-Term Protocol induced similar concentrations of progesterone among treated goats. In addition, eCG or EB resulted in a similar increase in estradiol-17beta and a similar LH surge, which induced ovulation in most females (86.7%) in a consistent interval (about 60h) after the end of progesterone exposure.  相似文献   

19.
In 3 separate trials at 2 locations, dairy heifers (n = 396) were treated with a Controlled Internal Drug Release (CIDR) progesterone device for 9 d. On Day 7 of CIDR treatment, all heifers were injected with PGF(2alpha). Synchronized estruses were detected using a tailpaint and chalk (TPC) scoring system. An animal's tailhead was painted at device insertion, and this strip was covered with a contrasting color of chalk at device removal. Over all trials, 85.1% of the heifers were detected in estrus and were inseminated at 48 or 72 hours after CIDR removal. These synchronized and inseminated heifers were divided into the following treatment groups: 1) untreated controls, receiving no further treatment (n = 138); 2) post-insemination progesterone supplementation with a new (n = 59) or used (n = 29) CIDR device for Days 1 to 8 or 2 to 9, respectively, following insemination; or 3) resynchronization of return to service with a used CIDR device for Days 17 to 22 after insemination (n = 112). The pregnancy rate to first insemination in the control and resynchronized groups (Groups 1 and 3) was 46.4%, but decreased to 18.2% with the post-insemination progesterone supplementation. Resynchronization of returns to service (estrus detected 1 to 4 d following removal of second CIDR) occurred in 58.9% of all nonpregnant heifers in Group 3. In summary, CIDR devices used in conjunction with PGF(2alpha) effectively synchronize estrus in dairy heifers. Progesterone supplementation within 2 d of first insemination for 7 d suppressed fertility. Used CIDR devices inserted for Days 17 to 22 after first insemination resynchronized heifers not pregnant to first insemination.  相似文献   

20.
Two experiments were carried out to determine the effect of a low dose of progesterone (P) with and without the addition of an injection of oestradiol benzoate (ODB) on ovarian follicle dynamics, oestradiol production and LH pulsatility in postpartum anoestrous cows, compared with cows which had resumed oestrous cycles (cycling cows). In the first experiment, anoestrous Jersey cows were treated with (AN+P, n=8) or without (AN-3, n=3) a previously used intravaginal progesterone releasing (CIDR) device for 10 days, commencing 3 or 4 days after emergence of a new dominant follicle (DF1) as determined by transrectal ultrasonography. Contemporary cycling cows (CYC+P, n=8) were similarly treated with used CIDR devices and injected with prostaglandin F(2alpha) (PGF) at the time of device insertion. Follicle turnover was monitored by daily ultrasonography and pulsatile release of LH was measured on the ninth day after device insertion. During the period of CIDR device insertion, a second dominant follicle emerged in 4/8 of the CYC+P group and 7/8 of the AN+P group (P=0.14). Maximum diameter of DF1 was greater in cows in the CYC+P compared with the AN+P group (P=0.02), but did not differ between cows in the AN+P and AN-P groups (P>0.1). Frequency of LH pulses was greater in cows in the CYC+P than AN+P group (P=0.06), and in cows in the AN+P than AN-P group (P=0.02).In the second experiment, anoestrous (n=20) and cycling (n=11) Friesian cows were treated with a new CIDR device for 6 days commencing 3 days after emergence of a new dominant follicle (DF1). Cycling cows were also injected with PGF on the day of device insertion. Half of the cows in each group were injected with 2mg ODB on the day of device insertion. Daily ultrasonography was used to monitor follicular dynamics throughout the experimental period. Follicular turnover was increased by ODB in cycling (5/5 versus 1/6; P<0.05), but not anoestrous cows (5/9 versus 4/11). Persistence of DF1 was reduced by ODB treatment in both cycling and anoestrous cows (P<0.001). Maximum diameter of DF1 was influenced by ODB treatment and reproductive status (P<0.05). In anoestrous cows in which a second dominant follicle did not emerge during the period of device insertion, the interval from emergence of DF1 to emergence of a second dominant follicle was significantly delayed by treatment with ODB (P=0.04).In conclusion, P treatment of anoestrous cows increased pulsatile release of LH, but did not induce the development of persistent follicles. Injection of ODB in association with P treatment reduced the persistence of dominant follicles in both cycling and anoestrous cows, but delayed subsequent follicular development in a proportion of anoestrous cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号