首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neutrophils have long been regarded as essential for host defense against Staphylococcus aureus infection. However, survival of the pathogen inside various cells, including phagocytes, has been proposed as a mechanism for persistence of this microorganism in certain infections. Therefore, we investigated whether survival of the pathogen inside polymorphonuclear neutrophils (PMN) contributes to the pathogenesis of S. aureus infection. Our data demonstrate that PMN isolated from the site of infection contain viable intracellular organisms and that these infected PMN are sufficient to establish infection in a naive animal. In addition, we show that limiting, but not ablating, PMN migration into the site of infection enhances host defense and that repletion of PMN, as well as promoting PMN influx by CXC chemokine administration, leads to decreased survival of the mice and an increased bacterial burden. Moreover, a global regulator mutant of S. aureus (sar-) that lacks the expression of several virulence factors is less able to survive and/or avoid clearance in the presence of PMN. These data suggest that the ability of S. aureus to exploit the inflammatory response of the host by surviving inside PMN is a virulence mechanism for this pathogen and that modulation of the inflammatory response is sufficient to significantly alter morbidity and mortality induced by S. aureus infection.  相似文献   

2.
3.
Elderly humans show increased susceptibility to invasive staphylococcal disease after skin and soft tissue infection. However, it is not understood how host immunity changes with aging, and how that predisposes to invasive disease. In a model of severe skin infection, we showed that aged mice (16- to 20-month-old) exhibit dramatic bacterial dissemination compared with young adult mice (2-month-old). Bacterial dissemination was associated with significant reductions of CXCL1 (KC), polymorphonuclear cells (PMNs), and extracellular DNA traps (NETs) at the infection site. PMNs and primary skin fibroblasts isolated from aged mice showed decreased secretion of CXCL2 (MIP-2) and KC in response to MRSA, and in vitro analyses of mitochondrial functions revealed that the mitochondrial electron transport chain complex I plays a significant role in induction of chemokines in the cells isolated from young but not old mice. Additionally, PMNs isolated from aged mice have reduced ability to form NETs and to kill MRSA. Expression of nuclease by S. aureus led to increased bacterial systemic dissemination in young but not old mice, suggesting that defective NETs formation in elderly mice permitted nuclease and non-nuclease expressing S. aureus to disseminate equally well. Overall, these findings suggest that gross impairment of both skin barrier function and innate immunity contributes to the propensity for MRSA to disseminate in aged mice. Furthermore, the study indicates that contribution of bacterial factors to pathogenicity may vary with host age.  相似文献   

4.
Immunomodulatory therapy represents an attractive approach in treating multidrug-resistant infections. Developing this therapy necessitates a lucid understanding of host defense mechanisms. Neutrophils represent the first line of systemic defense during Staphylococcus aureus infections. However, recent research suggests that survival of S. aureus inside neutrophils may actually contribute to pathogenesis, indicating that neutrophil trafficking to the infection site must be tightly regulated to ensure efficient microbial clearance. We demonstrate that neutrophil-regulating T cells are activated during S. aureus infection and produce cytokines that control the local neutrophil response. S. aureus capsular polysaccharide activates T cell production of IFN-gamma in a novel MHC class II-dependent mechanism. During S. aureus surgical wound infection, the presence of IFN-gamma at the infection site depends upon alphabetaTCR+ cells and functions to regulate CXC chemokine production and neutrophil recruitment in vivo. We note that the reduced neutrophil response seen in IFN-gamma-/- mice during S. aureus infection is associated with reduced tissue bacterial burden. CXC chemokine administration to the infection site resulted in an increased survival of viable S. aureus inside neutrophils isolated from the wound. These data demonstrate that T cell-derived IFN-gamma generates a neutrophil-rich environment that can potentiate S. aureus pathogenesis by facilitating bacterial survival within the neutrophil. These findings suggest avenues for novel immunomodulatory approaches to control S. aureus infections.  相似文献   

5.
杀白细胞素ED(leukocidin ED,LukED)是金黄色葡萄球菌产生的双组分成孔杀白细胞素之一,由共转录于一条mRNA的lukE和lukD两个基因编码。LukED可与趋化因子受体CCR5结合以杀伤巨噬细胞、T细胞和树突细胞,或与中性粒细胞、单核细胞和自然杀伤(natural kiler,NK)细胞上的表面受体CXCR1/2结合以促进金黄色葡萄球菌的致病性及系统性感染宿主的死亡。此外,LukED还可结合Duffy 抗原趋化因子受体,使裂解红细胞释放血红蛋白,促进细菌的铁吸收和生长繁殖。LukED的表达受双组分信号转导系统附属基因调节子--毒素抑制子(Agr-Rot)通路和转录调节子RpiRc、SpoVG的调控。lukED基因在金黄色葡萄球菌中广泛流行,与金黄色葡萄球菌所致血流感染、脓疱病及抗生素相关性腹泻密切相关。这些进展对了解LukED的表达调控机制、临床意义及其在细菌致病机制中的作用,开发新的金黄色葡萄球菌感染抗毒素治疗药物具有重要意义  相似文献   

6.
Staphylococcus aureus infections are a growing health burden worldwide, and paramount to this bacterium’s pathogenesis is the production of virulence factors, including pore-forming leukotoxins. Leukocidin A/B (LukAB) is a recently discovered toxin that kills primary human phagocytes, though the underlying mechanism of cell death is not understood. We demonstrate here that LukAB is a major contributor to the death of human monocytes. Using a variety of in vitro and ex vivo intoxication and infection models, we found that LukAB activates Caspase 1, promotes IL-1β secretion and induces necrosis in human monocytes. Using THP1 cells as a model for human monocytes, we found that the inflammasome components NLRP3 and ASC are required for LukAB-mediated IL-1β secretion and necrotic cell death. S. aureus was shown to kill human monocytes in a LukAB dependent manner under both extracellular and intracellular ex vivo infection models. Although LukAB-mediated killing of THP1 monocytes from extracellular S. aureus requires ASC, NLRP3 and the LukAB-receptor CD11b, LukAB-mediated killing from phagocytosed S. aureus is independent of ASC or NLRP3, but dependent on CD11b. Altogether, this study provides insight into the nature of LukAB-mediated killing of human monocytes. The discovery that S. aureus LukAB provokes differential host responses in a manner dependent on the cellular contact site is critical for the development of anti-infective/anti-inflammatory therapies that target the NLRP3 inflammasome.  相似文献   

7.
The CXC chemokine receptor 2 (CXCR2) on neutrophils, which recognizes chemokines produced at the site of infection, plays an important role in antimicrobial host defenses such as neutrophil activation and chemotaxis. Staphylococcus aureus is a successful human pathogen secreting a number of proteolytic enzymes, but their influence on the host immune system is not well understood. Here, we identify the cysteine protease Staphopain A as a chemokine receptor blocker. Neutrophils treated with Staphopain A are unresponsive to activation by all unique CXCR2 chemokines due to cleavage of the N-terminal domain, which can be neutralized by specific protease inhibitors. Moreover, Staphopain A inhibits neutrophil migration towards CXCR2 chemokines. By comparing a methicillin-resistant S. aureus (MRSA) strain with an isogenic Staphopain A mutant, we demonstrate that Staphopain A is the only secreted protease with activity towards CXCR2. Although the inability to cleave murine CXCR2 limits in-vivo studies, our data indicate that Staphopain A is an important immunomodulatory protein that blocks neutrophil recruitment by specific cleavage of the N-terminal domain of human CXCR2.  相似文献   

8.
Many microbial pathogens subvert cell surface heparan sulfate proteoglycans (HSPGs) to infect host cells in vitro. The significance of HSPG-pathogen interactions in vivo, however, remains to be determined. In this study, we examined the role of syndecan-1, a major cell surface HSPG of epithelial cells, in Staphylococcus aureus corneal infection. We found that syndecan-1 null (Sdc1(-/-)) mice significantly resist S. aureus corneal infection compared with wild type (WT) mice that express abundant syndecan-1 in their corneal epithelium. However, syndecan-1 did not bind to S. aureus, and syndecan-1 was not required for the colonization of cultured corneal epithelial cells by S. aureus, suggesting that syndecan-1 does not mediate S. aureus attachment to corneal tissues in vivo. Instead, S. aureus induced the shedding of syndecan-1 ectodomains from the surface of corneal epithelial cells. Topical administration of purified syndecan-1 ectodomains or heparan sulfate (HS) significantly increased, whereas inhibition of syndecan-1 shedding significantly decreased the bacterial burden in corneal tissues. Furthermore, depletion of neutrophils in the resistant Sdc1(-/-) mice increased the corneal bacterial burden to that of the susceptible WT mice, suggesting that syndecan-1 moderates neutrophils to promote infection. We found that syndecan-1 does not affect the infiltration of neutrophils into the infected cornea but that purified syndecan-1 ectodomain and HS significantly inhibit neutrophil-mediated killing of S. aureus. These data suggest a previously unknown bacterial subversion mechanism where S. aureus exploits the capacity of syndecan-1 ectodomains to inhibit neutrophil-mediated bacterial killing mechanisms in an HS-dependent manner to promote its pathogenesis in the cornea.  相似文献   

9.
Methicillin-resistant Staphylococcus aureus (MRSA) remains a major human pathogen. Traditionally, MRSA infections occurred exclusively in hospitals and were limited to immunocompromised patients or individuals with predisposing risk factors. However, recently there has been an alarming epidemic caused by community-associated (CA)-MRSA strains, which can cause severe infections that can result in necrotizing fasciitis or even death in otherwise healthy adults outside of healthcare settings. In the US, CA-MRSA is now the cause of the majority of infections that result in trips to the emergency room. It is unclear what makes CA-MRSA strains more successful in causing human disease compared with their hospital-associated counterparts. Here we describe a class of secreted staphylococcal peptides that have a remarkable ability to recruit, activate and subsequently lyse human neutrophils, thus eliminating the main cellular defense against S. aureus infection. These peptides are produced at high concentrations by standard CA-MRSA strains and contribute significantly to the strains' ability to cause disease in animal models of infection. Our study reveals a previously uncharacterized set of S. aureus virulence factors that account at least in part for the enhanced virulence of CA-MRSA.  相似文献   

10.
Park B  Nizet V  Liu GY 《Journal of bacteriology》2008,190(7):2275-2278
Nasal colonization by Staphylococcus aureus is a major predisposing factor for subsequent infection. Recent reports of increased S. aureus colonization among children receiving pneumococcal vaccine implicate Streptococcus pneumoniae as an important competitor for the same niche. Since S. pneumoniae uses H2O2 to kill competing bacteria, we hypothesized that oxidant defense could play a significant role in promoting S. aureus colonization of the nasal mucosa. Using targeted mutagenesis, we showed that S. aureus expression of catalase contributes significantly to the survival of this pathogen in the presence of S. pneumoniae both in vitro and in a murine model of nasal cocolonization.  相似文献   

11.
Staphylococcus aureus nasal colonization is an important risk factor for community and nosocomial infection. Despite the importance of S. aureus to human health, molecular mechanisms and host factors influencing nasal colonization are not well understood. To identify host factors contributing to nasal colonization, we collected human nasal secretions and analyzed their ability to promote S. aureus surface colonization. Some individuals produced secretions possessing the ability to significantly promote S. aureus surface colonization. Nasal secretions pretreated with protease no longer promoted S. aureus surface colonization, suggesting the involvement of protein factors. The major protein components of secretions were identified and subsequent analysis revealed that hemoglobin possessed the ability to promote S. aureus surface colonization. Immunoprecipitation of hemoglobin from nasal secretions resulted in reduced S. aureus surface colonization. Furthermore, exogenously added hemoglobin significantly decreased the inoculum necessary for nasal colonization in a rodent model. Finally, we found that hemoglobin prevented expression of the agr quorum sensing system and that aberrant constitutive expression of the agr effector molecule, RNAIII, resulted in reduced nasal colonization of S. aureus. Collectively our results suggest that the presence of hemoglobin in nasal secretions contributes to S. aureus nasal colonization.  相似文献   

12.
Methicillin-resistant Staphylococcus aureus (MRSA) poses a serious threat to public health because of its resistance to multiple antibiotics most commonly used to treat infection. In this study, we report the unique ability of the cyclooxygenase-2 (COX-2) inhibitor celecoxib to kill Staphylococcus aureus and MRSA with modest potency. We hypothesize that the anti-Staphylococcus activity of celecoxib could be pharmacologically exploited to develop novel anti-MRSA agents with a distinct mechanism. Examination of an in-house, celecoxib-based focused compound library in conjunction with structural modifications led to the identification of compound 46 as the lead agent with high antibacterial potency against a panel of Staphylococcus pathogens and different strains of MRSA. Moreover, this killing effect is bacteria-specific, as human cancer cells are resistant to 46. In addition, a single intraperitoneal administration of compound 46 at 30 mg/kg improved the survival of MRSA-infected C57BL/6 mice. In light of its high potency in eradicating MRSA in vitro and its in vivo activity, compound 46 and its analogues warrant continued preclinical development as a potential therapeutic intervention against MRSA.  相似文献   

13.
With the emergence of multiply resistant Staphylococcus aureus, there is an urgent need to better understand the molecular determinants of S. aureus pathogenesis. A model of staphylococcal pathogenesis in zebrafish embryos has been established, in which host phagocytes are able to mount an effective immune response, preventing overwhelming infection from small inocula. Myeloid cell depletion, by pu.1 morpholino-modified antisense injection, removes this immune protection. Macrophages and neutrophils are both implicated in this immune response, phagocytosing circulating bacteria. In addition, in vivo phagocyte/bacteria interactions can be visualized within transparent embryos. A preliminary screen for bacterial pathogenesis determinants has shown that strains bearing mutations in perR, pheP and saeR are attenuated. perR and pheP mutants are deficient in growth in vivo, and their virulence is not fully restored by myeloid cell depletion. On the other hand, saeR mutants are able to grow in vivo, and are completely restored to virulence by myeloid cell depletion. Thus specific pathogen gene function can be matched with particular facets of host response. Zebrafish are a new addition to the tools available for the study of S. aureus pathogenesis, and may provide insights into the interactions of bacterial and host genomes in determining the outcome of infection.  相似文献   

14.
Although considered to be an extracellular pathogen, Staphylococcus aureus is able to invade a variety of mammalian, non-professional phagocytes and can also survive engulfment by professional phagocytes such as neutrophils and monocytes. In both of these cell types S. aureus promptly escapes from the endosomes/phagosomes and proliferates within the cytoplasm, which quickly leads to host cell death. In this report we show that S. aureus interacted with human monocyte-derived macrophages in a very different way to those of other mammalian cells. Upon phagocytosis by macrophages, S. aureus persisted intracellularly in vacuoles for 3-4 days before escaping into the cytoplasm and causing host cell lysis. Until the point of host cell lysis the infected macrophages showed no signs of apoptosis or necrosis and were functional. They were able to eliminate intracellular staphylococci if prestimulated with interferon-gamma at concentrations equivalent to human therapeutic doses. S. aureus survival was dependent on the alternative sigma factor B as well as the global regulator agr, but not SarA. Furthermore, isogenic mutants deficient in alpha-toxin, the metalloprotease aureolysin, protein A, and sortase A were efficiently killed by macrophages upon phagocytosis, although with different kinetics. In particular alpha-toxin was a key effector molecule that was essential for S. aureus intracellular survival in macrophages. Together, our data indicate that the ability of S. aureus to survive phagocytosis by macrophages is determined by multiple virulence factors in a way that differs considerably from its interactions with other cell types. S. aureus persists inside macrophages for several days without affecting the viability of these mobile cells which may serve as vehicles for the dissemination of infection.  相似文献   

15.
Polymorphonuclear neutrophil granulocytes (PMNs) possess numerous effector mechanisms to kill ingested pathogens as the first line of defence. However, several microorganisms evade intracellular killing in neutrophils, survive and retain infectivity. There is increasing evidence that several pathogens even multiply within neutrophils. Taking Leishmania major as a prototypic intracellular pathogen, we suggest an evasion strategy that includes the manipulation of PMNs in such a way that the pathogens are able to use the granulocytes as host cells. The ability to survive and maintain infectivity in PMNs subsequently enables these organisms to establish productive infection. These organisms can use granulocytes as Trojan horses before they enter their definitive host cells, the macrophages.  相似文献   

16.
Staphylococcus aureus is an important pathogen of humans and other animals, causing bacteremia, abscessation, toxemia, and other infectious diseases. An animal model using CD-1 mice was developed to study the pathogenesis of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA). When inoculated into the CD-1 mouse model, it was shown that both MSSA isolates, (HR 78 and CSA-1) and MRSA isolates (MRSA 456 and MRSA 457) led to chronic infection of the kidney. Female CD-1 mice inoculated with MRSA 456 proved to be more susceptible to infection and mortality than their male counterparts. Castrated mice became more susceptible to infection than intact male mice, suggesting a hormonal involvement in the infection process.  相似文献   

17.
Bloodstream infection with Staphylococcus aureus is common and can be fatal. However, virulence factors that contribute to lethality in S. aureus bloodstream infection are poorly defined. We discovered that LukED, a commonly overlooked leucotoxin, is critical for S. aureus bloodstream infection in mice. We also determined that LukED promotes S. aureus replication in vivo by directly killing phagocytes recruited to sites of haematogenously seeded tissue. Furthermore, we established that murine neutrophils are the primary target of LukED, as the greater virulence of wild-type S. aureus compared with a lukED mutant was abrogated by depleting neutrophils. The in vivo toxicity of LukED towards murine phagocytes is unique among S. aureus leucotoxins, implying its crucial role in pathogenesis. Moreover, the tropism of LukED for murine phagocytes highlights the utility of murine models to study LukED pathobiology, including development and testing of strategies to inhibit toxin activity and control bacterial infection.  相似文献   

18.
The receptor for advanced glycation end products (RAGE) plays an important role in host defense against bacterial infection. In the present experiments, we investigated the mechanisms by which RAGE contributes to the ability of neutrophils to eradicate bacteria. Wild-type (RAGE(+/+)) neutrophils demonstrated significantly greater ability to kill Escherichia coli compared with RAGE(-/-) neutrophils. After intraperitoneal injection of E. coli, increased numbers of bacteria were found in the peritoneal fluid from RAGE(-/-) as compared with RAGE(+/+) mice. Exposure of neutrophils to the protypical RAGE ligand AGE resulted in activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and enhanced killing of E. coli, and intraperitoneal injection of AGE enhanced bacterial clearance during peritonitis. However, incubation of neutrophils with high mobility group box 1 protein (HMGB1), which also binds to RAGE, diminished E. coli-induced activation of NADPH oxidase in neutrophils and bacterial killing both in vitro and in vivo. Deletion of the COOH-terminal tail of HMGB1, a region necessary for binding to RAGE, abrogated the ability of HMGB1 to inhibit bacterial killing. Incubation of neutrophils with HMGB1 diminished bacterial or AGE-dependent activation of NADPH oxidase. The increase in phosphorylation of the p40(phox) subunit of NADPH oxidase that occurred after culture of neutrophils with E. coli was inhibited by exposure of the cells to HMGB1. These results showing that HMGB1, through RAGE-dependent mechanisms, diminishes bacterial killing by neutrophils as well as NADPH oxidase activation provide a novel mechanism by which HMGB1 can potentiate sepsis-associated organ dysfunction and mortality.  相似文献   

19.
Staphylococcus aureus is responsible for the vast majority of bacterial skin infections in humans. The propensity for S. aureus to infect skin involves a balance between cutaneous immune defense mechanisms and virulence factors of the pathogen. The tissue architecture of the skin is different from other epithelia especially since it possesses a corneal layer, which is an important barrier that protects against the pathogenic microorganisms in the environment. The skin surface, epidermis, and dermis all contribute to host defense against S. aureus. Conversely, S. aureus utilizes various mechanisms to evade these host defenses to promote colonization and infection of the skin. This review will focus on host-pathogen interactions at the skin interface during the pathogenesis of S. aureus colonization and infection.  相似文献   

20.
Endovascular infections, including endocarditis, are life-threatening infectious syndromes. Staphylococcus aureus is the most common world-wide cause of such syndromes with unacceptably high morbidity and mortality even with appropriate antimicrobial agent treatments. The increase in infections due to methicillin-resistant S. aureus (MRSA), the high rates of vancomycin clinical treatment failures and growing problems of linezolid and daptomycin resistance have all further complicated the management of patients with such infections, and led to high healthcare costs. In addition, it should be emphasized that most recent studies with antibiotic treatment outcomes have been based in clinical settings, and thus might well be influenced by host factors varying from patient-to-patient. Therefore, a relevant animal model of endovascular infection in which host factors are similar from animal-to-animal is more crucial to investigate microbial pathogenesis, as well as the efficacy of novel antimicrobial agents. Endocarditis in rat is a well-established experimental animal model that closely approximates human native valve endocarditis. This model has been used to examine the role of particular staphylococcal virulence factors and the efficacy of antibiotic treatment regimens for staphylococcal endocarditis. In this report, we describe the experimental endocarditis model due to MRSA that could be used to investigate bacterial pathogenesis and response to antibiotic treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号