首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
When populations experience substantial variation in environmental conditions, they may evolve phenotypic plasticity in response to these varying selection pressures. Evolutionary theory predicts differentiation in the level of phenotypic plasticity among different habitats. We evaluated temperature-induced phenotypic responses in juvenile growth rate in natural populations of the springtail Orchesella cincta , inhabiting forest and heathland. These habitats typically co-occur but differ strongly with respect to, for example, thermal regime, relative humidity, and structure. Offspring of females from the two habitats were reared at different temperatures in climate rooms and the temperature response of juvenile growth rate and egg size was measured. We found a habitat-specific difference in plasticity of juvenile growth rate. The reaction norms of the forest populations were steeper than the reaction norms for heath populations at two replicated sampling sites. Egg weight itself was demonstrated to be a plastic trait with a higher egg weight at low temperatures, but the thermal response did not differ between habitats. We conclude that these populations have diverged due to strong local natural selection. Our results support the argument that the level of phenotypic plasticity itself can be under selection and that differentiation in reaction norms can occur even in neighbouring habitats with no barrier to gene flow.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 265–271.  相似文献   

2.
He YJ  Han WP  Zhong ZC 《应用生态学报》2011,22(2):337-342
对黄壤和喀斯特土壤两种土壤类型的森林内部和林窗中蝴蝶花的生长指标进行调查,研究异质生境下蝴蝶花的克隆可塑性.结果表明:蝴蝶花在黄壤生境中的分株高度、分株基径和根茎直径均高于喀斯特土壤生境,而分株密度低于喀斯特土壤生境.光照显著影响分株密度,在同一光照条件下土壤质地对分株密度没有显著影响.喀斯特森林内部蝴蝶花的花蕾数及开花数为0,这可能解释为光照和土壤质地双重压力下蝴蝶花对资源摄取和能量分配的权衡与生长维持.在一定程度上,蝴蝶花在黄壤生境中通过增强单个分株的竞争力、减少个体数量来适应环境,趋向K对策,在喀斯特生境中则通过增加个体数量、维持分株竞争力来适应环境,趋向r对策.  相似文献   

3.
【目的】驯化得到喜温嗜酸硫杆菌(Acidithiobacillus caldus)SM-1在低于最适生长温度下具有较高生长活力的突变菌株,并认知喜温嗜酸硫杆菌在不同温度下的基因组可塑性。【方法】利用实验室长期进化实验对菌株进行3个温度的驯化:37、40、45°C。运用454测序技术对驯化获得的菌株进行基因组重测序,通过比较基因组分析驯化株基因组单核苷酸位点变化(SNPs),对包含位点变化的基因从功能上进行分类,在此基础上,分析可能与温度适应性相关的基因。【结果】通过不同温度下的长期驯化,得到了在低于最适生长温度下具有较高活力的菌株;重测序结果发现,SM-1基因组具有较好的可塑性,不同温度(37、40、45°C)生长的菌株中,基因组中分别有418、384和347个核苷酸位点发生累计变化,其中3个温度下有20个相同的非同义突变位点,分别分布于编码重金属和毒性抗性系统、DNA甲基化和蛋白乙酰化酶、核酸代谢相关酶类等相关基因上;相比而言,在低于最适生长温度(37、40°C)下生长菌株特有的位点变化涉及能量代谢、信号转导以及DNA/RNA稳定性相关基因;其中,2个低温菌株共同发生位点变化的基因有3个,其中两个编码转座相关的蛋白Atc_1031与Atc_1623,另一个编码假想蛋白Atc_1130,该蛋白分别与外膜蛋白组装因子B和二硫键形成蛋白具有23%和35%的相似性。另外,不同生长温度下相关蛋白中氨基酸的组成也发生变化。【结论】喜温嗜酸硫杆菌SM-1基因组具有较好的可塑性,对于其基因组变化的研究结果为认识微生物温度适应性提供了组学数据。本研究揭示喜温嗜酸硫杆菌(At.caldus)SM-1可能通过多种途径适应向低温过渡生长,既包括微生物通用的环境适应机制,也存在菌株特有的温度适应途径。  相似文献   

4.
Temperature is considered one of the most important mediators of phenotypic plasticity in ectotherms. However, the costs and benefits shaping the evolution of different thermal responses are poorly elucidated. One of the possible constraints to phenotypic plasticity is its intrinsic genetic cost, such as genetic linkage or pleiotropy. Genetic coupling of the thermal response curves for different life history traits may significantly affect the evolution of thermal sensitivity in thermally fluctuating environments. We used the collembolan Orchesella cincta to study if there is genetic variation in temperature-induced phenotypic plasticity in life history traits, and if the degree of temperature-induced plasticity is correlated across traits. Egg development rate, juvenile growth rate and egg size of 19 inbred isofemale lines were measured at two temperatures. Our results show that temperature was a highly significant factor for all three traits. Egg development rate and juvenile growth rate increased with increasing temperature, while egg size decreased. Line by temperature interaction was significant for all traits tested; indicating that genetic variation for temperature-induced plasticity existed. The degree of plasticity was significantly positively correlated between egg development rate and growth rate, but plasticity in egg size was not correlated to the other two plasticity traits. The findings suggest that the thermal plasticities of egg development rate and growth rate are partly under the control of the same genes or genetic regions. Hence, evolution of the thermal plasticity of traits cannot be understood in isolation of the response of other traits. If traits have similar and additive effects on fitness, genetic coupling between these traits may well facilitate the evolution of optimal phenotypes. However, for this we need to know the selective forces under field conditions.  相似文献   

5.
We examine the interaction between phenotypic plasticity and evolutionary adaptation using muscle gene expression levels among populations of the fish Fundulus heteroclitus acclimated to three temperatures. Our analysis reveals shared patterns of phenotypic plasticity due to thermal acclimation as well as non‐neutral patterns of variation among populations adapted to different thermal environments. For the majority of significant differences in gene expression levels, phenotypic plasticity and adaptation operate on different suites of genes. The subset of genes that demonstrate both adaptive differences and phenotypic plasticity, however, exhibit countergradient variation of expression. Thus, expression differences among populations counteract environmental effects, reducing the phenotypic differentiation between populations. Finally, gene‐by‐environment interactions among genes with non‐neutral patterns of expression suggest that the penetrance of adaptive variation depends on the environmental conditions experienced by the individual.  相似文献   

6.
刘延滨  牟溥 《植物生态学报》2010,34(12):1472-1484
植物根资源捕获塑性是地下生态学研究的重点之一, 在过去二三十年间有长足的进步。菌根塑性是根资源捕获塑性的重要方面, 但由于研究手段的限制, 目前仅有概念上的探讨。缺乏菌根塑性的根塑性研究至少是不全面的。菌根生物学的迅速发展, 尤其是分子生物学手段的介入, 使对菌根塑性进行深入研究成为可能。该文对外生菌根塑性进行讨论, 在简要介绍了外生菌根的生物学基本知识后, 着重讨论了外生菌根形态塑性和生理塑性的定义与内涵。通过文献综述, 分析讨论了外生菌根塑性的研究现状: 很少有研究聚焦在菌根塑性本身, 现有的材料多为其他研究的隐示或研究结果的引申, 并多在形态塑性方面。外生菌根的生理塑性未见有直接的实验数据。该文还对外生菌根研究中发展的、可用于菌根塑性研究的方法进行了综述。由于外生菌根塑性的复杂性, 对菌根塑性的研究会较植物根本身塑性的研究复杂得多, 问题也会相对复杂, 比如植物和外生菌根菌之间的营养需求关系、植物外生菌根塑性的生态意义、实验方法的缺陷等等。对今后外生菌根塑性研究的方向进行了探讨。  相似文献   

7.
Species can adapt to new environmental conditions either through individual phenotypic plasticity, intraspecific genetic differentiation in adaptive traits, or both. Wild emmer wheat, Triticum dicoccoides, an annual grass with major distribution in Eastern Mediterranean region, is predicted to experience in the near future, as a result of global climate change, conditions more arid than in any part of the current species distribution. To understand the role of the above two means of adaptation, and the effect of population range position, we analyzed reaction norms, extent of plasticity, and phenotypic selection across two experimental environments of high and low water availability in two core and two peripheral populations of this species. We studied 12 quantitative traits, but focused primarily on the onset of reproduction and maternal investment, which are traits that are closely related to fitness and presumably involved in local adaptation in the studied species. We hypothesized that the population showing superior performance under novel environmental conditions will either be genetically differentiated in quantitative traits or exhibit higher phenotypic plasticity than the less successful populations. We found the core population K to be the most plastic in all three trait categories (phenology, reproductive traits, and fitness) and most successful among populations studied, in both experimental environments; at the same time, the core K population was clearly genetically differentiated from the two edge populations. Our results suggest that (1) two means of successful adaptation to new environmental conditions, phenotypic plasticity and adaptive genetic differentiation, are not mutually exclusive ways of achieving high adaptive ability; and (2) colonists from some core populations can be more successful in establishing beyond the current species range than colonists from the range extreme periphery with conditions seemingly closest to those in the new environment.  相似文献   

8.
Selection for enhanced cognitive traits is hypothesized to produce enhancements to brain structures that support those traits. Although numerous studies suggest that this pattern is robust, there are several mechanisms that may produce this association. First, cognitive traits and their neural underpinnings may be fixed as a result of differential selection on cognitive function within specific environments. Second, these relationships may be the product of the selection for plasticity, where differences are produced owing to an individual's experiences in the environment. Alternatively, the relationship may be a complex function of experience, genetics and/or epigenetic effects. Using a well-studied model species (black-capped chickadee, Poecile atricapillus), we have for the first time, to our knowledge, addressed these hypotheses. We found that differences in hippocampal (Hp) neuron number, neurogenesis and spatial memory previously observed in wild chickadees persisted in hand-raised birds from the same populations, even when birds were raised in an identical environment. These findings reject the hypothesis that variation in these traits is owing solely to differences in memory-based experiences in different environments. Moreover, neuron number and neurogenesis were strikingly similar between captive-raised and wild birds from the same populations, further supporting the genetic hypothesis. Hp volume, however, did not differ between the captive-raised populations, yet was very different in their wild counterparts, supporting the experience hypothesis. Our results indicate that the production of some Hp factors may be inherited and largely independent of environmental experiences in adult life, regardless of their magnitude, in animals under high selection pressure for memory, while traits such as volume may be more plastic and modified by the environment.  相似文献   

9.
Dissecting evolutionary dynamics of ecologically important traits is a long-term challenge for biologists.Attempts to understand natural variation and molecular mechanisms have motivated a move from laboratory model systems to non-model systems in diverse natural environments.Next generation sequencing methods,along with an expansion of genomic resources and tools,have fostered new links between diverse disciplines,including molecular biology,evolution,ecology,and genomics.Great progress has been made in a few non-model wild plants,such as Arabidopsis relatives,monkey flowers,and wild sunflowers.Until recently,the lack of comprehensive genomic information has limited evolutionary and ecological studies to larger QTL (quantitative trait locus) regions rather than single gene resolution,and has hindered recognition of general patterns of natural variation and local adaptation.Further efforts in accumulating genomic data and developing bioinformatic and biostatistical tools are now poised to move this field forward.Integrative national and international collaborations and research communities are needed to facilitate development in the field of evolutionary and ecological genomics.  相似文献   

10.
Plasticity-mediated changes in interaction dynamics and structure may scale up and affect the ecological network in which the plastic species are embedded. Despite their potential relevance for understanding the effects of plasticity on ecological communities, these effects have seldom been analysed. We argue here that, by boosting the magnitude of intra-individual phenotypic variation, plasticity may have three possible direct effects on the interactions that the plastic species maintains with other species in the community: may expand the interaction niche, may cause a shift from one interaction niche to another or may even cause the colonization of a new niche. The combined action of these three factors can scale to the community level and eventually expresses itself as a modification in the topology and functionality of the entire ecological network. We propose that this causal pathway can be more widespread than previously thought and may explain how interaction niches evolve quickly in response to rapid changes in environmental conditions. The implication of this idea is not solely eco-evolutionary but may also help to understand how ecological interactions rewire and evolve in response to global change.  相似文献   

11.
The Brazilian Atlantic Forest is a typically multi-layer tropical forest, while cerrado (savanna) is a patchy habitat with different physiognomy. Despite these differences, both habitats have high light heterogeneity. Functional traits of Dalbergia nigra and D. miscolobium from the Atlantic Forest and cerrado, respectively, were evaluated under shade (25% of full sunlight) and full sunlight in a nursery experiment. We hypothesised that both species should benefit from high phenotypic plasticity in relation to light. Plasticity was estimated using the relative distance phenotypic index (RDPI). D. miscolobium had lower shoot growth under both light conditions, suggesting it has low competitive capacity in the forest environment, which could explain its limited ability to expand over areas of Atlantic Forest. The studied species exhibited photoprotection strategies under high light and improved light capture under low light. Stomatal conductance, ETR(max) (maximum electron transport rate), PPFD(sat) (saturating photosynthetically active photon flux density), chlorophyll and carotenoid content had higher RDPI than stem morphological traits. Although both species showed considerable phenotypic plasticity, D. miscolobium had higher RDPI for eight of 11 evaluated traits. This high plasticity could be one of the factors that explain the occurrence of this species in a wide range of environmental conditions, from open grassland to dense woodlands, and it could also reflect its adaptation to high light. D. nigra also had considerable plasticity and good growth performance in both shade and full sunlight, but its absence in areas of cerrado suggests that factors other than light limit its occurrence in these habitats.  相似文献   

12.
Many species face increasing drought under climate change. Plasticity has been predicted to strongly influence species' drought responses, but broad patterns in plasticity have not been examined for key drought tolerance traits, including turgor loss or ‘wilting’ point (πtlp). As soil dries, plants shift πtlp by accumulating solutes (i.e. ‘osmotic adjustment’). We conducted the first global analysis of plasticity in Δπtlp and related traits for 283 wild and crop species in ecosystems worldwide. Δπtlp was widely prevalent but moderate (?0.44 MPa), accounting for 16% of post‐drought πtlp. Thus, pre‐drought πtlp was a considerably stronger predictor of post‐drought πtlp across species of wild plants. For cultivars of certain crops Δπtlp accounted for major differences in post‐drought πtlp. Climate was correlated with pre‐ and post‐drought πtlp, but not Δπtlp. Thus, despite the wide prevalence of plasticity, πtlp measured in one season can reliably characterise most species' constitutive drought tolerances and distributions relative to water supply.  相似文献   

13.
The aim of this study is to explore the effects of canopy conditions on clump and culm numbers, and the morphological plasticity and biomass distribution patterns of the dwarf bamboo species Fargesia nitida. Specifically, we investigated the effects of canopy condi-tions on the growth and morphological characteristics of F. nitida, and the adaptive responses of F. nitida to dif-ferent canopy conditions and its ecological senses. The results indicate that forest canopy had a significant effect on the genet density and culm number per clump, while it did not affect the ramet density. Clumps tended to be few and large in gaps and forest edge plots, and small under forest understory plots. The ramets showed an even distribution under the closed canopy, and clus-ter distribution under gaps and forest edge plots. The forest canopy had a significant effect on both the ramets'biomass and biomass allocation. Favourable light conditions promoted ramet growth and biomass accumulation. Greater amounts of biomass in gaps and forest edge plots were shown by the higher number of culms per clump and the diameter of these culms. Under closed canopy, the bamboos increased their branching angle, leaf biomass allocation, specific leaf area and leaf area ratio to exploit more favourable light conditions in these locations. The spacer length, specific spacer length and spacer branching angles all showed significant differences between gaps and closed canopy conditions. The larger specific spacer length and spacer branching angle were beneficial for bamboo growth, scattering the ramets and exploiting more favourable light conditions. In summary, this study shows that to varying degrees, F nitida exhibits both a wide ecological amplitude and high degree of morphological plasticity in response to differing forest canopy conditions. More-over, the changes in plasticity enable the plants to optimize their light usage efficiency to promote growth and increase access to resources available in heteerogeneous light environoments.  相似文献   

14.
Vincent G  Harja D 《Annals of botany》2008,101(8):1221-1231
BACKGROUND AND AIMS: Morphogenetic plasticity may be as important as physiological plasticity in determining plant adaptability to changing environmental conditions. This study examines the importance of crown plasticity of trees in stands. METHODS: A three-dimensional forest simulator is used to explore the impact of crown shape plasticity on tree growth. Crown deformation is mediated through the local response to light and overall allometric constraints governing tree dimensions. By altering shape response parameters of Hevea brasiliensis the impact of increased or decreased plasticity is explored in a variety of competitive environments defined by various combinations of tree density and relative frequency of different strategies. The possible interactions between plasticity and growth rate and plasticity and below-ground competition are also explored. KEY RESULTS: Crown plasticity confers competitive superiority in all cases studied. Interactions with other processes may downplay or enhance this competitive advantage. CONCLUSIONS: Simulation results strongly suggest that crown plasticity does have a significant impact on tree performance in nature and that commonly observed crown shape deformation response of trees is of adaptive value.  相似文献   

15.
Plant species that persist during succession, from the colonization to the stabilization stages, face major environmental changes. Such changes are believed to have significant effects on species performance. In subarctic coastal dune systems, Leymus mollis colonizes the embryo dunes, on the upper limit of the beach. It reaches its maximum density on the foredune, but also grows on older, stabilized ridges. This paper reports on the phenotypic variations of some ecophysiological traits associated with the persistence of L. mollis on a dune system on the east coast of Hudson Bay (northern Quebec). Leymus mollis ramets tend to have a lower net carbon assimilation rate and water use efficiency, and a higher substomatal CO2 concentration on the stabilized dune than on the foredune. However, these physiological differences cannot be explained by differences in leaf morphology or nitrogen content. Under controlled conditions, ecophysiological differences observed in the field disappear, suggesting that these are not genetic but determined by environmental changes along the foredune-stabilized dune gradient. We propose that higher net carbon assimilation rate on the foredune might be related to higher sink strength in relation to the growth-stimulating effect of sand burial.  相似文献   

16.
Abstract Dissecting evolutionary dynamics of ecologically important traits is a long‐term challenge for biologists. Attempts to understand natural variation and molecular mechanisms have motivated a move from laboratory model systems to non‐model systems in diverse natural environments. Next generation sequencing methods, along with an expansion of genomic resources and tools, have fostered new links between diverse disciplines, including molecular biology, evolution, ecology, and genomics. Great progress has been made in a few non‐model wild plants, such as Arabidopsis relatives, monkey flowers, and wild sunflowers. Until recently, the lack of comprehensive genomic information has limited evolutionary and ecological studies to larger QTL (quantitative trait locus) regions rather than single gene resolution, and has hindered recognition of general patterns of natural variation and local adaptation. Further efforts in accumulating genomic data and developing bioinformatic and biostatistical tools are now poised to move this field forward. Integrative national and international collaborations and research communities are needed to facilitate development in the field of evolutionary and ecological genomics.  相似文献   

17.
18.
Large‐scale restoration efforts are underway globally to mitigate the impact of decades of land degradation by returning functional and biodiverse ecosystems. Revegetation is a heavily relied upon restoration intervention, and one that is expected to result in associated biodiversity returns. However, the outcome of such restoration interventions rarely considers recovery to the soil microbiome, a mega‐diverse and functionally important ecosystem component. Here we examine the archaeal component of the soil microbiome and track community change after a decade of eucalypt woodland restoration in southern Australia. We employed DNA metabarcoding to show that archaeal community composition, richness, and diversity shifted significantly, and towards a restored state 10 years after the restoration intervention. Changes in soil pH and nitrate associated with changes to the archaeal community, potentially relating to the pH responsive properties and close relationship with the nitrogen cycle of some archaea. Our study helps shed light on archaeal community dynamics, as no other study has used DNA metabarcoding to study archaeal responses across a restoration chronosequence. Our results provide great promise for the development of molecular monitoring of the soil microbiome as a future restoration monitoring tool.  相似文献   

19.
亚高山暗针叶林不同林冠环境下华西箭竹的克隆可塑性   总被引:8,自引:0,他引:8  
陶建平  宋利霞 《生态学报》2006,26(12):4019-4026
以亚高山暗针叶林3种林冠环境中以及暗针叶林林缘的华西箭竹(Fargesia nitida)为对象,对其无性系数量特征、无性系根茎特征、分株生物量以及分株形态特征进行了对比研究。结果表明:(1)林冠环境的差异导致了不同种群的基株密度和每基株分株数的显著差异,但林冠环境差异不影响分株密度。林冠郁闭度愈大,每基株分株数愈少,分株分布愈均匀。(2)不同林冠环境间。分株生物量、分株构件生物量和分株构件的生物量分配百分率均有显著差异。开敞的林冠环境有利于华西箭竹的生长和生物量积累。(3)随着林冠郁闭度的增加,华西箭竹通过增大分枝角度、叶生物量分配百分率、比叶面积和叶面积率以提高光能利用效率,有效适应弱光环境。(4)隔离者长度、隔离者直径和分枝强度在林缘和林窗环境中要显著大于林内环境;同级隔离者分枝角度随林冠郁闭度的增加而最大,其值在林下显著大于林窗和林缘,而异级隔离者分枝角度的变化则正好相反。研究表明,华西箭竹种群在不同的林冠环境中发生了明显的可塑性变化,这些可塑性变化是种群对林冠郁闭度差异的适应性反应的结果,有利于增强种群对环境中有限光资源的利用。  相似文献   

20.
Costs of phenotypic adaptation to changing environments have often been studied in morphological structures. Such structures typically are irreversible for at least some stage in the organism's life. In this study we investigated whether recurrent and reversible adaptation to changes in the thermal environment incurs a cost in terms of some key life-history traits in the collembolan Orchesella cincta. We exposed juvenile O. cincta to two treatments differing in the frequency of temperature fluctuation but with equal total temperature sums. In the high frequency treatment temperature fluctuated daily between 10 and 20 °C, while in the low frequency treatment temperature fluctuated on a weekly schedule. During the treatments we measured juvenile growth rate and juvenile mortality, and after six weeks the animals were transferred to constant 15 °C and adult starvation resistance was assessed. We found no significant differences between the treatments in juvenile growth rate or juvenile survival. Also, adults that had grown up under high frequency temperature fluctuations did not suffer from reduced starvation resistance compared to animals growing under low frequency temperature fluctuations. This finding supports the hypothesis that selection minimizes the production costs of inducible phenotypes and suggests that the development of optimal phenotypes and evolution of temperature reaction norms are not constrained by such costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号