首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA barcoding has greatly facilitated studies of taxonomy, biodiversity, biological conservation, and ecology. Here, we establish a reliable DNA barcoding library for Chinese snakes, unveiling hidden diversity with implications for taxonomy, and provide a standardized tool for conservation management. Our comprehensive study includes 1638 cytochrome c oxidase subunit I (COI) sequences from Chinese snakes that correspond to 17 families, 65 genera, 228 named species (80.6% of named species) and 36 candidate species. A barcode gap analysis reveals gaps, where all nearest neighbour distances exceed maximum intraspecific distances, in 217 named species and all candidate species. Three species-delimitation methods (ABGD, sGMYC, and sPTP) recover 320 operational taxonomic units (OTUs), of which 192 OTUs correspond to named and candidate species. Twenty-eight other named species share OTUs, such as Azemiops feae and A. kharini, Gloydius halys, G. shedaoensis, and G. intermedius, and Bungarus multicinctus and B. candidus, representing inconsistencies most probably caused by imperfect taxonomy, recent and rapid speciation, weak taxonomic signal, introgressive hybridization, and/or inadequate phylogenetic signal. In contrast, 43 species and candidate species assign to two or more OTUs due to having large intraspecific distances. If most OTUs detected in this study reflect valid species, including the 36 candidate species, then 30% more species would exist than are currently recognized. Several OTU divergences associate with known biogeographic barriers, such as the Taiwan Strait. In addition to facilitating future studies, this reliable and relatively comprehensive reference database will play an important role in the future monitoring, conservation, and management of Chinese snakes.  相似文献   

2.
DNA barcoding has greatly accelerated the pace of specimen identification to the species level, as well as species delineation. Whereas the application of DNA barcoding to the matching of unknown specimens to known species is straightforward, its use for species delimitation is more controversial, as species discovery hinges critically on present levels of haplotype diversity, as well as patterning of standing genetic variation that exists within and between species. Typical sample sizes for molecular biodiversity assessment using DNA barcodes range from 5 to 10 individuals per species. However, required levels that are necessary to fully gauge haplotype variation at the species level are presumed to be strongly taxon‐specific. Importantly, little attention has been paid to determining appropriate specimen sample sizes that are necessary to reveal the majority of intraspecific haplotype variation within any one species. In this paper, we present a brief outline of the current literature and methods on intraspecific sample size estimation for the assessment of COI DNA barcode haplotype sampling completeness. The importance of adequate sample sizes for studies of molecular biodiversity is stressed, with application to a variety of metazoan taxa, through reviewing foundational statistical and population genetic models, with specific application to ray‐finned fishes (Chordata: Actinopterygii). Finally, promising avenues for further research in this area are highlighted.  相似文献   

3.
Colombia is the country with the largest number of bird species worldwide, yet its avifauna is seriously threatened by habitat degradation and poaching. We built a DNA barcode library of nearly half of the bird species listed in the CITES appendices for Colombia, thereby constructing a species identification reference that will help in global efforts for controlling illegal species trade. We obtained the COI barcode sequence of 151 species based on 281 samples, representing 46% of CITES bird species registered for Colombia. The species analysed belong to nine families, where Trochilidae and Psittacidae are the most abundant ones. We sequenced for the first time the DNA barcode of 47 species, mainly hummingbirds endemic of the Northern Andes region. We found a correct match between morphological and genetic identification for 86–92% of the species analysed, depending on the cluster analysis performed (BIN, ABGD and TaxonDNA). Additionally, we identified eleven cases of high intraspecific divergence based on K2P genetic distances (up to 14.61%) that could reflect cryptic diversity. In these cases, the specimens were collected in geographically distant sites such as different mountain systems, opposite flanks of the mountain or different elevations. Likewise, we found two cases of possible hybridization and incomplete lineage sorting. This survey constitutes the first attempt to build the DNA barcode library of endangered bird species in Colombia establishing as a reference for management programs of illegal species trade, and providing major insights of phylogeographic structure that can guide future taxonomic research.  相似文献   

4.
A total of 123 Trichoderma strains were isolated from Norwegian surface-sourced drinking water. The water samples included raw water, treated water, and water from private homes and hospital installations. Trichoderma species are difficult to differentiate morphologically, but recent molecular identification tools, including DNA barcoding, successfully distinguish between closely related species. The diversity of Trichoderma spp. was explored by DNA sequencing of internal transcribed spacer (ITS) and translation elongation factor 1 alpha (TEF-1α). Sequence identification was performed in the TrichOKEY version 2.0 barcode program and in the multilocus similarity search database TrichoBLAST, combined with traditional blast searches in the EMBL/GenBank. A total of 11 known Trichoderma/Hypocrea species were identified. In addition, one group of unidentified Trichoderma strains was found to represent a separate, strongly supported subclade within the Pachybasium'A'/Hamatum clade, based on their TEF-1α haplotypes. Trichoderma viride comprised 49% of the identified strains, and was represented by four and eight slightly different ITS and TEF-1α haplotypes, respectively. Approximately 22% of the surface-derived water samples were positive for T. viride, and the species was frequently isolated throughout the surface-sourced drinking water distribution system. The results indicate that a broad range of Trichoderma species are present in Norwegian surface-sourced drinking. Water treatment has minor effect in removing Trichoderma from raw water, and active growth in the water distribution system is likely to occur.  相似文献   

5.
准确鉴定毒品原植物大麻的种属及品种具有重要的理论和实践意义。为了探讨DNA条形码技术用于毒品原植物大麻种属鉴定及品种鉴定的可行性,该研究以60份大麻原植物(分别采自内蒙、黑龙江、陕西延安、陕西榆林4个地区的栽培大麻雌雄各6株及新疆玛纳斯地区的野生大麻雌雄各6株)为材料,通过从其叶片中提取的DNA为模版,利用核糖体DNA基因间隔区的通用引物ITS2和叶绿体DNA的通用引物psbAtrnH进行PCR扩增,对扩增片段进行双向测序,将测序结果进行人工矫正和比对。结果显示:所有大麻样本的ITS2扩增片段序列没有变异完全一致,但psbA-trnH扩增片段变异较大共检测出8种cpDNA单倍型,用MEGE5.1软件计算种间遗传距离,并构建NJ系统聚类树可以有效把这五个地区的大麻样本区别开来,因此证明DNA条形码技术在毒品原植物大麻的种属鉴定方面具有可行性,但其用于大麻的种属鉴定的准确性、可靠性及在其来源地鉴定及品种鉴定中的可能性还有待进一步深入地研究。  相似文献   

6.
Global patterns of plant diversity   总被引:1,自引:0,他引:1  
Summary Using 94 data sets from across the globe, we explored patterns of mean community species richness, landscape species richness, mean similarity among communities and mosaic diversity. Climate affected community species richness primarily through productivity while other climatic factors were secondary. Climatic equability affected species richness only in temperate regions where richness was greatest at high levels of temperature variability and low levels of precipitation variability. Landscape species richness correlated positively with community species richness. A global gradient in mean similarity existed but was uncorrelated with community species richness. Mean similarity was least and mosaic diversity was greatest between 25 and 30° latitude. The most diverse landscapes (low mean similarity) correlated with warm temperatures, high elevations, large areas and large seasonal temperature fluctuations. The most complex landscapes (high mosaic diversity) correlated with large areas, high productivity and warm winters. We compared diversity measures among continents and found only one significant difference: Australian landscapes have greater mosaic diversity than African landscapes. Based on our analyses we propose two hypotheses: (1) for plants, biotic interactions are more important in structuring landscapes in warmer climates and (2) longer isolated landscapes have more clearly differentiated ecological subunits.  相似文献   

7.
8.
DNA条形码在鳞翅目昆虫中的应用   总被引:4,自引:0,他引:4  
2003年,Hebert等提出DNA条形码后,快速而精确的特点使它在物种鉴定中得到了广泛的应用。鳞翅目是昆虫纲中第二大目,其物种鉴定任务复杂而艰巨,因此DNA条形码具有广阔的应用前景。该文主要针对DNA条形码概况以及近年来它在鳞翅目昆虫中的研究情况予以综述。  相似文献   

9.
Species richness is the most commonly used metric to quantify biodiversity. However, examining dark diversity, the group of missing species which can potentially inhabit a site, can provide a more thorough understanding of the processes influencing observed biodiversity and help evaluate the restoration potential of local habitats. So far, dark diversity has mainly been studied for specific habitats or large‐scale landscapes, while less attention has been given to variation across broad environmental gradients or as a result of local conditions and biotic interactions. In this study, we investigate the importance of local environmental conditions in determining dark diversity and observed richness in plant communities across broad environmental gradients. Using the ecospace concept, we investigate how these biodiversity measures relate to abiotic gradients (defined as position), availability of biotic resources (defined as expansion), spatiotemporal extent of habitats (defined as continuity), and species interactions through competition. Position variables were important for both observed diversity and dark diversity, some with quadratic relationships, for example, plant richness showing a unimodal response to soil fertility corresponding to the intermediate productivity hypothesis. Interspecific competition represented by community mean Grime C had a negative effect on plant species richness. Besides position‐related variables, organic carbon was the most important variable for dark diversity, indicating that in late‐succession habitats such as forests and shrubs, dark diversity is generally low. The importance of highly competitive species indicates that intermediate disturbance, such as grazing, may facilitate higher species richness and lower dark diversity.  相似文献   

10.
DNA Barcoding (DBC) is a method for taxonomic identification of animals that is based entirely on the 5′ portion of the mitochondrial gene, cytochrome oxidase subunit I (COI-5). It can be especially useful for identification of larval forms or incomplete specimens lacking diagnostic morphological characters. DBC can also facilitate the discovery of species and in defining “molecular taxonomic units” in problematic groups. However, DBC is not a panacea for coral reef taxonomy. In two of the most ecologically important groups on coral reefs, the Anthozoa and Porifera, COI-5 sequences have diverged too little to be diagnostic for all species. Other problems for DBC include paraphyly in mitochondrial gene trees and lack of differentiation between hybrids and their maternal ancestors. DBC also depends on the availability of databases of COI-5 sequences, which are still in early stages of development. A global effort to barcode all fish species has demonstrated the importance of large-scale coordination and is yielding promising results. Whether or not COI-5 by itself is sufficient for species assignments has become a contentious question; it is generally advantageous to use sequences from multiple loci.  相似文献   

11.
甘肃省鱼类资源现状及DNA条形码在鱼类物种鉴定中的应用   总被引:2,自引:0,他引:2  
为了摸清甘肃省土著鱼类资源与分布现状, 探索DNA条形码在鱼类辅助物种鉴定中的适用性, 2012年6-9月对甘肃境内黄河水系、嘉陵江水系和河西内陆河水系进行了较全面的鱼类调查。共采集鱼类标本3,087尾, 隶属于5目10科38属64种, 以鲤科种类最多, 为30种, 占总种数的46.88%。物种多样性分析表明, 在黄河水系的夏河和庄浪河多样性指数是所有调查点中最低的, 分别为1.38和1.09。嘉陵江水系各河段的多样性指数较高(H = 2.15-3.27), 其次为河西内陆河水系(H = 2.01-2.83)。在河西内陆河水系中, 疏勒河的均匀度指数最高, 为1.10, 黑河最低(0.68)。庄浪河的优势度指数最高, 为0.34, 而嘉陵江干流两当段的优势度指数在所有调查点中最低, 为0.04。利用DNA条形码分析了49种662尾标本的COI基因部分序列, 大部分种类在neighbor-joining系统树中形成各自的单系, 种内平均遗传距离0.88%, 种间平均遗传距离为9.99%, 在种内和种间COI序列遗传距离之间形成明显的条形码间隙, 斯氏高原鳅(Triplophysa stoliczkae)与达里湖高原鳅(T. dalaica), 甘肃高原鳅(T. robusta)与似鲇高原鳅(T. siluroides), 嘉陵裸裂尻鱼(Schizopygopsis kialingensis)与黄河裸裂尻鱼(S. pylzovi)之间的遗传距离低于2%, 甘肃高原鳅与似鲇高原鳅不能通过COI基因片段区分开, 其他两对物种可以采用核苷酸诊断法来进一步区分。斯氏高原鳅和拉氏鱼岁(Phoxinus lagowskii)种内遗传分歧较大, 揭示种内可能存在隐存种。结果表明, 对某些近缘种和不同地理种群差异较大的物种, 要将分子、形态和地理分布特点结合起来才能准确鉴定。  相似文献   

12.
To investigate the species diversity of lepidopteran insects in Xinjiang wild fruit forests, establish insect community monitoring systems, and determine the local species pool, we test the applicability of DNA barcoding based on cytochrome c oxidase subunit I (COI) gene for accurate and rapid identification of insect species. From 2017 to 2019, a total of 212 samples with ambiguous morphological identification were selected for DNA barcoding analysis. Five sequence‐based methods for species delimitation (ABGD, BINs, GMYC, jMOTU, and bPTP) were conducted for comparison to traditional morphology‐based identification. In total, 2,422 samples were recorded, representing 143 species of 110 genera in 17 families in Lepidoptera. The diversity analysis showed that the richness indices for Noctuidae was the highest (54 species), and for Pterophoridae, Cossidae, Limacodidae, Lasiocampidae, Pieridae, and Lycaenidae were the lowest (all with 1 species). The Shannon–Wiener species diversity index (H′) and Pielou''s evenness (J′) of lepidopteran insects first increased and then decreased across these 3 years, while the Simpson diversity index showed a trend of subtracted then added. For molecular‐based identification, 67 lepidopteran species within 61 genera in 14 families were identified through DNA barcoding. Neighbor‐joining (NJ) analysis showed that conspecific individuals were clustered together and formed monophyletic groups with a high support value, except for Lacanobia contigua (Denis & Schiffermüller, 1775) (Noctuidae: Hadeninae). Sixty‐seven morphospecies were classified into various numbers of MOTUs based on ABGD, BINs, GMYC, jMOTU, and bPTP (70, 96, 2, 71, and 71, respectively). In Xinjiang wild fruit forests, the family with the largest number of species is Noctuidae, followed by Geometridae, Crambidae, and the remaining families. The highest Shannon diversity index is observed for the family Noctuidae. Our results indicate that the distance‐based methods (ABGD and jMOTU) and character‐based method (bPTP) outperform GMYC. BINs is inclined to overestimate species diversity compared to other methods.  相似文献   

13.
Feather mites (Astigmata: Analgoidea and Pterolichoidea) are among the most abundant and commonly occurring bird ectosymbionts. Basic questions on the ecology and evolution of feather mites remain unanswered because feather mite species identification is often only possible for adult males, and it is laborious even for specialized taxonomists, thus precluding large‐scale identifications. Here, we tested DNA barcoding as a useful molecular tool to identify feather mites from passerine birds. Three hundred and sixty‐one specimens of 72 species of feather mites from 68 species of European passerine birds from Russia and Spain were barcoded. The accuracy of barcoding and minibarcoding was tested. Moreover, threshold choice (a controversial issue in barcoding studies) was also explored in a new way, by calculating through simulations the effect of sampling effort (in species number and species composition) on threshold calculations. We found one 200‐bp minibarcode region that showed the same accuracy as the full‐length barcode (602 bp) and was surrounded by conserved regions potentially useful for group‐specific degenerate primers. Species identification accuracy was perfect (100%) but decreased when singletons or species of the Proctophyllodes pinnatus group were included. In fact, barcoding confirmed previous taxonomic issues within the P. pinnatus group. Following an integrative taxonomy approach, we compared our barcode study with previous taxonomic knowledge on feather mites, discovering three new putative cryptic species and validating three previous morphologically different (but still undescribed) new species.  相似文献   

14.
DNA barcoding is widely used in species identification, but there is considerable controversy regarding the extent of sampling in research methods. Some scholars have proposed that this small sample size underestimates the intraspecific genetic diversity, which would impact on the accuracy of DNA barcoding to identify species. In study, we selected all Phellodendron species (including P. amurense Rupr., P. chinense Schneid., and P. chinense var. glabriusculum Schneid.) as the materials, collected 59 P. amurense samples from 35 populations greatly to represent the genetic diversity, and analyzed the haplotype, genetic distance, barcoding gap, and Neighbor‐Joining (NJ) trees based on psbA‐trnH and internal transcribed spacer gene sequences. Additionally, a sampling simulation was conducted to assess the correlation between genetic diversity and the number of populations. Finally, analysis of critical geographical populations was performed. Based on analysis of haplotype, genetic distance, barcoding gap, and NJ trees, we found that eight P. amurense samples impacted on the effectiveness of DNA barcoding, which genetic information were very important to identify Phellodendron species. Moreover, the result of the NJ tree analysis performed the small‐scale P. amurense sample size did not completely match the objective phylogenetic relationship in Phellodendron. In simulation sampling analysis, the data showed the genetic diversity indexes at the same population level gradually decreased and stabilized as the number of simulation sampling populations increased. We found that 1–2 samples from over 24 populations based on uniform geographical distribution could represent 80% of the genetic diversity of P. amurense and ensure authenticity and reliability of DNA barcoding. Thus, we proposed it is particularly important adequately samples to cover infraspecific genetic diversity in order to ensure identification accuracy of DNA barcoding.  相似文献   

15.
DNA条形码技术是利用基因组中一段短的标准序列进行物种的鉴定并探索其亲缘进化关系。本研究对采自海南不同地区降香黄檀五个居群24份样品的psbA-trnH,rbcL,核ITS及ITS2序列进行PCR扩增和测序,比较各序列扩增和测序效率。种间和种内变异,采用BLAST1和邻接 (NJ) 法构建系统聚类树方法评价不同序列的鉴定能力。结果表明ITS2在所研究的材料中具有最高的扩增和测序效率,而ITS扩增效率较低。ITS2完整序列在区分黄檀属不同种间差异具有较大优势。因此可利用ITS2从分子水平区分降香黄檀与其他混伪种。  相似文献   

16.
Although DNA barcoding has been widely used to identify plant species composition in temperate and tropical ecosystems, relatively few studies have used DNA barcodes to document both herbaceous and woody components of forest plot. A total of 201 species (72 woody species and 129 herbaceous species) representing 135 genera distributed across 64 families of seed plants were collected in a 25 ha CForBio subalpine forest dynamics plot. In total, 491 specimens were screened for three DNA regions of the chloroplast genome (rbcL, matK, and trnHpsbA) as well as the internal transcribed spacers (ITS) of nuclear ribosomal DNA. We quantified species resolution for each barcode separately or in combination using a ML tree‐based method. Amplification and sequencing success were highest for rbcL, followed by trnH‐psbA, which performed better than ITS and matK. The rbcL + ITS barcode had slightly higher species resolution rates (88.60%) compared with rbcL + matK (86.60%) and rbcL + trnH‐psbA (86.01%). The addition of trnH‐psbA or ITS to the rbcL + matK barcode only marginally increased species resolution rates, although in combination the four barcodes had the highest discriminatory power (90.21%). The situations where DNA barcodes did not discriminate among species were typically associated with higher numbers of co‐occurring con‐generic species. In addition, herbaceous species were much better resolved than woody species. Our study represents one of the first applications of DNA barcodes in a subalpine forest dynamics plot and contributes to our understanding of patterns of genetic divergence among woody and herbaceous plant species.  相似文献   

17.
DNA barcoding for the identification of smoked fish products   总被引:2,自引:0,他引:2  
DNA barcoding was applied to the identification of smoked products from fish in 10 families in four orders and allowed identification to the species level, even among closely related species in the same genus. Barcoding is likely to become a standard tool for identification of fish specimens and products.  相似文献   

18.
Spatial patterns of phylogenetic diversity   总被引:1,自引:0,他引:1  
Ecologists and conservation biologists have historically used species-area and distance-decay relationships as tools to predict the spatial distribution of biodiversity and the impact of habitat loss on biodiversity. These tools treat each species as evolutionarily equivalent, yet the importance of species' evolutionary history in their ecology and conservation is becoming increasingly evident. Here, we provide theoretical predictions for phylogenetic analogues of the species-area and distance-decay relationships. We use a random model of community assembly and a spatially explicit flora dataset collected in four Mediterranean-type regions to provide theoretical predictions for the increase in phylogenetic diversity - the total phylogenetic branch-length separating a set of species - with increasing area and the decay in phylogenetic similarity with geographic separation. These developments may ultimately provide insights into the evolution and assembly of biological communities, and guide the selection of protected areas.  相似文献   

19.
DNA barcoding employs short, standardized gene regions (5' segment of mitochondrial cytochrome oxidase subunit I for animals) as an internal tag to enable species identification. Prior studies have indicated that it performs this task well, because interspecific variation at cytochrome oxidase subunit I is typically much greater than intraspecific variation. However, most previous studies have focused on local faunas only, and critics have suggested two reasons why barcoding should be less effective in species identification when the geographical coverage is expanded. They suggested that many recently diverged taxa will be excluded from local analyses because they are allopatric. Second, intraspecific variation may be seriously underestimated by local studies, because geographical variation in the barcode region is not considered. In this paper, we analyse how adding a geographical dimension affects barcode resolution, examining 353 butterfly species from Central Asia. Despite predictions, we found that geographically separated and recently diverged allopatric species did not show, on average, less sequence differentiation than recently diverged sympatric taxa. Although expanded geographical coverage did substantially increase intraspecific variation reducing the barcoding gap between species, this did not decrease species identification using neighbour-joining clustering. The inclusion of additional populations increased the number of paraphyletic entities, but did not impede species-level identification, because paraphyletic species were separated from their monophyletic relatives by substantial sequence divergence. Thus, this study demonstrates that DNA barcoding remains an effective identification tool even when taxa are sampled from a large geographical area.  相似文献   

20.
A high degree of endemism has been recorded for several plant groups collectively in Saint Katherine Protectorate (SKP) in the Sinai Peninsula. Nine endangered endemic plant species in SKP were selected to test the variable abilities of three different DNA barcodes; Riboluse-1,5- Biphosphate Carboxylase/Oxygenase Large subunit (rbcL), Internal Transcribed Spacer (ITS), and the two regions of the plastid gene (ycf1) as well as Start Codon Targeted (SCoT) Polymorphism to find the phylogenetic relationships among them. The three barcodes were generally more capable of finding the genetic relationships among the plant species under study, new barcodes were introduced to the National Centre for Biotechnology Information (NCBI) for the first time through our work. The barcode sequences were efficient in finding the genetic relationships between the nine species. However, SCoT polymorphism could only cluster plant species belonging to the same genus together in one group, but it could not cluster plant species belonging to the same families except for some primers solely. RbcL was the most easily amplified and identified barcode in eight out of the nine species at the species level and the ninth barcode to the genus level. ITS identified all the species to the genus level. Finally, ycf1 identified six out of the eight species, but it could not identify two of the eight species to the genus level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号