首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The preparation of amino silicone based softeners with different emulsifiers was carried out and adsorbed onto the surfaces of cotton and blends of cotton/polyester fabrics. The softened fabrics have high surface area, so poorly performance in washing and rubbing fastness. It is obvious from the results of colorfastness to rubbing and washing that some of the samples of the dyed fabric treated with prepared softeners have shown some poor rating as compared to the untreated fabrics. However the other two samples have shown acceptable rubbing fastness results without losing softness and permanent handle. It can be observed that washing of the printed treated fabric remains unaffected almost in all the studied samples. Moreover, the application of the prepared softeners has imparted anti pilling property to the fabric. It can be seen that there is a remarkable increase in weights of treated fabrics as compared to the untreated fabrics.  相似文献   

2.
A novel approach for upgrading both the wrinkle free and softness properties of cotton fabrics without adversely affecting their strength properties using an eco-friendly finishing regimes was investigated. Factors affecting the performance properties of the finished substrate such as pre-treatment, i.e., carboxymethylation (CMC) or ionic-crosslinking, post-treatment with amino functional silicone softener and its concentration, degree of carboxymethylation as well as thermofixation conditions were studied. The obtained results revealed that post-treatment with the amino based silicone micro emulsion (SiE) up to 30 g/L at pH 4 to a wet pickup of 100% followed by drying at 100 °C for 5 min and curing at 170 °C for 3 min results in a remarkable improvement in fabric resiliency (expressed as dry and wet wrinkle recovery angles), as well as in softness degree, without seriously affecting its retained strength. Improvement extent of the aforementioned properties is governed by the nature of the pre-treatment steps. Fixation of the amino-functional silicone softener onto/or within the modified cellulose structure is accompanied by a formation of semi-inter and/or intra-penetrated network (semi-IPN) thereby enhancing both the extent of crosslinking and networking as well as providing very high softness. FTIR analysis proved the formation of Si–O–Si–cellulose complex. Scanning electron micrograph shows that cotton, CMC and ionic crosslinked cotton fabrics treated with SiE shows higher surface smoothness and considerable reduction in protruding loose fibers, ditches and grooves compared with the untreated one.  相似文献   

3.
A series of poly(vinyl alcohol) of different commercial grades were prepared and applied onto the surfaces of cotton and blends of cotton/polyester fibers. The molecular structure was confirmed using Fourier Transform Infrared spectroscopy. Physicochemical properties such as viscosity and solid contents (%) were determined and discussed. Factors affecting the performance properties of the finished substrate such as post-treatment with poly(vinyl alcohol) of different grades, concentration and dilutions were studied. Fixation of the poly(vinyl alcohol) onto/or within the cellulose structure is accompanied by the formation of semi-inter-penetrated network structure thereby enhancing the association as well as providing very high stiffness. The results revealed that applications of poly(vinyl alcohol) on the textile fabrics in the finishing processes enables to enhance the stiffness as well as helps to improve its pilling resistance.  相似文献   

4.
The adherent behaviour of the Gram-positive Staphylococcus aureus and Staphylococcus epidermidis and the Gram-negative Escherichia coli on cotton, polyester and their blends through contact in aqueous suspensions was studied. Staphylococcus epidermidis was found to adhere to fabrics much more so than Staph. aureus. The adherence of both Staph. epidermidis and Staph. aureus to fabrics increased as the content of polyester fibres in the fabrics increased. The attachment of E. coli to all fabrics was very low and was not affected by the fibre contents. Total numbers of adherent bacteria on cotton and polyester fabrics were related directly to the concentrations of the bacterial suspensions. The extents of adherence, expressed by the percentage of adherent bacteria from the suspension, however, were independent of the concentration. The length of contact with bacteria was also found to affect the adherence of bacteria on fabrics studied.  相似文献   

5.
The adherent behaviour of the Gram-positive Staphylococcus aureus and Staphylococcus epidermidis and the Gram-negative Escherichia coli on cotton, polyester and their blends through contact in aqueous suspensions was studied. Staphylococcus epidermidis was found to adhere to fabrics much more so than Staph. aureus. The adherence of both Staph. epidermidis and Staph. aureus to fabrics increased as the content of polyester fibres in the fabrics increased. The attachment of E. coli to all fabrics was very low and was not affected by the fibre contents. Total numbers of adherent bacteria on cotton and polyester fabrics were related directly to the concentrations of the bacterial suspensions. The extents of adherence, expressed by the percentage of adherent bacteria from the suspension, however, were independent of the concentration. The length of contact with bacteria was also found to affect the adherence of bacteria on fabrics studied.  相似文献   

6.
A series of aqueous solutions of poly(vinyl alcohol) of various commercial products were prepared and applied onto the surfaces of cotton and blends of cotton/polyester fabrics. Fourier transform infrared spectrophotometer was used to confirm the molecular structure of the polyvinyl alcohol used. Performance tests such as colorfastness to rubbing (dry and wet) and colorfastness to washing were determined. The controlling variables affecting the performance properties of the finished substrate such as post-treatment with poly(vinyl alcohol) of various commercial trades, concentration and dilutions were studied. Crocking, washing and hue change of the treated dyed and printed fabrics is accompanied by the formation of semi-inter-penetrated network structure due to the presence of the hydroxyl (-OH) groups which make feasible to a number of grafting and physical cross linking reactions of polymer backbone.  相似文献   

7.
This research studied the adherent behaviour of gram-negative Escherichia coli on different weft knitted textile fabrics made of cotton, polyester filaments and polyester (staple)-cotton blended yarn. We compared the bacterial adherence of 18-h-old E. coli cells on all the three types of fabrics under the same experimental conditions. The maximum adherence was found in cotton, followed by the polyester blend; the least adherence was in polyester fabrics. Scanning electron micrographs showed that surface morphology of fabrics also plays an important role during adherence. Cotton fabric, with a rough surface, attracted more bacterial cells compared to the smooth polyester surface. Comparing the FTIR spectra of different fabrics and E. coli it was found that both cotton and E. coli have abundant free hydroxyl groups that may interact strongly with each other and with other hydrophilic groups such as carboxyl, phosphate, and amides. This may be one of the reasons for the greater adherence on cotton as compared to hydrophobic polyester fabric. Finally, the effect of bacterial adherence on loss of strength in different fabrics was analysed. It was found that the maximum decrease in strength occurred in cotton fabrics and the least in polyester fabrics. The present study suggests a procedure for quantifying bacterial adherence on different textile fabrics. This technique can be used with different bacterial strains and varieties of fabrics for quantifying the adherent bacterial cells, and would be of great use in developing and comparing different antimicrobial finished products of the textile industry.  相似文献   

8.
Four different types of cotton-based fabrics, namely, loom-state cotton, cotton/polyester (50/50), cotton/polyester (35/65) and grey mercerized fabrics were bioscoured and bleached. The four substrates are given enzymatic treatment using cellulase enzyme to affect bio-polishing followed by crosslinking using N,N-dimethylol 4,5-dihydroxyethylene urea (DMDHEU) to affect easy care finishing. In another series of experiments the said bioscoured–bleached substrates were similarly crosslinked followed by bio-polishing. Technical properties of the treated fabric that were monitored include: nitrogen content, loss in fabric weight, tensile strength, elongation at break, tear strength, whiteness index, surface roughness and wrinkle recovery angle. Scanning electron micrograph was also examined. Conclusions arrived at from these studies indicated that: post-crosslinking and pre-crosslinking revealed marginal differences in N%, wrinkle recovery angle and whiteness index, a point which validates the argument that cellulase enzyme could not break down the DMDHEU crosslinks within the molecular structure of cotton-containing fabrics. Meanwhile the surface roughness obtained with pre-crosslinking is a bit higher than those of post-crosslinking. Moreover, post-crosslinking caused higher losses in strength properties than pre-crosslinking. Scanning electron micrograph shows that cotton sample pre-crosslinked is almost smooth than those post-crosslinked.  相似文献   

9.
The performance of Nzi traps for tabanids (Tabanus similis Macquart, T. quinquevittatus Wiedemann, Chrysops aberrans Philip, C. univittatus Macquart, C. cincticornis Walker, Hybomitra lasiophthalma (Macquart)), stable flies (Stomoxys calcitrans Linnaeus) (Diptera: Muscidae) and mosquitoes (Aedes) (Diptera: Culicidae) was investigated at various sites in Canada (Ontario, Alberta) and USA (Iowa, Florida, Louisiana). Traps made from selected fabrics, insect nettings and hand-dyed blue cotton were compared to the African design to provide practical recommendations for temperate environments. Comparisons of substituted materials showed that trap performance was optimal only when traps were made from appropriate fabrics in the colours produced by either copper phthalocyanine (phthalogen blue), or its sulphonated forms (turquoise). Fabrics dyed with other blue chromophores were not as effective (anthraquinone, disazo, formazan, indanthrone, triphenodioxazine). An appropriate texture as well as an appropriate colour was critical for optimal performance. Smooth, shiny synthetic fabrics (polyester, nylon) and polyester blends reduced catches. Low catches occurred even for nominal phthalogen blue, but slightly-shiny, polyester fabrics in widespread use for tsetse. The most suitable retail fabric in place of phthalogen blue cotton was Sunbrella Pacific Blue acrylic awning/marine fabric. It was both attractive and durable, and had a matching colour-fast black. Nzi traps caught grossly similar numbers of biting flies as canopy, Vavoua, and Alsynite cylinder traps, but with differences in relative performance among species or locations.  相似文献   

10.
An innovative approach addressing ecological problems associated with scouring of cotton‐based textiles was developed. The innovative scouring method is based on the use of β‐cyclodextrin in the presence of a wetting agent. β‐cyclodextrin is able to accommodate the wax in its cavity, complex with it and dissolve it together with other cotton impurities by the aid of a wetting agent, thereby effecting their removal. The work comprises treatment of desized cotton and polyester/cotton fabrics with β‐cyclodextrin and a wetting agent under a variety of conditions. Variables studied include concentration of β‐cyclodextrin, chemical nature and concentration of the wetting agent, pH of the scouring bath, and temperature and time of scouring. The samples were monitored for the residual wax percent and wettability. The scouring performance of the innovative method was compared with that of the conventional method. Chemical oxygen demand, total dissolved solids and conductivity of the wastewater effluent discharged by the two methods were also determined and compared. The comparison reveals the advantages of the new method in minimizing the degradation of the cotton and polyester/cotton fabrics, which occur during conventional scouring and the persistence of such advantage even after bleaching. The mode of wax removal during the innovative scouring and the impact of the latter on the environment were discussed.  相似文献   

11.

1. 1. A new type of simulator for clothing microclimate was designed and constructed.

2. 2. The simulator was designed to simulate the humidity fluctuation of clothing microclimate as observed under light working conditions and to measure the surface temperature of sample fabrics against the skin by means of a radiation thermometer.

3. 3. Knitted fabrics of cotton and polyester, and polyethylene films were used as specimens with different hygroscopicities.

4. 4. The quick rise and fall in the surface temperature of cotton fabric was observed under rapid fluctuations of the microclimate humidity.

5. 5. Under the same humidity fluctuations, the temperature of polyester fabric rose and fell more moderately than that of cotton fabrics, and the temperature of the polyethylene film did not change. When the rate of change in stimulus temperature is higher, the threshold temperature of warm sensation of the skin comes closer to a given adaption temperature.

6. 6. Therefore, the rapid and large changes in the fabric temperature against the skin, which were observed especially for hygroscopic cotton fabric, must affect the thermal comfort of clothing.

Author Keywords: Clothing microclimate; humidity changes; temperature change; simulator thermal sensation; cotton; polyester hygroscopic fiber  相似文献   


12.
Clothing textiles protect our human body against external factors. These textiles are not sterile and can harbor high bacterial counts as sweat and bacteria are transmitted from the skin. We investigated the microbial growth and odor development in cotton and synthetic clothing fabrics. T-shirts were collected from 26 healthy individuals after an intensive bicycle spinning session and incubated for 28 h before analysis. A trained odor panel determined significant differences between polyester versus cotton fabrics for the hedonic value, the intensity, and five qualitative odor characteristics. The polyester T-shirts smelled significantly less pleasant and more intense, compared to the cotton T-shirts. A dissimilar bacterial growth was found in cotton versus synthetic clothing textiles. Micrococci were isolated in almost all synthetic shirts and were detected almost solely on synthetic shirts by means of denaturing gradient gel electrophoresis fingerprinting. A selective enrichment of micrococci in an in vitro growth experiment confirmed the presence of these species on polyester. Staphylococci were abundant on both cotton and synthetic fabrics. Corynebacteria were not enriched on any textile type. This research found that the composition of clothing fibers promotes differential growth of textile microbes and, as such, determines possible malodor generation.  相似文献   

13.
Accelerated electrons delivered by electron beam accelerator were used to fix vat colors, incorporated in curable formulations containing diluting monomer and an oligomer, to cellulosic fabric, cotton and polyester fabric. Tetrahydrofurfuryl acrylate, hexane dioldiacrylate, monomers and trifunctional urethane methacrylate, oligomer were used as curable base beside ethylene glycol. The fabrics were printed with these formulations and exposed to various doses of electron beam irradiation generated from the 1.5 MeV (25 kW) electron beam accelerator machine. Critical factors included the irradiation dose, formulation composition, and vat color concentration were studied. The fabrics printed with the vat colors by electron beam irradiation displayed higher color yield than those fabrics printed by the conventional curing at equal vat color ratios. The durable properties of fabrics printed by electron beam irradiation except the roughness properties are extremely better than those printed by conventional fixation method.  相似文献   

14.
Linear electron beam radiation was used to induce grafting of glycidyl methacrylate/β-cyclodextrin mixture onto cotton fabric. Chlorohexidin diacetate was incorporated to the cavities of cyclodextrin fixed on the cotton fabric to form an inclusion complex having antimicrobial activity. After incorporating chlorohexidin diacetate, the fabric was subjected to several washing cycles to examine the durability of the antimicrobial finishing. Control and grafted cotton fabrics (before and after loading with antimicrobial agent) were characterized for their antimicrobial activity against different kinds of bacteria and fungi.Grafted fabrics loaded with antimicrobial agent were found to show good antimicrobial activity in comparison with control and grafted fabrics which are not loaded with antimicrobial agent. The grafted fabrics loaded with antimicrobial agent were found also to exhibit good antimicrobial activity after five washings and this lasting antimicrobial activity can be attributed to the inclusion complex formed between chlorohexidin diacetate molecules and the cavities of cyclodextrin.  相似文献   

15.
We performed a dual-modification of starch via debranching and graft copolymerization to improve its adhesion to fibers. We synthesized the partly debranched starch-g-poly(2-acryloyloxyethyl trimethyl ammonium chloride) (PDS-g-PATAC) using horseradish peroxidase in the presence of hydrogen peroxide and acetylacetone. PDSs of different molecular structures were prepared by debranching waxy cornstarch for different periods of time. With increasing debranching time, the degree of hydrolysis of PDS increased from 0.85 % (10 min) to 1.13 % (30 min), while the degree of branching decreased from 8.37 % to 7.99 %. Fourier transform infrared analysis confirmed that ATAC units had been successfully grafted onto the starch (debranched or not debranched). The degree of substitution (DS) and grafting ratio (GR) of the PDS-g-PATACs were characterized by 1H nuclear magnetic resonance. The DS and GR of grafted starches positively related with debranching time. Thermogravimetry-differential thermogravimetry analysis showed that grafted starch had lower thermal stability than ungrafted starch. The adhesion of PDS-g-PATAC to polyester/cotton yarns was evaluated. The PATAC chains grafted onto the starch enhanced the adhesion of starch to polyester/cotton yarn. The grafted starch produced from the copolymerization of PDS (after debranching for 10 min), exhibited the strongest adhesion to polyester/cotton yarn with a resulting tensile strength of 98.20 N.  相似文献   

16.
A thorough investigation into conditions appropriate for effecting combined eco-friendly bioscouring and/or bleaching of cotton-based fabrics was undertaken. Fabrics used include cotton, grey mercerized cotton, cotton/polyester blend 50/50 and cotton/polyester blend 35/65. The four cotton-based fabric were subjected to bioscouring by single use of alkaline pectinase enzymes or by using binary mixtures of alkaline pectinase and cellulase enzymes under a variety of conditions. Results of bioscouring show that, the bioscoured substrates exhibit fabrics performances which are comparable with these of the conventional alkali scouring. It has been also found that, incorporation of ethylenediaminetetraacetic acid (EDTA) in the bioscouring with mixture from alkaline pectinase and cellulase improves the performance of the bioscoured fabrics. Addition of β-cyclodextrin to the bioscouring solution using alkaline pectinase in admixtures with cellulase acts in favor of technical properties and performance of the bioscoured fabrics. Concurrent bioscouring and bleaching by in situ formed peracetic acid using tetraacetylethylenediamine (TAED) and H2O2 was also investigated. The results reveal unequivocally that the environmentally sound technology brought about by current development is by far the best. The new development involves a single-stage process for full purification/preparation of cotton textiles. The new development at its optimal comprises treatment of the fabric with an aqueous formulation consisting of alkaline pectinase enzyme (2 g/L), TAED (15 g/L), H2O2 (5 g/L), nonionic wetting agent (0.5 g/L) and sodium silicate (2 g/L). The treatment is carried out at 60 °C for 60 min. Beside the advantages of the new development with respect to major technical fabric properties, it is eco-friendly and reproducible. This advocates the new development for mill trials.  相似文献   

17.
Several benzophenone chromophoric groups were incorporated onto cotton fabrics by using 4-hydroxybenzophenone, 4,4′-dihydroxybenzophenone, 4-chloro-4′-hydroxybenzophenone, and 4-benzoylbenzoic acid as reagents. The fabric treatment was conducted by a pad-dry-cure method, and the benzophenone chromophoric group incorporated cotton fabrics were characterized and confirmed by FTIR. Tensile strengths of benzophenone chromophoric groups modified cotton fabrics were also measured. 4-Hydroxybenzophenone treated cotton fabric showed the most powerful antibacterial activity among all samples, and 4-benzoylbenzoic acid treated cotton fabric demonstrated pesticide degradation ability, under UV irradiation.  相似文献   

18.
AIMS: To develop and apply a quantitative protocol for assessing the transfer of bacteria from bleached and undyed fabrics of 100% cotton and 50% cotton + 50% polyester (poly cotton) to fingerpads or other pieces of fabric. METHODS AND RESULTS: Test pieces of the fabrics were mounted on custom-made stainless steel carriers to give a surface area of 1 cm in diameter, and each piece seeded with about 10(5) cfu of Staphylococcus aureus from an overnight broth culture; the inoculum contained 5% fetal bovine serum as the soil load. Transfer from fabric to fabric was performed by direct contact using moist and dry fabrics. Transfers from fabrics to fingerpads of adult volunteers were tested using moist, dry and re-moistened pieces of the fabrics, with or without friction during the contact. Bacterial transfer from fabrics to moistened fingerpads was also studied. All the transfers were conducted under ambient conditions at an applied pressure of 0.2 kg cm(-2). After the transfer, the recipient fingerpads or fabric pieces were eluted, the eluates spread-plated, along with appropriate controls, on tryptic soy agar and the percentage transfer calculated after the incubation of the plates for 24 h at 37 degrees C. CONCLUSION: Bacterial transfer from moist donor fabrics using recipients with moisture was always higher than that to and from dry ones. Friction increased the level of transfer from fabrics to fingerpads by as much as fivefold. Bacterial transfer from poly cotton was consistently higher when compared with that from all-cotton material. SIGNIFICANCE AND IMPACT OF THE STUDY: The data generated should help in the development of better models to assess the role fabrics may play as vehicles for infectious agents. Also, the basic design of the reported methodology lends itself to work with other types of human pathogens.  相似文献   

19.
In order to upgrade the UV-protection and antibacterial functional properties of cotton/polyester (80/20), cotton/linen (50/50) and linen/viscose-polyester (50/50) fabric blends, they were treated with different plasma gases (oxygen, air, and argon) followed by subsequent treatment with certain metal salts namely Zn-acetate, Cu-acetate, Al-chloride, and Zr-oxychloride. The obtained results show that the type of plasma gas, the kind of metal salt as well as the nature of the treated substrate play an important role in the extent of enhancing the demanded functional properties. Oxygen plasma treatment followed by Cu-acetate or Zn-acetate treatment gives the best UV-protection or antibacterial activity respectively, keeping other parameters constant. The surface morphology of some untreated and plasma-treated samples was also analyzed by SEM.  相似文献   

20.
This article discusses the analysis of the hydrolysis products from one-step scouring of cotton using pectinase and two-step scouring of cotton using lipase then cellulase, protease then cellulase, or lipase/protease then cellulase, to improve water absorbency of cotton. UV spectrophotometric analysis indicated that the pectinase scouring process produced approximately 18-fold higher amounts of reducing sugars and galacturonic acid than any of the two-step scouring processes. The production rate of reducing sugars and galacturonic acid from most of the scouring processes showed a decrease with an increase in time. HPLC analysis revealed that the lipase/protease/cellulase scouring processes produced approximately 5-fold higher amounts of 17 amino acids than the pectinase scouring process. GC analysis for 18 fatty acids (C(8)-C(24)) revealed that three major fatty acids, palmitic acid, stearic acid, and behenic acid, were found on both the scoured and the unscoured fabrics. Scoured fabrics were tested for content of proteins, extractable components, waxes, and anionic components including pectins, and some differences among the fabric scoured with different enzyme combinations were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号