首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autophagy: Many paths to the same end   总被引:14,自引:0,他引:14  
Different mechanisms lead to the degradation of intracellular proteins in the lysosomal compartment. Activation of one autophagic pathway or another, under specific cellular conditions, plays an important role in the ability of the cell to adapt to environmental changes. Each form of autophagy has its own individual characteristics, but it also shares common steps and components with the others. This interdependence of the autophagic pathways confers to the lysosomal system, both specificity and flexibility on substrate degradation. We describe in this review some of the recent findings on the molecular basis and regulation for each of the different autophagic pathways. We also discuss the cellular consequences of their interdependent function. Malfunctioning of the autophagic systems has dramatic consequences, especially in non-dividing differentiated cells. Using the heart as an example of such cells, we analyze the relevance of autophagy in aging and cell death, as well as in different pathological conditions. (Mol Cell Biochem 263: 55–72, 2004)  相似文献   

2.
Autophagy: many paths to the same end   总被引:2,自引:0,他引:2  
Different mechanisms lead to the degradation of intracellular proteins in the lysosomal compartment. Activation of one autophagic pathway or another, under specific cellular conditions, plays an important role in the ability of the cell to adapt to environmental changes. Each form of autophagy has its own individual characteristics, but it also shares common steps and components with the others. This interdependence of the autophagic pathways confers to the lysosomal system, both specificity and flexibility on substrate degradation. We describe in this review some of the recent findings on the molecular basis and regulation for each of the different autophagic pathways. We also discuss the cellular consequences of their interdependent function. Malfunctioning of the autophagic systems has dramatic consequences, especially in non-dividing differentiated cells. Using the heart as an example of such cells, we analyze the relevance of autophagy in aging and cell death, as well as in different pathological conditions.  相似文献   

3.
4.
Many paths to methyltransfer: a chronicle of convergence   总被引:12,自引:0,他引:12  
S-adenosyl-L-methionine (AdoMet) dependent methyltransferases (MTases) are involved in biosynthesis, signal transduction, protein repair, chromatin regulation and gene silencing. Five different structural folds (I-V) have been described that bind AdoMet and catalyze methyltransfer to diverse substrates, although the great majority of known MTases have the Class I fold. Even within a particular MTase class the amino-acid sequence similarity can be as low as 10%. Thus, the structural and catalytic requirements for methyltransfer from AdoMet appear to be remarkably flexible.  相似文献   

5.
N‐linked protein glycosylation occurs in all three branches of life, eukaryotes, bacteria and archaea. The simplest system is that of the bacterium, Campylobacter jejuni, in which a heptasaccharide glycan is added to multiple proteins from a single lipid carrier molecule. In the eukaryotic system a conserved tetradecasaccharide modification is first added to target proteins, but is then modified by trimming and addition of other glycans from additional carrier molecules resulting in a diverse array of glycans of distinct functionality. In the halophilic Archaea from the Dead Sea, Haloferax volcanii, the surface array or S‐layer protein is glycosylated with a pentasaccharide. This glycan is synthesized from two separate carrier molecules, one that carries a tetrasaccharide and another that carries the terminal mannose, in a process that is analogous to that of eukaryotes. In this issue of Molecular Microbiology the glycosylation of the S‐layer of another halophilic Archaea from the Dead Sea, Haloarcula marismortui is characterized ( Calo et al., 2011 ). This S‐layer is glycosylated with the same pentasaccharide as that of Hfx. volcanii, but the intact pentasaccharide is synthesized on a single carrier molecule in Har. marismortui in a process that more closely resembles that of the bacterial N‐linked system.  相似文献   

6.
Kinetochore-microtubule interactions: the means to the end   总被引:3,自引:0,他引:3  
Kinetochores are proteinaceous complexes containing dozens of components; they are assembled at centromeric DNA regions and provide the major microtubule attachment site on chromosomes during cell division. Recent studies have defined the kinetochore components comprising the direct interface with spindle microtubules, primarily through structural and functional analysis of the Ndc80 and Dam1 complexes. These studies have facilitated our understanding of how kinetochores remain attached to the end of dynamic microtubules and how proper orientation of a kinetochore-microtubule attachment is promoted on the mitotic spindle. In this article, we review these recent studies and summarize their key findings.  相似文献   

7.
Chloroplasts contain several thousand different proteins, of which more than 95% are encoded on nuclear genes, synthesized in the cytosol as precursor proteins, and imported into the organelle. The major pathways for import and routing have been described; a general import apparatus in the chloroplast envelope and several ancestral translocases in the thylakoid membranes. In this update we focus on some interesting and emerging areas: the Tat translocase, which operates in parallel with the Sec system but transports folded proteins; different routes to the envelope membranes, which promises an understanding of the ways the Tic apparatus sorts transmembrane domains (TMDs) and may also uncover developmental relationships between envelope and thylakoids; and novel routes for proteins into chloroplasts including delivery from the secretory system.  相似文献   

8.
Formation of the 3' end of histone mRNA: getting closer to the end   总被引:1,自引:0,他引:1  
Dominski Z  Marzluff WF 《Gene》2007,396(2):373-390
Nearly all eukaryotic mRNAs end with a poly(A) tail that is added to their 3' end by the ubiquitous cleavage/polyadenylation machinery. The only known exceptions to this rule are metazoan replication-dependent histone mRNAs, which end with a highly conserved stem-loop structure. This distinct 3' end is generated by specialized 3' end processing machinery that cleaves histone pre-mRNAs 4-5 nucleotides downstream of the stem-loop and consists of the U7 small nuclear RNP (snRNP) and number of protein factors. Recently, the U7 snRNP has been shown to contain a unique Sm core that differs from that of the spliceosomal snRNPs, and an essential heat labile processing factor has been identified as symplekin. In addition, cross-linking studies have pinpointed CPSF-73 as the endonuclease, which catalyzes the cleavage reaction. Thus, many of the critical components of the 3' end processing machinery are now identified. Strikingly, this machinery is not as unique as initially thought but contains at least two factors involved in cleavage/polyadenylation, suggesting that the two mechanisms have a common evolutionary origin. The greatest challenge that lies ahead is to determine how all these factors interact with each other to form a catalytically competent processing complex capable of cleaving histone pre-mRNAs.  相似文献   

9.
Bombesin and cholecystokinin (CCK) peptides act as signalling molecules in both the central nervous system and gastrointestinal tract [1-4]. It was reported recently that nicotinic acid adenine dinucleotide phosphate (NAADP) releases Ca2+ from mammalian brain microsomes [5] and triggers Ca2+ signals in pancreatic acinar cells, where it is proposed to mediate CCK-evoked Ca2+ signals [6]. Here, for the first time, we have finely resolved bombesin-induced cytosolic Ca2+ oscillations in single pancreatic acinar cells by whole-cell patch-clamp monitoring of Ca2+-dependent ionic currents [6-8]. Picomolar concentrations of bombesin and CCK evoked similar patterns of cytosolic Ca2+ oscillations, but high, desensitising, NAADP concentrations selectively inhibited CCK, but not bombesin-evoked signals. Inhibiting inositol trisphosphate (IP3) receptors with a high concentration of caffeine blocked both types of oscillations. We further tested whether NAADP is involved in Ca2+ signals triggered by activation of the low-affinity CCK receptor sites. Nanomolar concentrations of CCK evoked non-oscillatory Ca2+ signals, which were not affected by desensitising NAADP receptors. Our results suggest that Ca2+-release channels gated by the novel Ca2+-mobilising molecule NAADP are only essential in specific Ca2+-mobilising pathways, whereas the IP3 receptors are generally required for Ca2+ signals. Thus, the same cell may use different combinations of intracellular Ca2+-releasing messengers to encode different external messages.  相似文献   

10.
U A Bommer  G Lutsch  J Stahl  H Bielka 《Biochimie》1991,73(7-8):1007-1019
More than ten different protein factors are involved in initiation of protein synthesis in eukaryotes. For binding of initiator tRNA and mRNA to the 40S ribosomal subunit, the initiation factors eIF-2 and eIF-3 are particularly important. They consist of several different subunits and form stable complexes with the 40S ribosomal subunit. The location of eIF-2 and eIF-3 in these complexes as well as the interactions of the individual components have been analyzed by biochemical methods and electron microscopy. The results obtained are summarized in this article, and a model is derived describing the spatial arrangement of eIF-2 and eIF-3 together with initiator tRNA and mRNA on the 40S subunit. Conclusions on the location of functionally important sites of eukaryotic small ribosomal subunits are discussed with regard to the respective location of these sites in the prokaryotic counterpart.  相似文献   

11.
12.
13.
We describe a semiquantitative RT-PCR protocol optimized in our laboratory to extract RNA from as little as 10,000 cells and to measure the expression levels of several target mRNAs from each sample. This procedure was optimized on the human erythroleukemia cell line TF-1 but was successfully used on primary cells and on different cell lines. We describe the detailed procedure for the analysis of Bcl-2 levels. Aldolase A was used as an internal control to normalize for sample to sample variations in total RNA amounts and for reaction efficiency. As for all quantitative techniques, great care must be taken in all optimization steps: the necessary controls to ensure a rough quantitative (semi-quantitative) analysis are described here, together with an example from a study on the effects of TGF-β1 in TF-1 cells. Published: November 16, 2001.  相似文献   

14.
In nature, stressful environments often occur in combination or close succession, and thus the ability to prepare for impending stress likely provides a significant fitness advantage. Organisms exposed to a mild dose of stress can become tolerant to what would otherwise be a lethal dose of subsequent stress; however, the mechanism of this acquired stress tolerance is poorly understood. To explore this, we exposed the yeast gene-deletion libraries, which interrogate all essential and non-essential genes, to successive stress treatments and identified genes necessary for acquiring subsequent stress resistance. Cells were exposed to one of three different mild stress pretreatments (salt, DTT, or heat shock) and then challenged with a severe dose of hydrogen peroxide (H(2)O(2)). Surprisingly, there was little overlap in the genes required for acquisition of H(2)O(2) tolerance after different mild-stress pretreatments, revealing distinct mechanisms of surviving H(2)O(2) in each case. Integrative network analysis of these results with respect to protein-protein interactions, synthetic-genetic interactions, and functional annotations identified many processes not previously linked to H(2)O(2) tolerance. We tested and present several models that explain the lack of overlap in genes required for H(2)O(2) tolerance after each of the three pretreatments. Together, this work shows that acquired tolerance to the same severe stress occurs by different mechanisms depending on prior cellular experiences, underscoring the context-dependent nature of stress tolerance.  相似文献   

15.
16.
17.
In eukaryotes, the DNA replication factor PCNA is loaded onto primer-template junctions to act as a processivity factor for DNA polymerases. Genetic and biochemical studies suggest that PCNA also functions in early steps in mismatch repair (MMR) to facilitate the repair of misincorporation errors generated during DNA replication. These studies have shown that PCNA interacts directly with several MMR components, including MSH3, MSH6, MLH1, and EXO1. At present, little is known about how these interactions contribute to the mismatch repair mechanism. The interaction between MLH1 and PCNA is of particular interest because MLH1-PMS1 is thought to act as a matchmaker to signal mismatch recognition to downstream repair events; in addition, PCNA has been hypothesized to act in strand discrimination steps in MMR. Here, we utilized both genetic and surface plasmon resonance techniques to characterize the MLH1-PMS1-PCNA interaction. These analyses enabled us to determine the stability of the complex (K(D) = 300 nM) and to identify residues (572-579) in MLH1 and PCNA (126,128) that appear important to maintain this stability. We favor a model in which PCNA acts as a scaffold for consecutive protein-protein interactions that allow for the coordination of MMR steps.  相似文献   

18.
19.
The kinetochore is a complex multiprotein structure located at centromeres that is essential for proper chromosome segregation. Budding-yeast Cse4 is an essential evolutionarily conserved histone H3 variant recruited to the centromere by an unknown mechanism. We have identified Scm3, an inner kinetochore protein that immunopurifies with Cse4. Scm3 is essential for viability and localizes to all centromeres. Construction of a conditional SCM3 allele reveals that depletion results in metaphase arrest, with duplicated spindle poles, short spindles, and unequal DNA distribution. The metaphase arrest is mediated by the mitotic spindle checkpoint being dependent on Mad1 and the Aurora kinase B homolog Ipl1. Scm3 interacts with both Ndc10 and Cse4 and is essential to establish centromeric chromatin after DNA replication. In addition, Scm3 is required to maintain kinetochore function throughout the cell cycle. We propose a model in which Ndc10/Scm3 binds to centromeric DNA, which is in turn essential for targeting Cse4 to centromeres.  相似文献   

20.
Hydroxypyruvate (HP) is an intermediate of the photorespiratory pathway that originates in the oxygenase activity of the key enzyme of photosynthetic CO(2) assimilation, Rubisco. In course of this high-throughput pathway, a peroxisomal transamination reaction converts serine to HP, most of which is subsequently reduced to glycerate by the NADH-dependent peroxisomal enzyme HP reductase (HPR1). In addition, a NADPH-dependent cytosolic HPR2 provides an efficient extraperoxisomal bypass. The combined deletion of these two enzymes, however, does not result in a fully lethal photorespiratory phenotype, indicating even more redundancy in the photorespiratory HP-into-glycerate conversion. Here, we report on a third enzyme, HPR3 (At1g12550), in Arabidopsis (Arabidopsis thaliana), which also reduces HP to glycerate and shows even more activity with glyoxylate, a more upstream intermediate of the photorespiratory cycle. The deletion of HPR3 by T-DNA insertion mutagenesis results in slightly altered leaf concentrations of the photorespiratory intermediates HP, glycerate, and glycine, indicating a disrupted photorespiratory flux, but not in visible alteration of the phenotype. On the other hand, the combined deletion of HPR1, HPR2, and HPR3 causes increased growth retardation, decreased photochemical efficiency, and reduced oxygen-dependent gas exchange in comparison with the hpr1xhpr2 double mutant. Since in silico analysis and proteomic studies from other groups indicate targeting of HPR3 to the chloroplast, this enzyme could provide a compensatory bypass for the reduction of HP and glyoxylate within this compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号