首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study paraxial mesoderm formation in the mouse, transgenic lines that can be used to either selectively delete or express genes of interest in the paraxial mesoderm are required. We have generated a transgenic mouse line that expresses Cre recombinase in the paraxial mesoderm (PAM) beginning at e7.5. A lacZ Cre recombinase reporter line showed that in addition to PAM and its derivatives, lateral plate and intermediate mesoderm derivatives were also exposed to Cre activity, while the node, notochord, and cardiac mesoderm were not. We further demonstrate that 70–75% of the fibroblasts generated from Dll1‐msd Cre, ROSA26‐rtTA embryos possess Cre recombinase activity. These mice can therefore be used in combination with tet‐responsive transgenic lines to generate mesoderm‐derived embryonic fibroblasts that inducibly express a gene of interest. genesis 47:309–313, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
3.
4.
Eph receptor tyrosine kinases (RTKs) are a highly conserved family of signaling proteins with functions in cellular migration, adhesion, apoptosis, and proliferation during both adult and embryonic life. Here, we describe a knock-in mouse in which EphA1 expression is disrupted via the insertion of an internal ribosome entry site (IRES)-human placental alkaline phosphatase (ALPP) reporter cassette into exon II of the EphA1 gene. This was shown to successfully knockout expression of endogenous EphA1 and enforce expression of the ALPP reporter by the EphA1 promoter. Staining for the ALPP reporter protein demonstrated an epithelially restricted expression pattern in mouse tissues. In EphA1 null mice, two separate phenotypes were identified: abnormal tail development manifesting as a kinky tail was found in approximately 80% of homozygous adults. A second, distinct abnormality present in approximately 18% of females was characterized by imperforate uterovaginal development with hydrometrocolpos and caused by a resistance of cells to apoptosis during reproductive tract canalization. These results indicate a possible role for EphA1 in tissue patterning and hormone-induced apoptotic processes.  相似文献   

5.
Generation and characterization of Rac3 knockout mice   总被引:5,自引:1,他引:4       下载免费PDF全文
Rac proteins are members of the Rho family of GTPases involved in the regulation of actin dynamics. The three highly homologous Rac proteins in mammals are the ubiquitous Rac1, the hematopoiesis-specific Rac2, and the least-characterized Rac3. We show here that Rac3 mRNA is widely and specifically expressed in the developing nervous system, with highest concentration at embryonic day 13 in the dorsal root ganglia and ventral spinal cord. At postnatal day 7 Rac3 appears particularly abundant in populations of projection neurons in several regions of the brain, including the fifth layer of the cortex and the CA1-CA3 region of the hippocampus. We generated mice deleted for the Rac3 gene with the aim of analyzing the function of this GTPase in vivo. Rac3 knockout animals survive embryogenesis and show no obvious developmental defects. Interestingly, specific behavioral differences were detected in the Rac3-deficient animals, since motor coordination and motor learning on the rotarod was superior to that of their wild-type littermates. No obvious histological or immunohistological differences were observed at major sites of Rac3 expression. Our results indicate that, in vivo, Rac3 activity is not strictly required for normal development in utero but may be relevant to later events in the development of a functional nervous system.  相似文献   

6.
Lmx1b‐lacZ expression (blue) highlights dorsal‐restricted expression in limb bud mesenchyme of the mouse embryo. See the paper by Qiu and Johnson in this issue.  相似文献   

7.
Platelet endothelial cell adhesion molecule 1 (PECAM‐1) is an adhesion and signaling receptor that is expressed on endothelial and hematopoietic cells and plays important roles in angiogenesis, vascular permeability, and regulation of cellular responsiveness. To better understanding the tissue specificity of PECAM‐1 functions, we generated mice in which PECAM1, the gene encoding PECAM‐1, could be conditionally knocked out. A targeting construct was created that contains loxP sites flanking PECAM1 exons 1 and 2 and a neomycin resistance gene flanked by flippase recognition target (FRT) sites that was positioned upstream of the 3′ loxP site. The targeting construct was electroporated into C57BL/6 embryonic stem (ES) cells, and correctly targeted ES cells were injected into C57BL/6 blastocysts, which were implanted into pseudo‐pregnant females. Resulting chimeric animals were bred with transgenic mice expressing Flippase 1 (FLP1) to remove the FRT‐flanked neomycin resistance gene and mice heterozygous for the floxed PECAM1 allele were bred with each other to obtain homozygous PECAM1 flox/flox offspring, which expressed PECAM‐1 at normal levels and had no overt phenotype. PECAM1 flox/flox mice were bred with mice expressing Cre recombinase under the control of the SRY‐box containing gene 2 (Sox2Cre) promoter to delete the floxed PECAM1 allele in offspring (Sox2Cre;PECAM1 del/WT), which were crossbred to generate Sox2Cre; PECAM1 del/del offspring. Sox2Cre; PECAM1 del/del mice recapitulated the phenotype of conventional global PECAM‐1 knockout mice. PECAM1 flox/flox mice will be useful for studying distinct roles of PECAM‐1 in tissue specific contexts and to gain insights into the roles that PECAM‐1 plays in blood and vascular cell function.  相似文献   

8.
Kim  Geon A  Lee  Eun Mi  Cho  Bumrae  Alam  Zahid  Kim  Su Jin  Lee  Sanghoon  Oh  Hyun Ju  Hwang  Jong Ik  Ahn  Curie  Lee  Byeong Chun 《Transgenic research》2019,28(1):91-102
Transgenic Research - Herein, we successfully generated transgenic pigs expressing both soluble human tumor necrosis factor receptor I IgG1-Fc (shTNFRI-Fc) and human hemagglutinin (HA)-tagged-human...  相似文献   

9.
10.
目的构建范可尼贫血通路Fancm基因敲除小鼠,研究Fancm基因缺失对小鼠生理功能,特别是雄性生殖器官的影响。方法采用CRISPR/Cas9技术,获得Fancm基因敲除小鼠。分析FANCM蛋白在野生型和Fancm^-/-小鼠睾丸组织中的表达。统计Fancm^-/-小鼠的出生率、体重、性别比例及子代生育情况,分析血液常规指标。组织形态学研究雄性Fancm^-/-小鼠睾丸生理病理表型。结果敲除Fancm基因ATG区域,获得稳定遗传的C57BL/6背景Fancm^-/-小鼠。Fancm^-/-小鼠睾丸中FANCM蛋白表达完全丢失。Fancm^-/-小鼠无明显的胚胎致死现象,但雌性Fancm-/-小鼠数目显著少于雄性Fancm^-/-小鼠。同窝Fancm^-/-小鼠比较野生型体重无明显区别,部分血常规指标有显著性差异。Fancm^-/-小鼠有明显的生殖能力缺陷。雄性Fancm^-/-小鼠睾丸有显著的发育缺陷,其生精细胞凋亡增加、细胞周期阻滞,影响睾丸发育与精子的生成。结论成功获得稳定遗传C57BL/6背景Fancm^-/-小鼠,Fancm基因参与小鼠的生长发育,特别是雄性生殖器官功能的维持及调控。  相似文献   

11.
The process of evaluating the in vivo efficacy of non–peptidyl receptor antagonists in animal models is frequently complicated by failure of compounds displaying high affinity against the human receptors to show measurable affinity at the corresponding rodent receptors. In order to generate a suitable animal model in which to evaluate the in vivo activity of non–peptidyl glucagon receptor antagonists, we have utilized a direct targeting approach to replace the murine glucagon receptor with the human glucagon receptor gene by homologous recombination. Specific expression of the human glucagon receptor (GR) in the livers of transgenic mice was confirmed with an RNase protection assay, and the pharmacology of the human GRs expressed in the livers of these mice parallels that of human GR in a recombinant CHO cell line with respect to both binding of 125I–glucagon and the ability of glucagon to stimulate cAMP production. L–168,049, a non–peptidyl GR antagonist selective for the human GR shows a 3.5 fold higher affinity for liver membrane preparations of human GR expressing mice (IC50=172±98nM) in the presence of MgCl2 in marked contrast to the measured affinity of the murine receptor (IC50=611±97nM) for this non–peptidyl antagonist. The human receptors expressed are functional as measured by the ability of glucagon to stimulate cAMP production and the selectivity of this antagonist for the human receptor is further verified by its ability to block glucagon–stimulated cyclase activity with 5 fold higher potency (IC50=97.2±13.9nM) than for the murine receptor (IC50=504±247nM). Thus we have developed a novel animal model for evaluating GR antagonists in vivo. These mice offer the advantage that the regulatory sequences which direct tissue specific and temporal expression of the GR have been unaltered and thus expression of the human gene in these mice remains in the normal chromosomal context.  相似文献   

12.
We have previously shown that mice lacking the protein kinase B-RAF have defects in both neural and endothelial cell lineages and die around embryonic day 12 (E12). To delineate the function of B-RAF in the brain, B-RAF KIN/KIN mice lacking B-RAF and expressing A-RAF under the control of the B-RAF locus were created. B-RAF KIN/KIN embryos displayed no vascular defects, no endothelial and neuronal apoptosis, or gross developmental abnormalities, and a significant proportion of these animals survived for up to 8 weeks. Cell proliferation in the neocortex was reduced from E14.5 onwards. Newborn cortical neurons were impaired in their migration toward the cortical plate, causing a depletion of Brn-2-expressing pyramidal neurons in layers II, III, and V of the postnatal cortex. Our data reveal that B-RAF is an important mediator of neuronal survival, migration, and dendrite formation and that A-RAF cannot fully compensate for these functions.  相似文献   

13.
Here we describe a knock-in mouse model for Cre-loxP-based conditional expression of TRPV1 in central nervous system neurons. Expression of Cre recombinase using biolistics, lentivirus or genetic intercrosses triggered heterologous expression of TRPV1 in a cell-specific manner. Application of the TRPV1 ligand capsaicin induced strong inward currents, triggered action potentials and activated stereotyped behaviors, allowing cell type-specific chemical genetic control of neuronal activity in vitro and in vivo.  相似文献   

14.
Transgenic mice in which the tetracycline transactivator (tTA) is driven by the forebrain-specific calcium–calmodulin-dependent kinase IIα promoter (CaMKIIα-tTA mice) are used to study the molecular genetics of many behaviors. These mice can be crossed with other transgenic mice carrying a transgene of interest coupled to the tetracycline-responsive promoter element to produce mice with forebrain-specific expression of the transgene under investigation. The value of using CaMKIIα-tTA mice to study behavior, however, is dependent on the CaMKIIα-tTA mice themselves lacking a behavioral phenotype with respect to the behaviors being studied. Here we present data that suggest CaMKIIα-tTA mice have a behavioral phenotype distinct from that of their wild-type (WT) littermates. Most strikingly, we find that CaMKIIα-tTA mice, both those with a C57BL/6NTac genetic background (B6-tTA) and those with a 129S6B6F1/Tac hybrid genetic background (F1-tTA), exhibit decreased locomotor activity compared with WT littermates that could be misinterpreted as altered anxiety-like behavior. Despite this impairment, neither B6-tTA nor F1-tTA mice perform differently than their WT littermates in two commonly used learning and memory paradigms – Pavlovian fear conditioning and Morris water maze. Additionally, we find data regarding motor coordination and balance to be mixed: B6-tTA mice, but not F1-tTA mice, exhibit impaired performance on the accelerating rotarod and both perform as well as their WT littermates on the balance beam.  相似文献   

15.
Hepatocyte growth/scatter factor (HGF/SF) is a pleiotropic cytokine originally identified as a potent mitogen for rat hepatocytes. Two HGF/SF knockout mouse models have been reported, both of which exhibit developmental abnormalities causing embryonic lethality. To circumvent this limitation, we created a mouse conditionally deficient in liver expression of HGF/SF to specifically investigate the role of this mitogen in the process of adult liver regeneration. Gene targeting technology was used to generate a mouse with loxP sites flanking exon 5 of the HGF/SF gene (ex5-flox). In the absence of cre recombinase activity, mice homozygous for ex5-flox were indistinguishable from wild-type littermates. To ablate HGF/SF gene expression in vitro, primary hepatocytes established from homozygous HGF(ex5-flox) mice were infected with a recombinant adenoviral vector coding for cre recombinase (AdCre1). PCR analyses of genomic DNA demonstrated greater than 90% ablation of the ex5-floxed gene sequence. In vivo, HGF(ex.5-flox) mice were administered AdCre1 vector and the ablation of the HGF gene confirmed by Southern blot analysis. To induce liver regeneration, mice were injected with the hepatotoxin carbon tetrachloride. The regenerative capacity of hepatocytes in mice administered cre recombinase was shown to be significantly reduced when compared with mice injected with an adenovirus expressing LacZ. A similar reduction in hepatocyte regeneration was observed in HGF(ex.5.flox) mice carrying the cre transgene under the control of the interferon-inducible (pI:pC) Mx1 promoter, as an alternative strategy to ablate the HGF/SF gene in liver. Our results confirm the mitogenic role of HGF/SF in liver regeneration.  相似文献   

16.
17.
18.
19.
20.
The severe disorders associated with a loss or dysfunction of midbrain dopamine neurons (DNs) have intensified research aimed at deciphering developmental programs controlling midbrain development. The homeodomain proteins Lmx1a and Lmx1b are important for the specification of DNs during embryogenesis, but it is unclear to what degree they may mediate redundant or specific functions. Here, we provide evidence showing that DN progenitors in the ventral midbrain can be subdivided into molecularly distinct medial and lateral domains, and these subgroups show different sensitivity to the loss of Lmx1a and Lmx1b. Lmx1a is specifically required for converting non-neuronal floor-plate cells into neuronal DN progenitors, a process that involves the establishment of Notch signaling in ventral midline cells. On the other hand, lateral DN progenitors that do not appear to originate from the floor plate are selectively ablated in Lmx1b mutants. In addition, we also reveal an unanticipated role for Lmx1b in regulating Phox2a expression and the sequential specification of ocular motor neurons (OMNs) and red nucleus neurons (RNNs) from progenitors located lateral to DNs in the midbrain. Our data therefore establish that Lmx1b influences the differentiation of multiple neuronal subtypes in the ventral midbrain, whereas Lmx1a appears to be exclusively devoted to the differentiation of the DN lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号