首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas putida assimilates peptides and hydrolyses them with intracellular peptidases. Amino acid auxotrophs (his, trp, thr or met) grew on a variety of di- and tripeptides up to twice as slowly as with free amino acids. Pseudomonas putida has separate uptake systems for both dipeptides and oligopeptides (three or more residues). Although the dipeptide system transported a variety of structurally diverse dipeptides it did not transport peptides having either unprotonatable N-terminal amino groups, blocked C-terminal carboxyl groups, D-residues, three or more residues, N-methylated peptide bonds, or beta-amino acids. Oligopeptide uptake lacked amino acid side-chain specificity, required a free N-terminal L-residue and had an upper size limit. Glycylglycyl-D,L-p-fluorophenylalanine inhibited growth of P. putida. Uptake of glycylglycyl[I-14C]alanine was rapid and inhibited by 2,4-dinitrophenol. Both dipeptide and oligopeptide uptake were constitutive. Dipeptides competed with oligopeptides for oligopeptide uptake, but oligopeptides did not compete in the dipeptide system. Final bacterial yields were 5 to 10 times greater when P. putida his was grown on histidyl di- or tripeptides rather than on free histidine because the histidyl residue was protected from catabolism by L-histidine ammonia-lyase. Methionine peptides could satisfy the methionine requirements of P. maltophilia. Generation times on glycylmethionine and glycylmethionylglycine were equal to those obtained with free methionine. Methionylglycylmethionylmethionine gave a generation time twice that of free methionine. Growth of P. maltophilia was inhibited by glycylglycyl-D,L-p-fluorophenylalanine.  相似文献   

2.
Conformational analysis of angiotensin I (AI) and II (AII) peptides has been performed through 2D 1H-NMR spectroscopy in dimethylsulfoxide and 2,2,2-trifluoroethanol/H2O. The solution structural models of AI and AII have been determined in dimethylsulfoxide using NOE distance and 3JHNHalpha coupling constants. Finally, the AI family of models resulting from restrained energy minimization (REM) refinement, exhibits pairwise rmsd values for the family ensemble 0.26 +/- 0.13 A, 1.05 +/- 0.23 A, for backbone and heavy atoms, respectively, and the distance penalty function is calculated at 0.075 +/- 0.006 A2. Comparable results have been afforded for AII ensemble (rmsd values 0.30 +/- 0.22 A, 1.38 +/- 0.48 A for backbone and heavy atoms, respectively; distance penalty function is 0.029 +/- 0.003 A2). The two peptides demonstrate similar N-terminal and different C-terminal conformation as a consequence of the presence/absence of the His9-Leu10 dipeptide, which plays an important role in the different biological function of the two peptides. Other conformational variations focused on the side-chain orientation of aromatic residues, which constitute a biologically relevant hydrophobic core and whose inter-residue contacts are strong in dimethylsulfoxide and are retained even in mixed organic-aqueous media. Detailed analysis of the peptide structural features attempts to elucidate the conformational role of the C-terminal dipeptide to the different binding affinity of AI and AII towards the AT1 receptor and sets the basis for understanding the factors that might govern free- or bound-depended AII structural differentiation.  相似文献   

3.
Truncated peptide analogues of orexin-A were prepared and their biological activity assesed at the orexin-1 receptor. Progressive N-terminal deletions identified the minimum C-terminal sequence required for maintaining a significant agonist effect, whilst an alanine scan and other pertinent substitutions identified key side-chain and stereochemical requirements for receptor activation.  相似文献   

4.
The yeast kinase Yck2 tethers to the cytoplasmic surface of the plasma membrane through dual palmitoylation of its C-terminal Cys-Cys dipeptide, mediated by the Golgi-localized palmitoyl-transferase Akr1. Here, the Yck2 palmitoylation signal is found to consist of three parts: 1) a 10-residue-long, conserved C-terminal peptide (CCTP) that includes the C-terminal Cys-Cys dipeptide; 2) the kinase catalytic domain (KD); and mapping between these two elements; and 3) a 176-residue-long, poorly conserved, glutamine-rich sequence. The CCTP, which contains the C-terminal cysteines as well as an important Phe-Phe dipeptide, likely serves as an Akr1 recognition element, because CCTP mutations disrupt palmitoylation within a purified in vitro palmitoylation system. The KD contribution appears to be complex with roles for both KD activity (e.g., Yck2-mediated phosphorylation) and structure (e.g., Akr1 recognition elements). KD and CCTP mutations are strongly synergistic, suggesting that, like the CCTP, the KD may also participate at the Yck2-Akr1 recognition step. The long, glutamine-rich domain, which is located between the KD and CCTP, is predicted to be intrinsically disordered and may function as a flexible, interdomain linker, allowing a coupled interaction of the KD and CCTP with Akr1. Multipart palmitoylation signals may prove to be a general feature of this large class of palmitoylation substrates. These soluble proteins have no clear means of accessing membranes and thus may require active capture out of the cytoplasm for palmitoylation by their membrane-localized transferases.  相似文献   

5.
A model tripeptide, Gly-L-Leu-L-Phe, was immobilized with activated aminomethyl polystyrene, and its C-terminal was reduced to an alcohol. This peptidyl alcohol was selectively hydrolyzed at the C-terminal amide bond to afford a polymer-supported dipeptide (Gly-L-Leu) and amino alcohol (Phe-OH). The amino alcohol, including its absolute configuration, was determined by labelling with (+)-MNB-COOH, and the dipeptide was reused for a determination of its C-terminal amino acids. The d,l-amino acids of the tripeptide were sequentially determined from the C-terminus.  相似文献   

6.
Different types of dipeptide building units containing N- or C-terminal arginine were prepared for synthesis of the backbone cyclic analogues of the peptide hormone bradykinin (BK: Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg). For cyclization in the N-terminal sequence N-carboxyalkyl and N-aminoalkyl functionalized dipeptide building units were synthesized. In order to avoid lactam formation during the condensation of the N-terminal arginine to the N-alkylated amino acids at position 2, the guanidino function has to be deprotected. The best results were obtained by coupling Z-Arg(Z)2-OH with TFFH/collidine in DCM. Another dipeptide building unit with an acylated reduced peptide bond containing C-terminal arginine was prepared to synthesize BK-analogues with backbone cyclization in the C-terminus. To achieve complete condensation to the resin and to avoid side reactions during activation of the arginine residue, this dipeptide unit was formed on a hydroxycrotonic acid linker. HYCRAM technology was applied using the Boc-Arg(Alloc)2-OH derivative and the Fmoc group to protect the aminoalkyl function. The reduced peptide bond was prepared by reductive alkylation of the arginine derivative with the Boc-protected amino aldehyde, derived from Boc-Phe-OH. The best results for condensation of the branching chain to the reduced peptide bond were obtained using mixed anhydrides. Both types of dipeptide building units can be used in solid-phase synthesis in the same manner as amino acid derivatives.  相似文献   

7.
Lim KP  Ng LF  Liu DX 《Journal of virology》2000,74(4):1674-1685
The coronavirus Avian infectious bronchitis virus (IBV) employs polyprotein processing as a strategy to express its gene products. Previously we identified the first cleavage event as proteolysis at the Gly(673)-Gly(674) dipeptide bond mediated by the first papain-like proteinase domain (PLPD-1) to release an 87-kDa mature protein. In this report, we demonstrate a novel cleavage activity of PLPD-1. Expression, deletion, and mutagenesis studies showed that the product encoded between nucleotides 2548 and 8865 was further cleaved by PLPD-1 at the Gly(2265)-Gly(2266) dipeptide bond to release an N-terminal 195-kDa and a C-terminal 41-kDa cleavage product. Characterization of the cleavage activity revealed that the proteinase is active on this scissile bond when expressed in vitro in rabbit reticulocyte lysates and can act on the same substrate in trans when expressed in intact cells. Both the N- and C-terminal cleavage products were detected in virus-infected cells and were found to be physically associated. Glycosidase digestion and site-directed mutagenesis studies of the 41-kDa protein demonstrated that it is modified by N-linked glycosylation at the Asn(2313) residue encoded by nucleotides 7465 to 7467. By using a region-specific antiserum raised against the IBV sequence encoded by nucleotides 8865 to 9786, we also demonstrated that a 33-kDa protein, representing the 3C-like proteinase (3CLP), was specifically immunoprecipitated from the virus-infected cells. Site-directed mutagenesis and expression studies showed that a previously predicted cleavage site (Q(2583)-G(2584)) located within the 41-kDa protein-encoding region was not utilized by 3CLP, supporting the conclusion that the 41-kDa protein is a mature viral product.  相似文献   

8.
The use of crude lipase in deprotection of C-terminal protecting groups   总被引:1,自引:0,他引:1  
A crude lipase, Newlase F, was used to remove C-terminal protecting groups from dipeptide esters. Hydrolysis of dipeptide n-heptyl esters with Newlase F was conducted in aqueous media containing acetonitrile. The optimum pH and temperature of lipase in Newlase F were 7.0 and 30 °C, respectively. Low level acetonitrile promoted the hydrolysis of dipeptide n-heptyl esters, while high level acetonitrile inhibited the hydrolysis. However, the protease activity in Newlase F was significantly inhibited by acetonitrile. Lipase in Newlase F worked better in a medium containing water-miscible organic solvents than in water-immiscible ones. N-terminal protecting groups were not affected by the protease in the crude enzyme. It was found that the protease in Newlase F did not hydrolyze amide bond with hydrophilic amino acids on either side under these conditions (pH 7.0, room temperature). Newlase F may consequently be used widely in the synthesis of peptide conjugates. The crude enzyme was immobilized on SBA-15 mesoporous molecular sieve. The lipase activity of immobilized preparation was more active on hydrolysis of C-terminal protecting groups and stable than the free enzyme. The immobilization also reduced the protease activity.  相似文献   

9.
The Gly- and Arg-rich C-terminal region of human nucleolin is a 61-residue long domain involved in a number of protein-protein and protein-nucleic acid interactions. This domain contains 10 aDma residues in the form of aDma-GG repeats interspersed with Phe residues. The exact role of Arg dimethylation is not known, partly because of the lack of efficient synthetic methods. This work describes an effective synthetic strategy, generally applicable to long RGG peptides, based on side-chain protected aDma and backbone protected dipeptide Fmoc-Gly-(Dmob)Gly-OH. This strategy allowed us to synthesize both the unmodified (N61Arg) and the dimethylated (N61aDma) peptides with high yield ( approximately 26%) and purity. As detected by NMR spectroscopy, N61Arg does not possess any stable secondary or tertiary structure in solution and N(omega),N(omega)-dimethylation of the guanidino group does not alter the overall conformational propensity of this peptide. While both peptides bind single-stranded nucleic acids with similar affinities (K(d) = 1.5 x 10(-7) M), they exhibit a different behaviour in ssDNA affinity chromatography consistent with the difference in pK(a) values. It has been previously shown that N61Arg inhibits HIV infection at the stage of HIV attachment to cells. This study demonstrates that Arg-dimethylated C-terminal domain lacks any inhibition activity, raising the question of whether nucleolin expressed on the cell-surface is indeed dimethylated.  相似文献   

10.
Sequential processing reactions in the formation of hormone amides   总被引:1,自引:0,他引:1  
The substrate specificity of an enzyme with amidating activity, present in porcine pituitary, was investigated by examining its ability to convert the synthetic peptides D-Tyr-Val-Gly and D-Tyr-Val-Gly-Lys-Arg to the dipeptide amide D-Tyr-Val-CONH2. The purified enzyme catalysed the amidation reaction with the tripeptide but did not accept the pentapeptide as a substrate. With the mixture of enzymes present in a membrane fraction from porcine pituitary or the enzymes in a secretory granule fraction, both the tripeptide and pentapeptide substrates gave rise to D-Tyr-Val amide; the formation of dipeptide amide from the pentapeptide, however, involved a latency period after which amidation occurred at a similar rate with the two substrates. Evidence was obtained that arginine and lysine were released from the C terminus of the pentapeptide before amidation took place since the rate of formation of dipeptide amide was reduced at pH values that were compatible with amidation but unfavourable to the action of carboxypeptidase H. In addition formation of the dipeptide amide from the pentapeptide was blocked by guanidinoethylmercaptosuccinic acid and glycylarginine, which are inhibitors of carboxypeptidase enzymes. The experiments demonstrate that removal of basic residues from the C terminus of a peptide and amidation at C-terminal glycine are reactions that take place consecutively. These prohormone-processing reactions, which are intrinsic to the formation of hormone amides, did not synergise.  相似文献   

11.
Various gastrin analogues and CCK-8 (Asp-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-Phe-NH2) are hydrolyzed in vitro by angiotensin-converting enzyme (ACE), the main and initial cleavage occurring at the Met-Asp (or Leu-Asp) bond, releasing the C-terminal dipeptide amide Asp-Phe-NH2. Tetragastrin analogues (e.g., Boc-Trp-Leu-Asp-Phe-NH2) are degraded by a vesicular membrane fraction from rat gastric mucosa, yielding the C-terminal dipeptide Asp-Phe-NH2. We report here on the degradation of gastrin analogues and CCK-8 by a gastric mucosal cell preparation containing specific gastrin receptors. We have shown that gastrin analogues were specifically degraded by gastric mucosal cells from different species (e.g., rabbit and dog) at 37 degrees C (pH 7.4), releasing the C-terminal dipeptide Asp-Phe-NH2, similarly to ACE. This cleavage was found to be temperature and pH sensitive, and was inhibited by metalloproteinase inhibitors and by captopril, strongly suggesting that this enzymatic system closely resembles ACE. We have also demonstrated that a close correlation seems to exist between the apparent affinity of the gastrin analogues for gastrin receptors on gastric mucosal cells, and their ability of being hydrolyzed by this cell preparation. Moreover, all gastrin analogues which have been demonstrated to act as gastrin antagonists remained unaffected in the incubation conditions.  相似文献   

12.
Purified rat brain cathepsin B (EC 3.4.22.1) converted prodynorphins or proenkephalins to shorter active forms by the preferential removal of C-terminal dipeptides. The substrate affinities for Met-enkephalin-Arg-Phe or -Arg-Gly-Leu were Km 46 and 117 microM, and kcat/Km ratios were 67 and 115 microM-1, min-1, respectively. Met-Enkephalin was inactivated by the same mechanism (Km-450 microM; kcat/Km = 0.12 microM-1 min-1). The comparison of cathepsin B hydrolysis for pro-opioids, a synthetic hexapeptide and its fragments, C-blocked peptides (pro-opioid amides, Met-enkephalin amide, substance P), and bovine myelin basic protein, provided information on the influence of the C-terminal residues on dipeptide release, the rates as correlated to peptide length, and the optimal arrangement of residues favoring scission at the P1-P'1 sites. The brain enzyme was stereospecific and did not act on peptides with C-terminal D-amino acid substituents. Arg hindered and Pro blocked the release of C-terminal dipeptides when in the P'2 positions. The suppression of dipeptide release by agents inhibiting endopeptidase actions such as E-64 and leupeptin, and the endogenous brain factor (cerebrocystatin) point to similar catalytic mechanisms for the exopeptidase action.  相似文献   

13.
Abstract Peptidase D of Escherichia coli was overproduced from a multicopy plasmid and purified to electrophoretic homogeneity. The pure enzyme was stable at 4°C or −20°C and had a pH optimum at pH 9, and a p I of 4.7; the temperature optimum was at 37°C. As the enzyme was activated by Co2+ and Zn2+, and deactivated by metal chelators, it appears to be a metallopeptidase. By activity staining of native gels, 11 dipeptides which are preferentially cleaved by peptidase D were identified. Peptidase D activity required dipeptide substrates with an unblocked amino terminus and the amino group in the α or β position. Non-protein amino acids and proline were not accepted in the C-terminal position, whereas some dipeptide amides and formyl amino acids were hydrolyzed. K m values of 2 to 5 mM indicate a relatively poor interaction of the enzyme with its substrates.  相似文献   

14.
Dipeptide esters of paracetamol were prepared in high yields. These compounds are quantitatively hydrolyzed to paracetamol and corresponding 2,5-diketopiperazines at pH 7.4 and 37 degrees C. The reactivity is increased in sarcosine and proline peptides and decreased by bulky side chains at both the N- and C-terminal residues of the dipeptide carrier. Moreover, dipeptide esters of paracetamol did not affect the levels of hepatic glutathione. Thus, dipeptides seem promising candidates as carriers for cyclization-activated prodrugs.  相似文献   

15.
The role of the C-terminal region of Staphylococcal nuclease (SNase) was examined by deletion mutation. Deletions up to eight residues do not affect the structure and function. The structure and enzymatic activity were partially lost by deleting Ser141-Asn149 (Delta141-149), and deletion of Trp140-Asn149 (Delta140-149) resulted in further loss of structure and activity. A 13-residue deletion showed the same effect as the 10-residue deletion. Both Ser141Gln and Ser141Ala mutations for an eight-residue deletion mutant did not alter properties as well as Ser141A1a for full-length SNase. In contrast, Trp140Ala mutation for Delta141-149 shows the same effect as the deletion of Trp140. Trp140Ala mutation for full-length SNase causes the loss of native structure. These observations indicate the significance of the 140th and the 141st residues. The side-chain of the 140th residue is required to be tryptophan; however, the backbone of the 141st residue is solely critical for foldability, but the side-chain information is not crucial. All of the mutants that take a non-native conformation show enzymatic activity and inhibitor-induced folding, suggesting that foldability is required for the activity.  相似文献   

16.
YjdL from E. coli is an unusual proton-coupled oligopeptide transporter (POT). Unlike prototypical POTs, dipeptides are preferred over tripeptides, in particular dipeptides with a positively charged C-terminal residue. To further understand this difference in peptide specificity, the sequences of YjdL and YdgR, a prototypical E. coli POT, were compared in light of the crystal structure of a POT from Shewanella oneidensis. Several residues found in the putative active site were mutated and the activities of the mutated variants were assessed in terms of substrate uptake assays, and changes in specificity in terms of uptake inhibition. Most strikingly, changing the YjdL specific Asp392 to the conserved Ser in YjdL obliterated the preference for a positively charged C-terminal residue. Based on this unique finding and previously published results indicating that the dipeptide N-terminus may interact with Glu388, a preliminary orientation model of a dipeptide in the YjdL cavity is presented. Single site mutations of particularly Ala281 and Trp278 support the presented orientation. A dipeptide bound in the cavity of YjdL appears to be oriented such that the N-terminal side chain protrudes into a sub pocket that opens towards the extracellular space. The C-terminal side chain faces in the opposite direction into a sub pocket that faces the cytoplasm. These data indicated a stabilizing effect on a bulky N-terminal residue by an Ala281Phe variant and on the dipeptide backbone by Trp278. In the presented orientation model, Tyr25 and Tyr58 both appear to be in proximity of the dipeptide backbone while Lys117 appears to be in proximity of the peptide C-terminus. Mutational studies of these conserved residues highlight their functional importance.  相似文献   

17.
18.
Peptide Utilization by Amino Acid Auxotrophs of Neurospora crassa   总被引:4,自引:2,他引:2       下载免费PDF全文
The ability of auxotrophs of Neurospora crassa to grow on certain tripeptides, despite the presence of excess competing amino acids, suggests it has an oligopeptide transport system. In general, dipeptides did not support growth except in those instances where extracellular hydrolysis occurred, or where the dipeptide appeared to be accumulated by an uptake system which is sensitive to inhibition by free amino acids. Considerable intracellular peptidase activity toward a large number of peptides was demonstrated, including a number of peptides which could not be utilized for growth. The intracellular peptidase activity was shown to be selective for amino acid composition and sequence (N-terminal or C-terminal) within the peptide; glycine-containing peptides were particularly poor substrates for peptidase activity. Only a small amount of extracellular peptidase activity could be detected.  相似文献   

19.
Auristatins are highly potent antimitotic agents that have received considerable attention because of their activities when targeted to tumor cells in the form of antibody-drug conjugates (ADCs). Our lead agent, SGN-35, consists of the cAC10 antibody linked to the N-terminal amino acid of monomethylauristatin E (MMAE) via a valine-citrulline p-aminobenzylcarbamate (val-cit-PABC) linker that is cleaved by intracellular proteases such as cathepsin B. More recently, we developed an auristatin F (AF) derivative monomethylauristatin F (MMAF), which unlike MMAE contains the amino acid phenylalanine at the C-terminal position. Because of the negatively charged C-terminal residue, the potency of AF and MMAF is impaired. However, their ability to kill target cells is greatly enhanced through facilitated cellular uptake by internalizing mAbs. Here, we explore the effects of linker technology on AF-based ADC potency, activity, and tolerability by generating a diverse set of dipeptide linkers between the C-terminal residue and the mAb carrier. The resulting ADCs differed widely in activity, with some having significantly improved therapeutic indices compared to the original mAb-Val-Cit-PABC-MMAF conjugate. The therapeutic index was increased yet further by generating dipeptide-based ADCs utilizing new auristatins with methionine or tryptophan as the C-terminal drug residue. These results demonstrate that manipulation of the C-terminal peptide sequence used to attach auristatins to the mAb carrier can lead to highly potent and specific conjugates with greatly improved therapeutic windows.  相似文献   

20.
The affinity of ristocetin B for analogues of the C-terminal tripeptide sequence of bacterial cell wall mucopeptide precursors resembles that of vancomycin. Complex-formation requires a d-configuration in the two amino acid residues of the C-terminal dipeptide, an l-configuration is preferred in the preceding amino acid residue and positive charges on the peptide molecule decrease its affinity. The specificity of ristocetin B, however, differs from that of vancomycin in the requirements for the size of the side chains on the C-terminal dipeptide. These differences may explain the observed differences in antibiotic behaviour of vancomycin and ristocetin with particular micro-organisms. The optical rotatory dispersion and u.v.-absorption characteristics of the ristocetins are very different from those of vancomycin but nearly identical with those of ristomycin A. Aglycones prepared from ristomycin A were antibiotically active and also combined with a specific peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号