首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viruses are an abundant, diverse and dynamic component of marine ecosystems and have a key role in the biogeochemical processes of the ocean by controlling prokaryotic and phytoplankton abundance and diversity. However, most of the studies on virus–prokaryote interactions in marine environments have been performed in nearshore waters. To assess potential variations in the relation between viruses and prokaryotes in different oceanographic provinces, we determined viral and prokaryotic abundance and production throughout the water column along a latitudinal transect in the North Atlantic. Depth-related trends in prokaryotic and viral abundance (both decreasing by one order of magnitude from epi- to abyssopelagic waters), and prokaryotic production (decreasing by three orders of magnitude) were observed along the latitudinal transect. The virus-to-prokaryote ratio (VPR) increased from ∼19 in epipelagic to ∼53 in the bathy- and abyssopelagic waters. Although the lytic viral production decreased significantly with depth, the lysogenic viral production did not vary with depth. In bathypelagic waters, pronounced differences in prokaryotic and viral abundance were found among different oceanic provinces with lower leucine incorporation rates and higher VPRs in the North Atlantic Gyre province than in the provinces further north and south. The percentage of lysogeny increased from subpolar regions toward the more oligotrophic lower latitudes. Based on the observed trends over this latitudinal transect, we conclude that the viral–host interactions significantly change among different oceanic provinces in response to changes in the biotic and abiotic variables.  相似文献   

2.
Lambrecht SC  Dawson TE 《Oecologia》2007,151(4):574-583
Variation in flower size is an important aspect of a plant’s life history, yet few studies have shown how flower size varies with environmental conditions and to what extent foliar responses to the environment are correlated with flower size. The objectives of this study were to (1) develop a theoretical framework for linking flower size and leaf size to their costs and benefits, as assessed using foliar stable carbon isotope ratio (δ13C) under varying degrees of water limitation, and then (2) examine how variation in flower size within and among species growing along a naturally occurring moisture availability gradient correlates with variation in δ13C and leaf size. Five plant species were examined at three sites in Oregon. Intra- and inter-specific patterns of flower size in relation to moisture availability were the same: the ratios of the area of flower display to total leaf area and of individual flower area to leaf area were greater at sites with more soil moisture compared to those sites with less soil moisture. The increase in flower area per unit increase in leaf area was greater at sites with more soil moisture than at sites where water deficit can occur. Values of δ13C, an index of water-use efficiency, were greater for plants with larger floral size. The patterns we observed generalize across species, irrespective of overall plant morphology or pollination system. These correlations between flower size, moisture availability, and δ13C suggest that water loss from flowers can influence leaf responses to the environment, which in turn may indirectly mediate an effect on flower size. Electronic supplementary material The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

3.
Summary Ecological species replacement of Liolaemus platei by Liolaemus lemniscatus appears to occur along a north-south oriented herb density gradient. Both congeners are the only ground-dwelling lizards in the area; this suggests that L. lemniscatus is an ecological counterpart of L. platei in herbaceous habitats. Relatively longer legs appear to be associated with the utilization of herb-free habitats by L. platei; the shorter legs possessed by L. lemniscatus are associated with the utilization of habitats of higher herb density. Morphological evidence indicates the presence of intermediate populations in the zone of intermediate herb density. Alternatives of a single-species cline versus interspecific hybridization between the two taxa are discussed.  相似文献   

4.
Local species coexistence is the outcome of abiotic and biotic filtering processes which sort species according to their trait values. However, the capacity of trait‐based approaches to predict the variation in realized species richness remains to be investigated. In this study, we asked whether a limited number of plant functional traits, related to the leaf‐height‐seed strategy scheme and averaged at the community level, is able to predict the variation in species richness over a flooding disturbance gradient. We further investigated how these mean community traits are able to quantify the strength of abiotic and biotic processes involved in the disturbance–productivity–diversity relationship. We thus tested the proposal that the deviation between the fundamental species richness, assessed from ecological niche‐based models, and realized species richness, i.e. field‐observed richness, is controlled by species interactions. Flooding regime was determined using a detailed hydrological model. A precise vegetation sampling was performed across 222 quadrats located throughout the flooding gradient. Three core functional traits were considered: specific leaf area (SLA), plant height and seed mass. Species richness showed a hump‐shaped response to disturbance and productivity, but was better predicted by only two mean community traits: SLA and height. On the one hand, community SLA that increased with flooding, controlled the disturbance‐diversity relationship through habitat filtering. On the other hand, species interactions, the strength of which was captured by community height values, played a strong consistent role throughout the disturbance gradient by reducing the local species richness. Our study highlights that a limited number of simple, quantitative, easily measurable functional traits can capture the variation in plant species richness at a local scale and provides a promising quantification of key community assembly mechanisms.  相似文献   

5.
1. Air temperature will probably have pronounced effects on the composition of plankton communities in northern lake ecosystems, either via indirect effects on the export of essential elements from catchments or through direct effects of water temperature and the ice‐free period on the behaviour of planktonic organisms. 2. We assessed the role of temperature by comparing planktonic communities in 15 lakes along a 6 °C air temperature gradient in subarctic Sweden. 3. We found that the biomass of phytoplankton, bacterioplankton and the total planktonic biomass were positively related to air temperature, probably as a result of climatic controls on the export of nitrogen from the catchment (which affects phytoplankton biomass) and dissolved organic carbon (affecting bacterioplankton biomass). 4. The structure of the zooplankton community, and top down effects on phytoplankton, were apparently not related to temperature but mainly to trophic interactions ultimately dependent on the presence of fish in the lakes. 5. Our results suggest that air temperature regimes and long‐term warming can have strong effects on the planktonic biomass in high latitude lakes. Effects of temperature on the structure of the planktonic community might be less evident unless warming permits the invasion of fish into previous fishless lakes.  相似文献   

6.
周玮  李洪波  曾辉 《植物生态学报》2018,42(11):1094-1102
根系功能属性及其变异性能够介导物种共存及环境适应策略, 但强烈的环境约束作用能够引起不同物种间根系属性的趋同性。为了研究西藏高寒草原群落中植物根系属性变异规律, 并阐明不同物种资源获取和适应策略的多样性, 该文对西藏高寒草原不同的环境梯度进行了研究。作者自东向西沿着降水梯度在那曲、班戈和尼玛3个自然草原群落进行群落调查, 并采集了共计22种植物。测定了每种植物的一级根直径、一级侧根长度和根系分支强度3个关键根系属性。结果表明: 在西藏高寒草原群落中, 不同物种根系直径普遍较小, 且种间变异非常小(22.76%), 其中86%的物种一级根直径集中在0.073 mm到0.094 mm之间; 相较于直径较粗的物种, 直径越细的物种分支强度越高, 侧根越短。在群落尺度上, 植物主要通过增加根系直径、侧根长度, 降低分支强度的方式来适应水分的减少; 而在物种尺度上, 植物适应水分变化的策略则呈现多样性。  相似文献   

7.
Widespread species often occur across a range of climatic conditions, through a combination of local genetic adaptations and phenotypic plasticity. Species with greater phenotypic plasticity are likely to be better positioned to cope with rapid anthropogenic climate changes, while those displaying strong local adaptations might benefit from translocations to assist the movement of adaptive genes as the climate changes. Eucalyptus tricarpa occurs across a climatic gradient in south‐eastern Australia, a region of increasing aridity, and we hypothesized that this species would display local adaptation to climate. We measured morphological and physiological traits reflecting climate responses in nine provenances from sites of 460 to 1040 mm annual rainfall, in their natural habitat and in common gardens near each end of the gradient. Local adaptation was evident in functional traits and differential growth rates in the common gardens. Some traits displayed complex combinations of plasticity and genetic divergence among provenances, including clinal variation in plasticity itself. Provenances from drier locations were more plastic in leaf thickness, whereas leaf size was more plastic in provenances from higher rainfall locations. Leaf density and stomatal physiology (as indicated by δ13C and δ18O) were highly and uniformly plastic. In addition to variation in mean trait values, genetic variation in trait plasticity may play a role in climate adaptation.  相似文献   

8.
魏海霞  霍艳玲  周忠科  张治国 《生态学报》2022,42(20):8343-8351
叶功能性状与植物的生长对策及资源利用效率密切相关,研究叶功能性状沿气候梯度的变异特征能为理解植物对气候变化的响应机制提供一种简便可行的测定指标。以我国西北荒漠地区广泛分布的唐古特白刺(Nitraria tangutorum)为研究对象,对其比叶面积(SLA)、单位质量和单位面积叶氮含量(Nmass、Narea)、单位质量和单位面积叶建成成本(CCmass、CCarea)进行测定,分析这些叶功能性状及性状相关关系沿气候梯度的变异特征。结果表明,唐古特白刺叶功能性状(CCarea除外)在气候梯度下存在显著差异,其中,温度是决定唐古特白刺SLA变化的主要因子,SLA随着温度的增加而增加;降水和温度对唐古特白刺Nmass、Narea和CCmass均有显著影响,Nmass和Narea随着降水和温度的增加而降低,而CCmass呈增加趋势。沿气候梯度,唐古特白刺SLA-Nmass、CCmass-Nmass和CCarea-Narea的线性正相关关系发生平移,导致在相同SLA、CCmass和CCarea下,降水和温度较低的地区具有更高的Nmass和Narea。这一结果表明唐古特白刺能通过调节叶功能性状之间的关系来适应气候的变化,并形成性状间的最佳功能组合。  相似文献   

9.
《植物生态学报》2018,42(11):1094
根系功能属性及其变异性能够介导物种共存及环境适应策略, 但强烈的环境约束作用能够引起不同物种间根系属性的趋同性。为了研究西藏高寒草原群落中植物根系属性变异规律, 并阐明不同物种资源获取和适应策略的多样性, 该文对西藏高寒草原不同的环境梯度进行了研究。作者自东向西沿着降水梯度在那曲、班戈和尼玛3个自然草原群落进行群落调查, 并采集了共计22种植物。测定了每种植物的一级根直径、一级侧根长度和根系分支强度3个关键根系属性。结果表明: 在西藏高寒草原群落中, 不同物种根系直径普遍较小, 且种间变异非常小(22.76%), 其中86%的物种一级根直径集中在0.073 mm到0.094 mm之间; 相较于直径较粗的物种, 直径越细的物种分支强度越高, 侧根越短。在群落尺度上, 植物主要通过增加根系直径、侧根长度, 降低分支强度的方式来适应水分的减少; 而在物种尺度上, 植物适应水分变化的策略则呈现多样性。  相似文献   

10.
Herbivory has significant impacts on individual plants and plant communities, both at ecological and evolutionary time scales. In this context, this study aims to evaluate herbivore damage and its relationship with leaf chemical and structural traits, nutritional status, and forest structural complexity along a successional gradient. We predicted that trees in early successional stages support conservative traits related to drought tolerance (high specific leaf mass and phenolics), whereas trees in light-limited, late successional stages tend to enhance light acquisition strategies (high nitrogen content). We sampled 261 trees from 26 species in 15 plots (50 × 20 m; five per successional stage). From each tree, twenty leaves were collected for leaf trait measures. Phenolic content increased whereas specific leaf mass and nitrogen content decreased from early to late stages. However, leaf damage did not differ among successional stages. Our results partially corroborate the hypothesis that early successional plants in tropical dry forests exhibit leaf traits involved in the conservative use of water. The unexpected decrease in nitrogen content along the chronosequence is likely related to the fact that thinner leaves with low specific leaf mass could have less nitrogen-containing mesophyll per unit area. Mechanisms affecting herbivory intensity varied across scales: at the species level, leaf damage was negatively correlated with tannin concentration and specific leaf mass; at the plot level, leaf damage was positively affected by forest structural complexity. Herbivory patterns in tropical forests are difficult to detect because abiotic factors and multiple top-down and bottom-up forces directly and indirectly affect herbivores.  相似文献   

11.
Background and AimsLessons from above-ground trait ecology and resource economics theory may not be directly translatable to below-ground traits due to differences in function, trade-offs and environmental constraints. Here we examine root functional traits within and across species along a fine-scale hydrological gradient. We ask two related questions: (1) What is the relative magnitude of trait variation across the gradient for within- versus among-species variation? (2) Do correlations among below-ground plant traits conform with predictions from resource-economic spectrum theory?MethodsWe sampled four below-ground fine-root traits (specific root length, branching intensity, root tissue density and root dry matter content) and four above-ground traits (specific leaf area, leaf size, plant height and leaf dry matter content) in vascular plants along a fine-scale hydrological gradient within a wet heathland community in south-eastern Australia. Below-ground and above-ground traits were sampled both within and among species.Key ResultsRoot traits shifted both within and among species across the hydrological gradient. Within- and among-species patterns for root tissue density showed similar declines towards the wetter end of the gradient. Other root traits showed a variety of patterns with respect to within- and among-species variation. Filtering of species has a stronger effect compared with the average within-species shift: the slopes of the relationships between soil moisture and traits were steeper across species than slopes of within species. Between species, below-ground traits were only weakly linked to each other and to above-ground traits, but these weak links did in some cases correspond with predictions from economic theory.ConclusionsOne of the challenges of research on root traits has been considerable intraspecific variation. Here we show that part of intraspecific root trait variation is structured by a fine-scale hydrological gradient, and that the variation aligns with among-species trends in some cases. Patterns in root tissue density are especially intriguing and may play an important role in species and individual response to moisture conditions. Given the importance of roots in the uptake of resources, and in carbon and nutrient turnover, it is vital that we establish patterns of root trait variation across environmental gradients.  相似文献   

12.
Evergreen boreal plant species express high variability in their leaf traits. It remains controversial whether this within-species variability is constrained to the same leaf trait relationships as has been observed across species. We sampled leaves of three boreal evergreen woody species along a latitudinal gradient (from 57o56′N to 69o55′N). Leaf longevity (LL) of Pinus sylvestris L. and Vaccinium vitis-idaea L. correlated negatively with mean annual air temperature (MAT), whereas the LL of Ledum palustre L. was not affected by MAT. V. vitis-idaea and L. palustre had a negative relationship between leaf mass per area (LMA) and MAT. In P. sylvestris, the LMA–MAT relationship was positive. A negative correlation between LL and LMA was significant only for P. sylvestris. Leaf nitrogen concentration was positively related to leaf phosphorus concentration in all three species. Leaf potassium concentration was related to nitrogen concentration only in L. palustre, and to phosphorus concentration in P. sylvestris and L. palustre. Our results demonstrate that although within the studied species the variation in some of the leaf traits may have the same degree as interspecific variation, there is no such intercorrelation of leaf traits within the studied species as has been observed across species.  相似文献   

13.
Critical thermal limits are thought to be correlated with the elevational distribution of species living in tropical montane regions, but with upper limits being relatively invariant compared to lower limits. To test this hypothesis, we examined the variation of thermal physiological traits in a group of terrestrial breeding frogs (Craugastoridae) distributed along a tropical elevational gradient. We measured the critical thermal maximum (CTmax; n = 22 species) and critical thermal minimum (CTmin; n = 14 species) of frogs captured between the Amazon floodplain (250 m asl) and the high Andes (3,800 m asl). After inferring a multilocus species tree, we conducted a phylogenetically informed test of whether body size, body mass, and elevation contributed to the observed variation in CTmax and CTmin along the gradient. We also tested whether CTmax and CTmin exhibit different rates of change given that critical thermal limits (and their plasticity) may have evolved differently in response to different temperature constraints along the gradient. Variation of critical thermal traits was significantly correlated with species’ elevational midpoint, their maximum and minimum elevations, as well as the maximum air temperature and the maximum operative temperature as measured across this gradient. Both thermal limits showed substantial variation, but CTmin exhibited relatively faster rates of change than CTmax, as observed in other taxa. Nonetheless, our findings call for caution in assuming inflexibility of upper thermal limits and underscore the value of collecting additional empirical data on species’ thermal physiology across elevational gradients.  相似文献   

14.
15.
Aims Both dominance distribution of species and the composition of the dominant species determine the distribution of traits within community. Leaf carbon (C) and nitrogen (N) isotopic composition are important leaf traits, and such traits of dominant species are associated with ecosystem C, water and N cycling. Very little is known how dominant species with distinct traits (e.g. N-fixing leguminous and non-leguminous trees) mediate resource utilization of the ecosystems in stressful environment.Methods Leaves of 81 dominant leguminous and non-leguminous trees were collected in forest (moist semi-deciduous and dry semi-deciduous ecosystems) and savanna (costal savanna, Guinean savanna and west Sudanian savanna ecosystems) areas and the transitional zone (between the forest and the savanna) along the transect from the south to the north of Ghana. We measured leaf traits, i.e. leaf δ 13 C, leaf δ 15 N, leaf water content, leaf mass per area (LMA) and C and N concentration. Correlation analyses were used to examine trait–trait relationships, and relationships of leaf traits with temperature and precipitation. We used analysis of covariance to test the differences in slopes of the linear regressions between legumes and non-legumes.Important findings Leaf δ 13 C, δ 15 N, leaf water content and LMA did not differ between leguminous and non-leguminous trees. Leaf N concentration and C:N ratio differed between the two groups. Moreover, leaf traits varied significantly among the six ecosystems. δ 13 C values were negatively correlated with annual precipitation and positively correlated with mean annual temperature. In contrast, leaf δ 15 N of non-leguminous trees were positively correlated with annual precipitation and negatively correlated with mean annual temperature. For leguminous trees, such correlations were not significant. We also found significant coordination between leaf traits. However, the slopes of the linear relationships were significantly different between leguminous and non-leguminous trees. Our results indicate that shifts in dominant trees with distinct water-use efficiency were corresponded to the rainfall gradient. Moreover, leguminous trees, those characterized with relative high water-use efficiency in the low rainfall ecosystems, were also corresponded to the relative high N use efficiency. The high proportion of leguminous trees in the savannas is crucial to mitigate nutrient stress.  相似文献   

16.
In disturbed habitats, shade often has facilitative effects on plants by ameliorating water and thermal stresses. Facilitation by shade tends to increase as water availability decreases. At the same time, several studies have suggested that facilitation by shade is not affected by water status or collapses under extremely dry conditions. We hypothesized that traits of beneficiary plants, specifically, the flexibility in the allocation of biomass between shoots and roots, would mediate variation in the relationship between facilitation by shade and water status. To test this hypothesis, we examined the responses of two bog species to shade under various water conditions in a post-mined peatland. The seeds of Rhynchospora alba and Moliniopsis japonica were sown under three water levels (dry: 53% peat water content, wet: 77%, and control: 71%) × two shading levels (50% shaded and unshaded). The survival, biomass, and biomass allocation between the shoots and roots of the two species were monitored for two years. Shade increased the survival and biomass of both species. However, the facilitation of R. alba by shade was independent of water level, whereas the strength of the facilitative effects on M. japonica increased as water content decreased. R. alba preferentially allocated biomass to roots under dry conditions and was highly drought tolerant. M. japonica did not alter the allocation of its biomass in response to either shade or water level and was drought intolerant. Our results suggest that flexibility in biomass allocation of beneficiary plants mediates occurrence patterns of facilitation by shade along a water gradient. The facilitation of species with inflexible biomass allocation by shade through the amelioration of water stress increases as water availability decreases, whereas the facilitation of species with flexible biomass allocation is independent of water status. Such species-specific facilitation would promote the coexistence of diverse species in a community.  相似文献   

17.
叶片和根系是植物获取资源的最重要的器官,其性状随环境梯度的变化反映了植物光合碳获取和水分与养分的吸收能力及其对环境变化适应的生态对策。羌塘高原降水梯度带高寒草地群落叶片和根系成对性状关系研究不仅能揭示环境梯度对植物性状的塑造作用,也可为理解寒、旱和贫瘠等极端环境下植物的适应策略提供依据。为此,选择3组具有代表性的叶片和根系成对性状:比叶面积(SLA)和比根长(SRL);单位质量叶氮含量(LNmass)和单位质量根氮含量(RNmass);单位面积叶氮含量(LNarea)和单位长度根氮含量(RNlength),分析不同优势植物地上、地下成对性状变异特征及其与环境因子的关系,探讨植物性状对高寒生态系统水分和养分限制因素的适应策略。研究表明,区域气候和土壤环境导致的叶片性状变异大于根系性状的变异,干旱端的植物既具有高的SRL,又具有高的叶片和根系的养分含量(LNmass,LNarea和RNmass)。SLA-SRL、LNmass  相似文献   

18.
Identifying the environmental factors responsible for the formation of a species' distribution limit is challenging because organisms interact in complex ways with their environments. However, the use of statistical niche models in combination with the analysis of phenotypic variation along environmental gradients can help to reduce such complexity and identify a subset of candidate factors. In the present study, we used such approaches to describe and identify factors responsible for the parapatric distribution of two closely‐related livebearer fish species along a salinity gradient in the lowlands of Trinidad, West Indies. The downstream distribution limits of Poecilia reticulata were strongly correlated with the brackish–freshwater interface. We did not observe significant phenotypic variation in life‐history traits for this species when comparing marginal with more central populations, suggesting that abrupt changes in conditions at the brackish–freshwater interface limit its distribution. By contrast, Poecilia picta was present across a wide range of salinities, although it gradually disappeared from upstream freshwater localities. In addition, P. picta populations exhibited an increase in offspring size in localities where they coexist with P. reticulata, suggesting a role for interspecific competition. The parapatric distribution of these two species, suggests that P. reticulata distributions are limited by an abiotic factor (salinity), whereas P. picta is limited by a biotic factor (interspecific competition). Similar parapatric patterns have been previously described in other systems, suggesting they might be a common pattern in nature. © 2013 The Linnean Society of London  相似文献   

19.
Functional trait composition of plant communities has been proposed as a helpful key for understanding the mechanisms of biodiversity effects on ecosystem functioning. In this study, we applied a step‐wise modeling procedure to test the relative effects of taxonomic diversity, functional identity, and functional diversity on macrophytes community productivity along water depth gradient. We sampled 42 plots and 1513 individual plants and measured 16 functional traits and abundance of 17 macrophyte species. Results showed that there was a significant decrease in taxonomic diversity, functional identity (i.e., stem dry mass content, leaf [C] and leaf [N]), and functional diversity (i.e., floating leaf, mean Julian flowering date and rooting depth) with increasing water depth. For the multiple‐trait functional diversity (FD) indices, functional richness decreased, while functional divergence increased with water depth gradient. Macrophyte community productivity was strongly determined by functional trait composition within community, but not significantly affected by taxonomic diversity. Community‐weighted means (CWM) showed a two times higher explanatory power relative to FD indices in determining variations in community productivity. For nine of sixteen traits, CWM and FD showed significant correlations with community productivity, although the strength and direction of those relations depended on selected trait. Furthermore, functional composition in a community affected productivity through either additive or opposite effects of CWM and FD, depending on the particular traits being considered. Our results suggested both mechanisms of mass ratio and niche complementarity can operate simultaneously on variations in community productivity, and considering both CWM and FD would lead to a more profound understanding of traits–productivity relationships.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号