首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arginine kinase (AK) is a member of a large family of phosphoryl transfer enzymes called phosphagen (guanidino) kinases. AKs are present in certain protozoans, sponges, cnidarians, and both lophotrochozoan and ecdysozoan protostomes. Another phosphagen kinase, creatine kinase (CK), is found in sponges, cnidarians, and both deuterostome and protostome groups but does not appear to be present in protozoans. To probe the early evolution of phosphagen kinases, we have amplified the cDNAs for AKs from three choanoflagellates and from the hexactinellid sponge Aphrocallistes beatrix and the demosponges Suberites fuscus and Microciona prolifera. Phylogenetic analysis using maximum likelihood of these choanoflagellate and sponge AKs with other AK sequences revealed that the AK from the choanoflagellate Monosiga brevicollis clusters with the AK from the glass sponge Aphrocallistes and is part of a larger cluster containing AKs from the demosponges Suberites and Microciona as well as basal and protostome invertebrates. In contrast, AKs from Codonosiga gracilis and Monosiga ovata form a distinct cluster apart from all other AK sequences. tBLASTn searches of the recently released M. brevicollis genome database showed that this species has three unique AK genes—one virtually identical to the M. brevicollis cDNA and the other two showing great similarity to C. gracilis and M. ovata AKs. Three distinct AK genes are likely present in choanoflagellates. Two of these AKs display extensive similarity to both CKs and an AK from sponges. Previous work has shown CK evolved from an AK-like ancestor prior to the divergence of sponges. The present results provide evidence suggesting that the initial gene duplication event(s) leading to the CK lineage may have occurred before the divergence of the choanoflagellate and animal lineages.  相似文献   

2.
3.
cDNAs of the two-domain arginine kinase (AK) (contiguous dimer; denoted by 2D/WT) and its separated domains 1 and 2 (denoted by D1/WT and D2/WT) from the sea anemone Anthopleura japonicus, were cloned into the plasmid pMAL, and recombinant enzymes were expressed in E. coli as MBP fusion proteins. The kinetic parameters kcat, Ka and Kia, were determined for all three AKs. All three enzymes showed distinct AK activity, and had high affinity for arginine (Ka Arg=0.25-0.48 mM). The catalytic efficiency, calculated by kcat/Ka ArgKia ATP, of the 2D/WT enzyme (182 mM(-2)s(-1), the value for one active 40 kDa domain) was two- to three-times higher than values for either D1/WT or D2/WT (80.2 and 86.4mM(-2)s(-1), respectively), suggesting the presence of domain-domain interactions (cooperativity) in the contiguous dimer. The Kia/Ka values of the three enzymes ranged from 0.88 to 1.32, indicating that there is no strong synergism in substrate binding, as seen in typical AKs. Asp62 and Arg193, which are conserved in most AKs and play a key role in stabilizing the substrate-bound structure, are also conserved in the two domains of Anthopleura AK. We replaced Asp62 in D2/WT with Glu or Gly. The catalytic efficiency and Kia/Ka for the D62E mutant were comparable to those of D2/WT, but catalytic efficiency for the D62G mutant was decreased to 13% of that of the D2/WT with a significantly increased value of Kia/Ka (1.92), indicating that Asp62 plays an important role in the expression of AK activity.  相似文献   

4.
The Galanthus nivalis agglutinin (GNA) is synthesized as a preproprotein. To corroborate the role of the different targeting peptides in the topogenesis of GNA and related proteins, different constructs were made whereby both the complete original GNA gene and different truncated sequences were coupled to the enhanced green fluorescent protein (EGFP). In addition, a GNA ortholog from rice that lacks the signal peptide and C-terminal propeptide sequence was fused to EGFP. These fusion constructs were expressed in tobacco BY-2 cells and their localization analyzed by confocal fluorescence microscopy. We observed that the processed preproprotein of GNA was directed towards the vacuolar compartment, whereas both the truncated forms of GNA corresponding to the mature lectin polypeptide and the rice ortholog of GNA were located in the nucleus and the cytoplasm. It can be concluded, therefore, that removal of the C-terminal propeptide and the signal peptide is sufficient to change the subcellular targeting of a normally vacuolar protein to the nuclear/cytoplasmic compartment of the BY-2 cells. These findings support the proposed hypothesis that cytoplasmic/nuclear GNA-like proteins and their vacuolar homologs are evolutionarily related and that the classical GNA-related lectins might have evolved from cytoplasmic orthologs through an evolutionary event involving the insertion of a signal peptide and a C-terminal propeptide.  相似文献   

5.
Creatine kinase (CK) is a member of a group of phosphoryl transfer enzymes called phosphagen kinases that play a key role in cellular energy transactions in animals. Three CK isoform gene families are known—cytoplasmic CK (CK), flagellar CK (fCK), and mitochondrial CK (MiCK). Each of the isoforms has a unique gene structure (intron/exon organization). A broad array of other phosphagen kinases is present in animals. Some of these enzymes are found only in annelids and closely related groups including glyocyamine kinase (GK), lombricine kinase (LK), taurocyamine kinase (TK), and a unique arginine kinase (AK) restricted to annelids. Phylogenetic analyses of these annelid phosphagen kinases indicate that they appear to have evolved from a CK-like ancestor. To gain a greater understanding of the relationship of the CK isoforms to the annelid enzymes, we have determined the intron/exon organization of the genes for the following phosphagen kinases: Eisenia LK, Sabellastarte AK, and Arenicola mitochondrial TK (MiTK). Analysis of genomic database for the polychaete Capitella sp. yielded two putative LK genes [cytoplasmic LK and mitochondrial LK (MiLK)]. The intron/exon organization of these genes was compared with available data for cytoplasmic and mitochondrial CKs, and an annelid GK. Surprisingly, these annelid genes, irrespective of whether they are cytoplasmic (LK, AK, and GK) or mitochondrial (MiTK and MiLK), had the same 8-intron/9-exon organization and were strikingly similar to MiCK genes sharing seven of eight splice junctions. These results support the view that the MiCK gene is basal and ancestral to the phosphagen kinases unique to annelids.  相似文献   

6.
7.
The ciliate Paramecium tetraurelia has four arginine kinase genes (AK1, AK2, AK3, and AK4). Of these genes, only AK3 has a signal sequence for farnesylation, a post-translational modification that enables anchoring of the modified enzyme to the ciliary membrane. To confirm this modification, AK3 was synthesized using a cell-free protein synthesis system and the peptide masses were analyzed using peptide mass fingerprinting (PMF). The PMF analysis indicated that the C-terminal peptide of AK3 is farnesylated. Thus, AK3 can be farnesylated under physiologically appropriate conditions. To determine the subcellular localization of P. tetraurelia AK3, Western blot analysis was performed using an AK3 polyclonal antibody for the proteins extracted from intact cells and ciliary fractions. When extraction was performed using Triton X-100, AK3 was detected the ciliary fraction. This result suggested that the ciliary fraction contains AK3. In addition, we investigated the role of P. tetraurelia AKs in ciliary movement using the feeding RNA interference method. The swimming velocity of AK1- and AK3-silenced cells was significantly reduced to half the value of that control cells. In summary, P. tetraurelia AK3 is likely to be located in the ciliary membrane and influences swimming velocity, presumably through the phosphoarginine shuttle system present in cilia.  相似文献   

8.
Adenylate kinase 4 (AK4) is a unique member with no enzymatic activity in vitro in the adenylate kinase (AK) family although it shares high sequence homology with other AKs. It remains unclear what physiological function AK4 might play or why it is enzymatically inactive. In this study, we showed increased AK4 protein levels in cultured cells exposed to hypoxia and in an animal model of the neurodegenerative disease amyotrophic lateral sclerosis. We also showed that short hairpin RNA (shRNA)-mediated knockdown of AK4 in HEK293 cells with high levels of endogenous AK4 resulted in reduced cell proliferation and increased cell death. Furthermore, we found that AK4 over-expression in the neuronal cell line SH-SY5Y with low endogenous levels of AK4 protected cells from H2O2 induced cell death. Proteomic studies revealed that the mitochondrial ADP/ATP translocases (ANTs) interacted with AK4 and higher amount of ANT was co-precipitated with AK4 when cells were exposed to H2O2 treatment. In addition, structural analysis revealed that, while AK4 retains the capability of binding nucleotides, AK4 has a glutamine residue instead of a key arginine residue in the active site well conserved in other AKs. Mutation of the glutamine residue to arginine (Q159R) restored the adenylate kinase activity with GTP as substrate. Collectively, these results indicate that the enzymatically inactive AK4 is a stress responsive protein critical to cell survival and proliferation. It is likely that the interaction with the mitochondrial inner membrane protein ANT is important for AK4 to exert the protective benefits to cells under stress.  相似文献   

9.
Adenosine kinase (AK) is a purine salvage enzyme that catalyzes the phosphorylation of adenosine to AMP. In Mycobacterium tuberculosis, AK can also catalyze the phosphorylation of the adenosine analog 2-methyladenosine (methyl-Ado), the first step in the metabolism of this compound to an active form. Purification of AK from M. tuberculosis yielded a 35-kDa protein that existed as a dimer in its native form. Adenosine (Ado) was preferred as a substrate at least 30-fold (Km = 0.8 +/- 0.08 microM) over other natural nucleosides, and substrate inhibition was observed when Ado concentrations exceeded 5 micro M. M. tuberculosis and human AKs exhibited different affinities for methyl-Ado, with Km values of 79 and 960 microM, respectively, indicating that differences exist between the substrate binding sites of these enzymes. ATP was a good phosphate donor (Km = 1100 +/- 140 microM); however, the activity levels observed with dGTP and GTP were 4.7 and 2.5 times the levels observed with ATP, respectively. M. tuberculosis AK activity was dependent on Mg2+, and activity was stimulated by potassium, as reflected by a decrease in the Km and an increase in Vmax for both Ado and methyl-Ado. The N-terminal amino acid sequence of the purified enzyme revealed complete identity with Rv2202c, a protein currently classified as a hypothetical sugar kinase. When an AK-deficient strain of M. tuberculosis (SRICK1) was transformed with this gene, it exhibited a 5,000-fold increase in AK activity compared to extracts from the original mutants. These results verified that the protein that we identified as AK was coded for by Rv2202c. AK is not commonly found in bacteria, and to the best of our knowledge, M. tuberculosis AK is the first bacterial AK to be characterized. The enzyme shows greater sequence homology with ribokinase and fructokinase than it does with other AKs. The multiple differences that exist between M. tuberculosis and human AKs may provide the molecular basis for the development of nucleoside analog compounds with selective activity against M. tuberculosis.  相似文献   

10.
Arginine kinase (AK), which catalyzes the reversible transfer of phosphate from ATP to arginine to yield phosphoarginine and ADP, is widely distributed throughout the invertebrates. We determined the cDNA sequence of AK from the tardigrade (water bear) Macrobiotus occidentalis, cloned the sequence into pET30b plasmid, and expressed it in Escherichia coli as a 6x His-tag—fused protein. The cDNA is 1377 bp, has an open reading frame of 1080 bp, and has 5′- and 3′-untranslated regions of 116 and 297 bp, respectively. The open reading frame encodes a 359-amino acid protein containing the 12 residues considered necessary for substrate binding in Limulus AK. This is the first AK sequence from a tardigrade. From fragmented and non-annotated sequences available from DNA databases, we assembled 46 complete AK sequences: 26 from arthropods (including 19 from Insecta), 11 from nematodes, 4 from mollusks, 2 from cnidarians and 2 from onychophorans. No onychophoran sequences have been reported previously. The phylogenetic trees of 104 AKs indicated clearly that Macrobiotus AK (from the phylum Tardigrada) shows close affinity with Epiperipatus and Euperipatoides AKs (from the phylum Onychophora), and therefore forms a sister group with the arthropod AKs. Recombinant 6x His-tagged Macrobiotus AK was successfully expressed as a soluble protein, and the kinetic constants (K(m), K(d), V(ma) and k(cat)) were determined for the forward reaction. Comparison of these kinetic constants with those of AKs from other sources (arthropods, mollusks and nematodes) indicated that Macrobiotus AK is unique in that it has the highest values for k(cat) and K(d)K(m) (indicative of synergistic substrate binding) of all characterized AKs.  相似文献   

11.
Proper sperm function depends on adequate ATP levels. In the mammalian flagellum, ATP is generated in the midpiece by oxidative respiration and in the principal piece by glycolysis. In locations where ATP is rapidly utilized or produced, adenylate kinases (AKs) maintain a constant adenylate energy charge by interconverting stoichiometric amounts of ATP and AMP with two ADP molecules. We previously identified adenylate kinase 1 and 2 (AK1 and AK2) by mass spectrometry as part of a mouse SDS-insoluble flagellar preparation containing the accessory structures (fibrous sheath, outer dense fibers, and mitochondrial sheath). A germ cell-specific cDNA encoding AK1 was characterized and found to contain a truncated 3' UTR and a different 5' UTR compared to the somatic Ak1 mRNA; however, it encoded an identical protein. Ak1 mRNA was upregulated during late spermiogenesis, a time when the flagellum is being assembled. AK1 was first seen in condensing spermatids and was associated with the outer microtubular doublets and outer dense fibers of sperm. This localization would allow the interconversion of ATP and ADP between the fibrous sheath where ATP is produced by glycolysis and the axonemal dynein ATPases where ATP is consumed. Ak2 mRNA was expressed at relatively low levels throughout spermatogenesis, and the protein was localized to the mitochondrial sheath in the sperm midpiece. AK1 and AK2 in the flagellar accessory structures provide a mechanism to buffer the adenylate energy charge for sperm motility.  相似文献   

12.
The release of two mitochondrial proteins, cytochrome c and apoptosis-inducing factor (AIF), into the soluble cytoplasm of cells undergoing apoptosis is well established. Using spectrophotometric determination of enzyme activity, the accumulation of adenylate kinase (AK) activity in the cytosolic fraction of apoptotic cells has also been observed recently. However, three isozymes, AK1, AK2 and AK3, have been characterized in mammalian cells and shown to be localized in the cytosol, mitochondrial intermembrane space and mitochondrial matrix, respectively, and it is unknown which one of these isozymes accumulates in the cytosol during apoptosis. We now demonstrate that in apoptotic cells only AK2 was translocated into the cytosol concomitantly with cytochrome c. The amount of AK1 in cytosol, as well as the amount of matrix-associated AK3, remained unchanged during the apoptotic process. Thus, our data suggest that only intermembrane proteins are released from mitochondria during the early phase of the apoptotic process.  相似文献   

13.
Adenylate kinases are abundant nucleoside monophosphate kinases, which catalyze the phosphorylation of AMP by using ATP or GTP as phosphate donors. A previously cloned cDNA was named adenylate kinase 4 (AK4) based on its sequence similarity with known AKs but with no confirmed AK enzyme activity. In the present study the AK4 cDNA was expressed in Escherichia coli and the substrate specificity and kinetic properties of the recombinant protein were characterized. The enzyme catalyzed the phosphorylation of AMP, dAMP, CMP and dCMP with ATP or GTP as phosphate donors and AK4 also phosphorylated AMP with UTP as phosphate donor. The kinetic parameters of the enzyme were determined for AMP and dAMP with ATP as phosphate donor and for AMP with GTP as phosphate donor. AK4 showed its highest efficiency when phosphorylating AMP with GTP and a slightly lower efficiency for the phosphorylation of AMP with ATP. Among the three reactions for which kinetics were performed, dAMP was the poorest substrate. The AK4 mitochondrial localization was confirmed by expression of AK4 as a fusion protein with GFP in HeLa cells. The mitochondrial import sequence was shown to be located within the first N-terminal 11 amino acid residues, very close to the ATP-binding region of the enzyme. Import analysis suggested that the mitochondrial import sequence was not cleaved and thus the enzyme retained its activity upon entering the mitochondria. Site directed mutagenesis of amino acids Lys 4 and Arg 7 showed that these two residues were essential for mitochondrial import.  相似文献   

14.
Annelids as a group express a variety of phosphagen kinases including creatine kinase (CK), glyocyamine kinase (GK), lombricine kinase (LK), taurocyamine kinase (TK) and a unique arginine kinase (AK) restricted to annelids. In prior work, we have determined and compared the intron/exon organization of the annelid genes for cytoplasmic GK, LK, AK, and mitochondrial TK and LK (MiTK and MiLK, respectively), and found that these annelid genes, irrespective of cytoplasmic or mitochondrial, have the same 8-intron/9-exon organization strikingly similar to mitochondrial CK (MiCK) genes. These results support the view that the MiCK gene is basal and ancestral to the phosphagen kinases unique to annelids. To gain a greater understanding of the evolutionary processes leading to the diversity of annelid phosphagen kinases, we determined for the first time the intron/exon organization of a cytoplasmic CK gene from a polychaete as well as that of another polychaete MiCK gene. These gene structures, coupled with a phylogenetic analyses of annelid enzymes and assessment of the fidelity of substrate specificity of some these phosphagen kinases, provide insight into the pattern of radiation of the annelid enzymes. Annelid phosphagen kinases appeared to have diverged in the following order (earliest first): (1) cytoplasmic AK, LK and TK, (2) GK, and (3) mitochondrial MiLK and MiTK. Interestingly, phylogenetic analyses showed that the above phosphagen kinases appear to be basal to all CK isoforms (mitochondrial, cytoplasmic and flagellar CKs). This somewhat paradoxical placement of CKs most likely reflects a higher rate of evolution and radiation of the annelid-specific LK, TK and GK genes than the CK isoform genes.  相似文献   

15.
16.
Cytochrome P450 2E1 (CYP2E1) lacking the hydrophobic NH(2)-terminal hydrophobic transmembrane domain is specifically targeted to mitochondria, where it is processed to a soluble and catalytically active form (Delta2E1) with a mass of about 40 kDa. Small amounts of Delta2E1 were also observed in mitochondria isolated from rat liver, indicating that this form of CYP2E1 is also present in vivo. In the present study the mitochondrial targeting signal was identified and characterized by the use of several NH(2)-terminally truncated and mutated forms of CYP2E1 that were expressed in the mouse H2.35 hepatoma cell line. Two potential mitochondrial targeting sequences were identified in the NH(2) terminus of CYP2E1. Deletion of the first potential mitochondrial targeting sequence located between amino acids 50 and 65, as in Delta(2-64)2E1, still resulted in mitochondrial targeting and processing, but when, in addition to the first, the second potential mitochondrial targeting sequence located between amino acids 74 and 95 was also deleted, as in Delta(2-95)2E1, the mitochondrial targeting was abolished. Mutation of the four positively charged Arg and Lys residues present in this sequence to neutral Ala residues resulted in the abrogation of mitochondrial targeting. Deletion of a hydrophobic stretch of amino acids between residues 76 and 83 also abolished mitochondrial targeting and import. Once imported in the mitochondria, these constructs were further processed to the mature protein Delta2E1. It is concluded that mitochondrial targeting of CYP2E1 is mediated through a sequence located between residues 74 and 95 and that positively charged residues as well as a hydrophobic stretch present in the beginning of this sequence are essential for this process.  相似文献   

17.
The L-lysine biosynthetic pathway of the gram-negative obligate methylotroph Methylophilus methylotrophus AS1 was examined through characterization of the enzymes aspartokinase (AK), aspartsemialdehyde dehydrogenase, dihydrodipicolinate synthase (DDPS), dihydrodipicolinate reductase, and diaminopimelate decarboxylase. The AK was inhibited by L-threonine and by a combination of L-threonine and L-lysine, but not by L-lysine alone, and the activity of DDPS was moderately reduced by L-lysine. In an L-lysine producing mutant (G49), isolated as an S-(2-aminoethyl)-L-cysteine (lysine analog) resistant strain, both AK and DDPS were partially resistant to feedback inhibition. The ask and dapA genes encoding AK and DDPS respectively were isolated from the parental strain, AS1, and its G49 derivative. Comparison of the sequences revealed a point mutation in each of these genes in G49. The mutation in the ask gene altered aspartic acid in a key region involved in the allosteric regulation common to AKs, while a novel mutation in the dapA gene altered tyrosine-106, which was assumed to be involved in the binding of L-lysine to DDPS.  相似文献   

18.
19.
20.
Suzuki T  Tomoyuki T  Uda K 《FEBS letters》2003,533(1-3):95-98
Arginine kinase (AK) from the clam Corbicula japonica is a unique enzyme in that it has an unusual two-domain structure with molecular mass of 80 kDa. It lacks two functionally important amino acid residues, Asp-62 and Arg-193, which are conserved in other 40 kDa AKs and are assumed to be key residues for stabilizing the substrate-bound structure. K m arg and Vmax values for the recombinant two-domain AK were determined. These values were close to those of usual 40 kDa AKs, although Corbicula AK lacks the functionally important Asp-62 and Arg-193. Domain 2 of Corbicula AK was separated from the two-domain enzyme and was expressed in Escherichia coli. Domain 2 still exhibited activity. However, kinetic parameters for domain 2 appeared to be slightly, but significantly, different from those of two-domain AK. Thus, it is likely that the formation of the contiguous dimer alters the kinetic properties of its constituent domains significantly. Comparison of K d arg and K m arg for two-domain AK and its domain 2 showed that the affinity of the enzyme for arginine is greater in the presence of substrate ATP than in its absence. Presumably this difference is correlated with the large structural differences in the enzyme in the presence or absence of substrate, namely open and closed structures. We expressed three mutants of Corbicula AK domain 2 (His-60 to Gly or Arg, Asp-197 to Gly), and determined their K m arg and Vmax values. The affinity for the substrate arginine in mutant enzymes was reduced considerably, accompanied by a decrease in Vmax. These results suggest that His-60 and Asp-197 affect the substrate binding system, and are consistent with the hypothesis that a hydrogen bond is formed between His-60 and Asp-197 in Corbicula AK as a substitute for the Asp-62 and Arg-193 bond in normal AKs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号