首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen M  Wang K  Zhang L  Li C  Yang Y 《PloS one》2011,6(12):e28552
Urine has emerged as an attractive biofluid for the noninvasive detection of prostate cancer (PCa). There is a strong imperative to discover candidate urinary markers for the clinical diagnosis and prognosis of PCa. The rising flood of various omics profiles presents immense opportunities for the identification of prospective biomarkers. Here we present a simple and efficient strategy to derive candidate urine markers for prostate tumor by mining cancer genomic profiles from public databases. Prostate, bladder and kidney are three major tissues from which cellular matters could be released into urine. To identify urinary markers specific for PCa, upregulated entities that might be shed in exosomes of bladder cancer and kidney cancer are first excluded. Through the ontology-based filtering and further assessment, a reduced list of 19 entities encoding urinary proteins was derived as putative PCa markers. Among them, we have found 10 entities closely associated with the process of tumor cell growth and development by pathway enrichment analysis. Further, using the 10 entities as seeds, we have constructed a protein-protein interaction (PPI) subnetwork and suggested a few urine markers as preferred prognostic markers to monitor the invasion and progression of PCa. Our approach is amenable to discover and prioritize potential markers present in a variety of body fluids for a spectrum of human diseases.  相似文献   

2.
There is significant need to identify novel prostate cancer drug targets because current hormone therapies eventually fail, leading to a drug-resistant and fatal disease termed castration-resistant prostate cancer. To functionally identify genes that, when silenced, decrease prostate cancer cell proliferation or induce cell death in combination with antiandrogens, we employed an RNA interference-based short hairpin RNA barcode screen in LNCaP human prostate cancer cells. We identified and validated four candidate genes (AKT1, PSMC1, STRADA, and TTK) that impaired growth when silenced in androgen receptor positive prostate cancer cells and enhanced the antiproliferative effects of antiandrogens. Inhibition of AKT with a pharmacologic inhibitor also induced apoptosis when combined with antiandrogens, consistent with recent evidence for PI3K and AR pathway crosstalk in prostate cancer cells. Recovery of hairpins targeting a known prostate cancer pathway validates the utility of shRNA library screening in prostate cancer as a broad strategy to identify new candidate drug targets.  相似文献   

3.
Prostate cancer remains the single most prevalent cancer in men. Standard therapies are still limited and include androgen ablation that initially causes tumor regression. However, tumor cells eventually relapse and develop into a hormone-refractory prostate cancer. One of the current challenges in this disease is to define new therapeutic targets, which have been virtually unchanged in the past 30 years. Recent studies have suggested that the family of enzymes known as the proprotein convertases (PCs) is involved in various types of cancers and their progression. The present study examined PC expression in prostate cancer and validates one PC, namely PACE4, as a target. The evidence includes the observed high expression of PACE4 in all different clinical stages of human prostate tumor tissues. Gene silencing studies targeting PACE4 in the DU145 prostate cancer cell line produced cells (cell line 4-2) with slower proliferation rates, reduced clonogenic activity, and inability to grow as xenografts in nude mice. Gene expression and proteomic profiling of the 4-2 cell line reveals an increased expression of known cancer-related genes (e.g., GJA1, CD44, IGFBP6) that are downregulated in prostate cancer. Similarly, cancer genes whose expression is decreased in the 4-2 cell line were upregulated in prostate cancer (e.g., MUC1, IL6). The direct role of PACE4 in prostate cancer is most likely through the upregulated processing of growth factors or through the aberrant processing of growth factors leading to sustained cancer progression, suggesting that PACE4 holds a central role in prostate cancer.  相似文献   

4.
FHIT is a novel tumor suppressor gene located at human chromosome 3p14.2. Restoration of wild-type FHIT in 3p14.2-deficient human lung cancer cells inhibits cell growth and induces apoptosis. In this study, we analyzed potential upstream/downstream molecular targets of the FHIT protein and found that FHIT specifically targeted and regulated death receptor (DR) genes in human non-small-cell lung cancer (NSCLC) cells. Exogenous expression of FHIT by a recombinant adenoviral vector (Ad)-mediated gene transfer upregulated expression of DR genes. Treatment with a recombinant TRAIL protein, a DR-specific ligand, in Ad-FHIT-transduced NSCLC cells considerably enhanced FHIT-induced apoptosis, further demonstrating the involvement of DRs in FHIT-induced apoptosis. Moreover, we also found that FHIT targeted downstream of the DR-mediated signaling pathway. FHIT overexpression disrupted mitochondrial membrane integrity and activated multiple pro-apoptotic proteins in NSCLC cell. These results suggest that FHIT induces apoptosis through a sequential activation of DR-mediated pro-apoptotic signaling pathways in human NSCLC cells.  相似文献   

5.
Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras   总被引:1,自引:0,他引:1  
Technologies that mediate targeted delivery of small interfering RNAs (siRNAs) are needed to improve their therapeutic efficacy and safety. Therefore, we have developed aptamer-siRNA chimeric RNAs capable of cell type-specific binding and delivery of functional siRNAs into cells. The aptamer portion of the chimeras mediates binding to PSMA, a cell-surface receptor overexpressed in prostate cancer cells and tumor vascular endothelium, whereas the siRNA portion targets the expression of survival genes. When applied to cells expressing PSMA, these RNAs are internalized and processed by Dicer, resulting in depletion of the siRNA target proteins and cell death. In contrast, the chimeras do not bind to or function in cells that do not express PSMA. These reagents also specifically inhibit tumor growth and mediate tumor regression in a xenograft model of prostate cancer. These studies demonstrate an approach for targeted delivery of siRNAs with numerous potential applications, including cancer therapeutics.  相似文献   

6.
Prostate cancer has been known to be the second highest cause of death in cancer among men. Pomegranate is rich in polyphenols with the potent antioxidant activity and inhibits cell proliferation, invasion, and promotes apoptosis in various cancer cells. This study demonstrated that pomegranate fruit juice could effectively hinder the proliferation of human prostate cancer DU145 cell. The results of apoptotic analyses implicated that fruit juice might trigger the apoptosis in DU145 cells via death receptor signaling and mitochondrial damage pathway. In this study, we exploited 2DE‐based proteomics to compare nine pairs of the proteome maps collected from untreated and treated DU145 cells to identify the differentially expressed proteins. Comparative proteomics indicated that 11 proteins were deregulated in affected DU145 cells with three upregulated and eight downregulated proteins. These dys‐regulated proteins participated in cytoskeletal functions, antiapoptosis, proteasome activity, NF‐κB signaling, cancer cell proliferation, invasion, and angiogenesis. Western immunoblotting were implemented to confirm the deregulated proteins and the downstream signaling proteins. The analytical results of this study help to provide insight into the molecular mechanism of inducing prostate cancer cell apoptosis by pomegranate fruit juice and to develop a novel mechanism‐based chemopreventive strategy for prostate cancer.  相似文献   

7.
8.
The androgen receptor (AR) is expressed in a subset of prostate stromal cells and functional stromal cell AR is required for normal prostate developmental and influences the growth of prostate tumors. Although we are broadly aware of the specifics of the genomic actions of AR in prostate cancer cells, relatively little is known regarding the gene targets of functional AR in prostate stromal cells. Here, we describe a novel human prostate stromal cell model that enabled us to study the effects of AR on gene expression in these cells. The model involves a genetically manipulated variant of immortalized human WPMY-1 prostate stromal cells that overexpresses wildtype AR (WPMY-AR) at a level comparable to LNCaP cells and is responsive to dihydrotestosterone (DHT) stimulation. Use of WPMY-AR cells for gene expression profiling showed that the presence of AR, even in the absence of DHT, significantly altered the gene expression pattern of the cells compared to control (WPMY-Vec) cells. Treatment of WPMY-AR cells, but not WPMY-Vec control cells, with DHT resulted in further changes that affected the expression of 141 genes by 2-fold or greater compared to vehicle treated WPMY-AR cells. Remarkably, DHT significantly downregulated more genes than were upregulated but many of these changes reversed the initial effects of AR overexpression alone on individual genes. The genes most highly effected by DHT treatment were categorized based upon their role in cancer pathways or in cell signaling pathways (transforming growth factor-β, Wnt, Hedgehog and MAP Kinase) thought to be involved in stromal-epithelial crosstalk during prostate or prostate cancer development. DHT treatment of WPMY-AR cells was also sufficient to alter their paracrine potential for prostate cancer cells as conditioned medium from DHT-treated WPMY-AR significantly increased growth of LNCaP cells compared to DHT-treated WPMY-Vec cell conditioned medium.  相似文献   

9.
The existing models of cancer progression assume that a linear sequence of geneticand epigenetic events occurs during this process. In this representation every new event(either loss of a tumor-suppressor, or activation of a proto-oncogene) makes cells even moremalignant. The result is a “super” cell that can form metastases at the distant sites.Metastatic cells are believed to carry all genetic and epigenetic characteristics that arenecessary for metastasis formation. Recently, we have shown that cell-surface proteasehepsin causes disorganization of the basement membrane and promotes prostate cancerprogression and metastasis. In human prostate cancer hepsin is upregulated in theprecancerous lesions and this upregulation is maintained in the primary tumors. Remarkablyand completely unexpected for a metastasis-promoting gene, hepsin is expressed at lowlevels in metastatic lesions and the message is completely absent in metastasis-derivedprostate cancer cell lines. These results demonstrate that genes that play an important role inmetastatic process may exercise their role only at the specific fragments of cancerprogression pathway (for example, during initial invasion and tissue disorganization in theprimary organ) and may have no role in metastatic lesions. Future treatment of cancerpatients may rely heavily on monitoring of tumor progression, as treatment efficient inattenuation of initial tumor progression may be inefficient or even adverse at the advancestages of disease.  相似文献   

10.
11.
Histone deacetylases (HDACs) have emerged as important targets for cancer treatment. HDAC-inhibitors (HDACis) are well tolerated in patients and have been approved for the treatment of patients with cutaneous T-cell lymphoma (CTCL). To improve the clinical benefit of HDACis in solid tumors, combination strategies with HDACis could be employed. In this study, we applied Analysis of Functional Annotation (AFA) to provide a comprehensive list of genes and pathways affected upon HDACi-treatment in prostate cancer cells. This approach provides an unbiased and objective approach to high throughput data mining. By performing AFA on gene expression data from prostate cancer cell lines DU-145 (an HDACi-sensitive cell line) and PC3 (a relatively HDACi-resistant cell line) treated with HDACis valproic acid or vorinostat, we identified biological processes that are affected by HDACis and are therefore potential treatment targets for combination therapy. Our analysis revealed that HDAC-inhibition resulted among others in upregulation of major histocompatibility complex (MHC) genes and deregulation of the mitotic spindle checkpoint by downregulation of genes involved in mitosis. These findings were confirmed by AFA on publicly available data sets from HDACi-treated prostate cancer cells. In total, we analyzed 375 microarrays with HDACi treated and non-treated (control) prostate cancer cells. All results from this extensive analysis are provided as an online research source (available at the journal’s website and at http://luigimarchionni.org/HDACIs.html). By publishing this data, we aim to enhance our understanding of the cellular changes after HDAC-inhibition, and to identify novel potential combination strategies with HDACis for the treatment of prostate cancer patients.  相似文献   

12.
We have used DNA microarrays to follow Neisseria meningitidis serogroup B (MenB) gene regulation during interaction with human epithelial cells. Host-cell contact induced changes in the expression of 347 genes, more than 30% of which encode proteins with unknown function. The upregulated genes included transporters of iron, chloride, amino acids, and sulfate, many virulence factors, and the entire pathway of sulfur-containing amino acids. Approximately 40% of the 189 upregulated genes coded for peripherally located proteins, suggesting that cell contact promoted a substantial reorganization of the cell membrane. This was confirmed by fluorescence activated cell sorting (FACS) analysis on adhering bacteria using mouse sera against twelve adhesion-induced proteins. Of the 12 adhesion-induced surface antigens, 5 were able to induce bactericidal antibodies in mice, demonstrating that microarray technology is a valid approach for identifying new vaccine candidates and nicely complements other genome mining strategies used for vaccine discovery.  相似文献   

13.
Prostate cancer is frequently associated with bone metastases, where the crosstalk between tumor cells and key cells of the bone microenvironment (osteoblasts, osteoclasts, immune cells) amplifies tumor growth. We have explored the potential of a novel cytokine, interleukin‐27 (IL‐27), for inhibiting this malignant crosstalk, and have examined the effect of autocrine IL‐27 on prostate cancer cell gene expression, as well as the effect of paracrine IL‐27 on gene expression in bone and T cells. In prostate tumor cells, IL‐27 upregulated genes related to its signaling pathway while downregulating malignancy‐related receptors and cytokine genes involved in gp130 signaling, as well as several protease genes. In both undifferentiated and differentiated osteoblasts, IL‐27 modulated upregulation of genes related to its own signaling pathway as well as pro‐osteogenic genes. In osteoclasts, IL‐27 downregulated several genes typically involved in malignancy and also downregulated osteoclastogenesis‐related genes. Furthermore, an osteogenesis‐focused real‐time PCR array revealed a more extensive profile of pro‐osteogenic gene changes in both osteoblasts and osteoclasts. In T‐lymphocyte cells, IL‐27 upregulated several activation‐related genes and also genes related to the IL‐27 signaling pathway and downregulated several genes that could modulate osteoclastogenesis. Overall, our results suggest that IL‐27 may be able to modify interactions between prostate tumor and bone microenvironment cells and thus could be used as a multifunctional therapeutic for restoring bone homeostasis while treating metastatic prostate tumors. J. Cell. Physiol. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Bromodomain and extra-terminal (BET) proteins are frequently overexpressed in various human cancers, therefore have been clinically pursed as attractive therapeutic anti-cancer targets. However, relatively little is known about the mechanism(s) underlying aberrant BET overexpression in human cancers. Recently, we reported that prostate cancer-derived SPOP mutants fail to interact with and promote BRD4 degradation, leading to accumulation of BRD4 in prostate cancer cells. As a result, prostate cancer cells harboring SPOP mutations are more resistant to BET inhibitors. Therefore, our results help to elucidate the tumor suppressor role of SPOP in the prostate cancer setting by negatively controlling BET proteins stability. More importantly, our results also provide a molecular basis for using combination with BET inhibitors and other inhibitors to treat prostate cancer patients with SPOP mutations.  相似文献   

15.
16.
The vitamin D receptor (VDR) is a member of the steroid/retinoid receptor superfamily of nuclear receptors and has potential tumor-suppressive functions in prostate and other cancer types. Vitamin D3 (VD3) exerts its biological actions by binding within cells to VDR. The VDR then interacts with specific regions of the DNA in cells, and triggers changes in the activity of genes involved in cell division, cell survival, and cellular function. Using human primary cultures and the prostate cancer (PCa) cell line, ALVA-31, we examined the effects of VD3 under different culture conditions. Complete G0/G1 arrest of ALVA-31 cells and approximately 50% inhibition of tumor stromal cell growth was observed. To determine changes in gene expression patterns related to VD3 activity, microarray analysis was performed. More than approximately 20,000 genes were evaluated for twofold relative increases and decreases in expression levels. A number of the gene targets that were up- and down-regulated are related to potential mechanisms of prostatic growth regulation. These include estrogen receptor (ER), heat shock proteins: 70 and 90, Apaf1, Her-2/neu, and paxillin. Utilizing antibodies generated against these targets, we were able to confirm the changes at the protein level. These newly reported gene expression patterns provide novel information not only potential markers, but also on the genes involved in VD3 induced apoptosis in PCa.  相似文献   

17.
We carried out a systems-level study of the mechanisms underlying organ-specific metastases of breast cancer. We followed a network-based approach using microarray expression data from human breast cancer metastases to select organ-specific proteins that exert a range of functions allowing cell survival and growth in the microenvironment of distant organs. MinerProt, a home-made software application, was used to group organ-specific signatures of brain (1191 genes), bone (1623 genes), liver (977 genes) and lung (254 genes) metastases by function and select the most differentially expressed gene in each function. As a result, we obtained 19 functional representative proteins in brain, 23 in bone, 15 in liver and 9 in lung, with which we constructed four organ-specific protein-protein interaction networks. The network taxonomy included seven proteins that interacted in brain metastasis, which were mainly associated with signal transduction. Proteins related to immune response functions were bone specific, while those involved in proteolysis, signal transduction and hepatic glucose metabolism were found in liver metastasis. No experimental protein-protein interaction was found in lung metastasis; thus, computationally determined interactions were included in this network. Moreover, three of these selected genes (CXCL12, DSC2 and TFDP2) were associated with progression to specific organs when tested in an independent dataset. In conclusion, we present a network-based approach to filter information by selecting key protein functions as metastatic markers or therapeutic targets.  相似文献   

18.
19.
Liu X  Niu T  Liu X  Hou W  Zhang J  Yao L 《Gene》2012,503(1):48-55
Previous studies have demonstrated that N-Myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor that is downregulated in many human cancers and when overexpressed, can inhibit tumor growth and metastasis. However, its molecular function, its modulatory targets, and signaling pathways associated with it remain unclear. Here, in an effort to identify the genes modulated by NDRG2 expression, a microarray study was conducted to detect the expression profile of HepG2 cells overexpressing NDRG2 or LacZ. Gene Ontology (GO) biological process analysis revealed that genes related to G protein signaling pathway were upregulated. Five of them were selected and verified by real-time PCR. Gene sets related to M phase of cell cycle were downregulated. This was in agreement with cell cycle analysis. Signaling pathway analysis demonstrated apparent augmented hematopoietic cell lineage pathway and cell adhesion, but reduced glycosylphosphatidylinositol (GPI)-anchor biosynthesis, protein degradation and SNARE interactions. Furthermore, through motif analysis and experimental validation, we found that the p38 phosphorylation can be increased by NDRG2. Our research provides the molecular basis for understanding the role of NDRG2 in tumor cells and raises interesting questions about its mechanisms and potential use in cancer therapy.  相似文献   

20.
Notch signalling is implicated in the pathogenesis of a variety of cancers, but its role in prostate cancer is poorly understood. However, selected Notch pathway members are overrepresented in high‐grade prostate cancers. We comprehensively profiled Notch pathway components in prostate cells and found prostate cancer‐specific up‐regulation of NOTCH3 and HES6. Their expression was particularly high in androgen responsive lines. Up‐ and down‐regulating Notch in these cells modulated expression of canonical Notch targets, HES1 and HEY1, which could also be induced by androgen. Surprisingly, androgen treatment also suppressed Notch receptor expression, suggesting that androgens can activate Notch target genes in a receptor‐independent manner. Using a Notch‐sensitive Recombination signal binding protein for immunoglobulin kappa J region (RBPJ) reporter assay, we found that basal levels of Notch signalling were significantly lower in prostate cancer cells compared to benign cells. Accordingly pharmacological Notch pathway blockade did not inhibit cancer cell growth or viability. In contrast to canonical Notch targets, HES6, a HES family member known to antagonize Notch signalling, was not regulated by Notch signalling, but relied instead on androgen levels, both in cultured cells and in human cancer tissues. When engineered into prostate cancer cells, reduced levels of HES6 resulted in reduced cancer cell invasion and clonogenic growth. By molecular profiling, we identified potential roles for HES6 in regulating hedgehog signalling, apoptosis and cell migration. Our results did not reveal any cell‐autonomous roles for canonical Notch signalling in prostate cancer. However, the results do implicate HES6 as a promoter of prostate cancer progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号