首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 666 毫秒
1.
Li CQ  Liu WC  Zhu P  Yang JL  Cheng KD 《Microbial ecology》2011,62(4):800-812
Several molecular techniques were employed to document the bacterial diversity associated with the marine sponge Gelliodes carnosa. Cultivation-dependent and cultivation-independent methods were used to obtain the 16S rRNA gene sequences of the bacteria. Phylogenetic analysis based on the 16S rRNA gene sequences showed that the bacterial community structure was highly diverse with representatives of the high G + C Gram-positive bacteria, cyanobacteria, low G + C Gram-positive bacteria, and proteobacteria (α-, β-, and γ-), most of which were also found in other marine environments, including in association with other sponges. Overall, 300 bacterial isolates were cultivated, and a total of 62 operational taxonomic units (OTUs) were identified from these isolates by restriction fragment length polymorphism (RFLP) analysis and DNA sequencing of the 16S rRNA genes. Approximately 1,000 16S rRNA gene clones were obtained by the cultivation-independent method. A total of 310 clones were randomly selected for RFLP analysis, from which 33 OTUs were acquired by further DNA sequencing and chimera checking. A total of 12 cultured OTUs (19.4% of the total cultured OTUs) and 13 uncultured OTUs (39.4% of the total uncultured OTUs) had low sequence identity (≤97%) with their closest matches in GenBank and were probably new species. Our data provide strong evidence for the presence of a diverse variety of unidentified bacteria in the marine sponge G. carnosa. A relatively high proportion of the isolates exhibited antimicrobial activity, and the deferred antagonism assay showed that over half of the active isolates exhibited a much stronger bioactivity when grown on medium containing seawater. In addition to demonstrating that the sponge-associated bacteria could be a rich source of new biologically active natural products, the results may have ecological implications. This study expands our knowledge of the diversity of sponge-associated bacteria and contributes to the growing database of the bacterial communities within sponges.  相似文献   

2.
In this study, for the first time the diversity of bacteria associated with the endemic freshwater sponge Lubomirskia baicalensis collected from the Sousern Basin of Lake Baikal was investigated employing cultivation-independent approaches. In total, 102 bacterial 16S rRNA clones were screened using restriction fragment length polymorphism (RFLP) and 30 were selected for sequencing. BLASTN and phylogenetic analysis based on near full length 16S rDNA sequences showed that 22 operational taxonomic units (OTUs) were clustered in six known phyla: Actinobacteria (8 OTUs), alpha-Proteobacteria (4 OTUs), beta-Proteobacteria (4 OTUs), Verrucomicrobia (4 OTUs), Nitrospiracea (1 OTU) and Bacteroidetes (1 OTU). Remarkably all phylotypes were affiliated to uncultured microorganisms, however, all alpha-Proteobacteria sequences were closely related to bacteria derived from the freshwater sponge Spongilla lacustris. Our results reveal a high diversity in the L. baicalensis bacterial community and provide an insight into microbial ecology and diversity within freshwater sponges inhabiting the ancient Lake Baikal ecosystem.  相似文献   

3.
The 16S rRNA gene-defined bacterial diversity of tropical intertidal geothermal vents subject to varying degrees of seawater inundation was investigated. Shannon–Weaver diversity estimates of clone library-derived sequences revealed that the hottest pools located above the mean high-water mark that did not experience seawater inundation were most diverse, followed by those that were permanently submerged below the mean low-water mark. Pools located in the intertidal were the least biodiverse, and this is attributed to the fluctuating conditions caused by periodic seawater inundation rather than physicochemical conditions per se. Phylogenetic analysis revealed that a ubiquitous Oscillatoria-like phylotype accounted for 83% of clones. Synechococcus-like phylotypes were also encountered at each location, whilst others belonging to the Chroococcales, Oscillatoriales, and other non-phototrophic bacteria occurred only at specific locations along the gradient. All cyanobacterial phylotypes displayed highest phylogenetic affinity to terrestrial thermophilic counterparts rather than marine taxa.  相似文献   

4.
Benthic nitrogen fixation has been estimated to contribute 15 Tg N year(-1) to the marine nitrogen budget. With benthic marine nitrogen fixation being largely overlooked in more recent surveys, a refocus on benthic diazotrophy was considered important. Variations in nitrogenase activity (acetylene reduction-gas chromatography) in a tropical lagoon in the western Indian Ocean (Zanzibar, Tanzania) were monitored over a 3-year period (2003-2005) and related to cyanobacterial and diazotrophic microbial diversity using a polyphasic approach. Different nitrogenase activity patterns were discerned, with the predominant pattern being high daytime activities combined with low nighttime activities. Analyses of the morphological and 16S rRNA gene diversity among cyanobacteria revealed filamentous nonheterocystous (Oscillatoriales) and unicellular (Chroococcales) representatives to be predominant. Analyses of the nifH gene diversity showed that the major phylotypes belonged to noncyanobacterial prokaryotes. However, as shown by cyanobacterial selective nifH-denaturing gradient gel electrophoresis analysis, cyanobacterial nifH gene sequences were present at all sites. Several nifH and 16S rRNA gene phylotypes were related to uncultured cyanobacteria or bacteria of geographically distant habitats, stressing the widespread occurrence of still poorly characterized microorganisms in tropical benthic marine communities.  相似文献   

5.
Marine sponges are host to numerically vast and phylogenetically diverse bacterial communities, with 26 major phyla to date having been found in close association with sponge species worldwide. Analyses of these microbial communities have revealed many sponge-specific novel genera and species. These endosymbiotic microbes are believed to play significant roles in sponge physiology including the production of an array of bioactive secondary metabolites. Here, we report on the use of culture-based and culture-independent (pyrosequencing) techniques to elucidate the bacterial community profiles associated with the marine sponges Raspailia ramosa and Stelligera stuposa sampled from a single geographical location in Irish waters and with ambient seawater. To date, little is known about the microbial ecology of sponges of these genera. Culture isolation grossly underestimated sponge-associated bacterial diversity. Four bacterial phyla (Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria) were represented amongst ~200 isolates, compared with ten phyla found using pyrosequencing. Long average read lengths of ~430 bp (V1-V3 region of 16S rRNA gene) allowed for robust resolution of sequences to genus level. Bacterial OTUs (2,109 total), at 95% sequence similarity, from ten bacterial phyla were recovered from R. ramosa, 349 OTUs were identified in S. stuposa representing eight phyla, while 533 OTUs from six phyla were found in surrounding seawater. Bacterial communities differed significantly between sponge species and the seawater. Analysis of the data for sponge-specific taxa revealed that 2.8% of classified reads from the sponge R. ramosa can be defined as sponge-specific, while 26% of S. stuposa sequences represent sponge-specific bacteria. Novel sponge-specific clusters were identified, whereas the majority of previously reported sponge-specific clusters (e.g. Poribacteria) were absent from these sponge species. This deep and robust analysis provides further evidence that the microbial communities associated with marine sponge species are highly diverse and divergent from one another and appear to be host-selected through as yet unknown processes.  相似文献   

6.
舟山群岛不同功能区划海域细菌群落结构分析   总被引:1,自引:1,他引:1  
浮游细菌在海洋生态系统中不可或缺,在海洋生物地球化学循环过程中起着关键性作用。【目的】为了解舟山群岛不同功能区划海域细菌群落结构及丰度变化,探索海洋生态因子对细菌群落结构的影响。【方法】于2016年夏季(8月)在舟山群岛不同功能区划海域共设置8个典型站位采集表层海水,基于细菌16S rRNA基因进行高通量测序;利用流式细胞术揭示各海域细菌丰度;利用典范对应分析(Canonical correspondence analysis,CCA)探讨海洋生态因子与细菌多样性之间的关系。【结果】共获取到305487条原始序列,基于97%相似性水平进行OTU(Operational Taxonomic Units)聚类分析,共得到1088个OTUs,包括29个门、62个纲、138个目、239个科、416个属。细菌群落组成在各个站位之间不尽相同,但都主要包括Flavobacteria、Alphaproteobacteria、Gammaproteobacteria三大优势菌纲。CCA结果表明细菌群落结构和多样性情况与站位分布和所在站位的环境因子息息相关,Cyanobacteria受硝酸盐影响显著,Parcubacteria受温度影响最大,而磷酸盐对本实验海域菌群影响甚微。对海洋菌群潜在功能进行预测的结果显示,各海域菌群在氨基酸代谢、碳水化合物代谢、膜运输等方面功能较为突出,为今后舟山海洋微生物研究提供了新的方向。【结论】高通量测序分析可以更精确地揭示海洋菌群的群落结构信息。该研究为细菌群落结构与环境因素的关联提供参考。本研究所取得的大量数据既可以作为对舟山市海洋功能区划施行情况的响应,又将为舟山及其邻近海域浮游细菌群落结构的进一步研究奠定基础。  相似文献   

7.
Morphologically similar microbial communities that often form on the walls of geographically distinct limestone caves have not yet been comparatively studied. Here, we analysed phylotype distribution in yellow microbial community samples obtained from the walls of distinct caves located in Spain, Czech Republic and Slovenia. To infer the level of similarity in microbial community membership, we analysed inserts of 474 16S rRNA gene clones and compared those using statistical tools. The results show that the microbial communities under investigation are composed solely of Bacteria. The obtained phylotypes formed three distinct groups of operational taxonomic units (OTUs). About 60% of obtained sequences formed three core OTUs common to all three sampling sites. These were affiliated with actinobacterial Pseudonocardinae (30-50% of sequences in individual sampling site libraries), but also with gammaproteobacterial Chromatiales (6-25%) and Xanthomonadales (0.5-2.0%). Another 7% of sequences were common to two sampling sites and formed eight OTUs, while the remaining 35% were site specific and corresponded mostly to OTUs containing single sequences. The same pattern was observed when these data were compared with sequence data available from similar studies. This comparison showed that distinct limestone caves support microbial communities composed mostly of phylotypes common to all sampling sites.  相似文献   

8.
This study examined the diversity of Bacteria, Archaea and in particular aerobic methanotrophs associated with a shallow (84 m) methane seep in the tropical Timor Sea, Australia. Seepage of thermogenic methane was associated with a large carbonate hardground covered in coarse carbonate-rich sediments and various benthic organisms such as solitary corals. The diversity of Bacteria and Archaea was studied by analysis of cloned 16S rRNA genes, while aerobic methanotrophic bacteria were quantified using real-time PCR targeting the α-subunit of particulate methane monooxygenase ( pmoA ) genes and diversity was studied by analysis of cloned pmoA genes. Phylogenetic analysis of bacterial and archaeal 16S rRNA genes revealed diverse and mostly novel phylotypes related to sequences previously recovered from marine sediments. A small number of bacterial 16S rRNA gene sequences were related to aerobic methanotrophs distantly related to the genera Methylococcus and Methylocaldum . Real-time PCR targeting pmoA genes showed that the highest numbers of methanotrophs were present in surface sediments associated with the seep area. Phylogenetic analysis of pmoA sequences revealed that all phylotypes were novel and fell into two large clusters comprised of only marine sequences distantly related to the genera Methylococcus and Methylocaldum that were clearly divergent from terrestrial phylotypes. This study provides evidence for the existence of a novel microbial diversity and diverse aerobic methanotrophs that appear to constitute marine specialized lineages.  相似文献   

9.
南海南部陆坡表层沉积物细菌和古菌多样性   总被引:13,自引:0,他引:13  
李涛  王鹏  汪品先 《微生物学报》2008,48(3):323-329
从南海南部陆坡表层沉积物中扩增了细菌和古菌16S rDNA序列,并对克隆子文库进行系统发育分析.细菌序列以变形杆菌(Proteobacteria)居多,其次是浮霉菌(Planctomycete)、酸杆菌(Acidobacteria)和candidate division OP10,另外还有少量铁还原杆菌(Deferrobacteres)、candidate division OP3、OP11、OP8、TM6、疣微菌(Verrucomicrobia)和螺旋体(Spirochaetes).古菌序列分别来自泉古生菌(Crenarchaeota)和广古生菌(Euryarchaeota),以Marine Benthic Group B(MBGB)、MarineCrenarchaeotic Group Ⅰ(MGⅠ)、Marine Benthic Group D(MBGD)和South African Gold Mine Euryarchaeotic Group(SAGMEG)为主.少量序列为C3、甲烷杆菌(Methanobacteriales)和Novel Euryarchaeotic Group(NEG).结果表明海底表层沉积物中有丰富多样的微生物群落.  相似文献   

10.
The observed onset of climate change at high northern latitudes has highlighted the need to establish current baseline conditions in the Arctic Ocean, and has raised concern about the potential for the invasion and growth of biota that have warm temperature optima, such as cyanobacteria. In this study, we used 16S rRNA gene sequences as a molecular marker to evaluate the hypothesis that Arctic rivers provide a major inoculum of cyanobacteria into the coastal Arctic Ocean. Surface samples were collected along a transect extending from the Mackenzie River (Northwest Territories, Canada), across its estuary, to 200 km offshore at the edge of the perennial Arctic pack ice (Beaufort Sea). The highest picocyanobacteria concentrations occurred in the river, with concentrations an order of magnitude lower at offshore marine stations. The 16S rRNA gene clone libraries of five surface samples and five strains along this gradient showed that the cyanobacterial sequences were divided into eight operational taxonomic units (OTUs), six OTUs closely related to freshwater and brackish Synechococcus and two OTUs of filamentous cyanobacteria. No typically marine Synechococcus sequences and no Prochlorococcus sequences were recovered. These results are consistent with the hypothesis of an allochthonous origin of picocyanobacteria in the coastal Arctic Ocean, and imply survival but little net growth of picocyanobacteria under the present conditions in northern high-latitude seas.  相似文献   

11.
We used high throughput pyrosequencing to characterize stomach and gut content microbiomes of Crassostrea virginica, the Easter oyster, obtained from two sites, one in Barataria Bay (Hackberry Bay) and the other in Terrebonne Bay (Lake Caillou), Louisiana, USA. Stomach microbiomes in oysters from Hackberry Bay were overwhelmingly dominated by Mollicutes most closely related to Mycoplasma; a more rich community dominated by Planctomyctes occurred in Lake Caillou oyster stomachs. Gut communities for oysters from both sites differed from stomach communities, and harbored a relatively diverse assemblage of phylotypes. Phylotypes most closely related to Shewanella and a Chloroflexi strain dominated the Lake Caillou and Hackberry Bay gut microbiota, respectively. While many members of the stomach and gut microbiomes appeared to be transients or opportunists, a putative core microbiome was identified based on phylotypes that occurred in all stomach or gut samples only. The putative core stomach microbiome comprised 5 OTUs in 3 phyla, while the putative core gut microbiome contained 44 OTUs in 12 phyla. These results collectively revealed novel microbial communities within the oyster digestive system, the functions of the oyster microbiome are largely unknown. A comparison of microbiomes from Louisiana oysters with bacterial communities reported for other marine invertebrates and fish indicated that molluscan microbiomes were more similar to each other than to microbiomes of polychaetes, decapods and fish.  相似文献   

12.
Benthic bacterial communities in the ocean comprise the vast majority of prokaryotes on Earth and play crucial roles in the biogeochemical cycles and remineralization of organic matter. Despite the importance of the benthic bacterial communities in the ecosystem, no previous investigations of the bacterial community of sediments from the Australian-Antarctic ridge (AAR) have been conducted to date. In this study, the composition of the bacterial community in the surface sediments from AAR was revealed by the 454 pyrosequencing method. Bacterial communities inhabiting the sediments of AAR were highly diverse, covering 39 distinct major lineages of bacteria. Among them, Gammaproteobacteria, Planctomycetes, Actinobacteria, Deltaproteobacteria, Acidobacteria, Alphaproteobacteria, Chloroflexi, Bacteroidetes, Chlorobi, and Gemmatimonadetes were dominant, accounting for 85–88 % of the bacterial community. The 16S rDNA sequences of major OTUs with 1 % or higher relative abundance showed high similarity (96.6–100 %) with uncultured environmental sequences that were primarily recovered from the sediments of various areas of the Arctic, Southern, Atlantic, Indian, and Pacific Oceans. As the first report of the bacterial community of marine sediments in the AAR region, the results presented herein suggest that members of the predominant phyla are well adapted to the environment of marine sediment and that the low variability in the bacterial communities of deep-sea sediments might reflect the similar environmental conditions among various regions of the deep sea.  相似文献   

13.
Eleven 16S rRNA gene clone libraries including 34 archaeal and 72 bacterial phylotypes were constructed from total 708 clones of hydrothermal vent prokaryotes trapped by 0.2- and 0.1-μm-pore-size filters. Crenarchaeota and Proteobacteria phylotypes dominated the archaeal and bacterial populations, respectively. Novel unaffiliated phylotypes occurred only in the 0.1-μm-trapped populations.  相似文献   

14.
Three broiler feeding trials were investigated in order to identify gut bacteria consistently linked with improvements in bird performance as measured by feed efficiency. Trials were done in various geographic locations and varied in diet composition, broiler breed, and bird age. Gut microbial communities were investigated using microbial profiling. Eight common performance-linked operational taxonomic units (OTUs) were identified within both the ilea (180, 492, and 564-566) and ceca (140-142, 218-220, 284-286, 312, and 482) across trials. OTU 564-566 was associated with lower performance, while OTUs 140-142, 482, and 492 were associated with improved performance. Targeted cloning and sequencing of these eight OTUs revealed that they represented 26 bacterial species or phylotypes which clustered phylogenetically into seven groups related to Lactobacillus spp., Ruminococcaceae, Clostridiales, Gammaproteobacteria, Bacteroidales, Clostridiales/Lachnospiraceae, and unclassified bacteria/clostridia. Where bacteria were identifiable to the phylum level, they belonged predominantly to the Firmicutes, with Bacteroidetes and Proteobacteria also identified. Some of the potential performance-related phylotypes showed high sequence identity with classified bacteria (Lactobacillus salivarius, Lactobacillus aviarius, Lactobacillus crispatus, Faecalibacterium prausnitzii, Escherichia coli, Gallibacterium anatis, Clostridium lactatifermentans, Ruminococcus torques, Bacteroides vulgatus, and Alistipes finegoldii). The 16S rRNA gene sequence information generated will allow quantitative assays to be developed which will enable elucidations of which of these phylotypes are truly performance related. This information could be used to monitor strategies to improve feed efficiency and feed formulation for optimal gut health.  相似文献   

15.
An ecological study on distribution of Antarctic bacterial communities was determined by 16S-based phylogenetic analyses of clone libraries derived from RNA and DNA extracted from two different marine areas and compared between each other. Superficial seawater samples were collected from four stations in Ross Sea, three of them located in Rod Bay and one in Evans Cove; for each station two clone libraries (16S rDNA and 16S rRNA) were prepared and evident divergences between DNA and RNA libraries of each site were obtained. Of all phylotypes 93.6% were found in RNA libraries; in contrast, only 31 phylotypes (70.5%) were retrieved from total microbial community (DNA libraries). DNA and RNA sequences related to gamma-Proteobacteria and Bacteroidetes groups, typical for Antarctic sea-ice bacterial communities, were detected in analysed sites. 16S rDNA and rRNA libraries derived from the two different areas were enriched by picophytoplanktonic 16S sequences of plastid and mitochondrion origins, reflecting that the algal blooms occurred during sampling (Antarctic summer 2003). The finding in Rod Bay libraries of high percentage of DNA clones apparently affiliated with beta-Proteobacteria typical for activated sludges and well water could be explained by the presence of a sewage depuration system at this site. Obtained results clearly demonstrate that combination of 16S rDNA and 16S rRNA gene sequencing is preferred approach to have a more reliable vision on the composition of microbial communities.  相似文献   

16.
Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are important for nitrogen cycling in marine ecosystems. Little is known about the diversity and abundance of these organisms on the surface of marine macroalgae, despite the algae's potential importance to create surfaces and local oxygen-rich environments supporting ammonia oxidation at depths with low dissolved oxygen levels. We determined the abundance and composition of the epiphytic bacterial and archaeal ammonia-oxidizing communities on three species of macroalgae, Osmundaria volubilis, Phyllophora crispa, and Laminaria rodriguezii, from the Balearic Islands (western Mediterranean Sea). Quantitative PCR of bacterial and archaeal 16S rRNA and amoA genes was performed. In contrast to what has been shown for most other marine environments, the macroalgae's surfaces were dominated by bacterial amoA genes rather than those from the archaeal counterpart. On the basis of the sequences retrieved from AOB and AOA amoA gene clone libraries from each algal species, the bacterial ammonia-oxidizing communities were related to Nitrosospira spp. and to Nitrosomonas europaea and only 6 out of 15 operational taxonomic units (OTUs) were specific for the host species. Conversely, the AOA diversity was higher (43 OTUs) and algal species specific, with 17 OTUs specific for L. rodriguezii, 3 for O. volubilis, and 9 for P. crispa. Altogether, the results suggest that marine macroalgae may exert an ecological niche for AOB in marine environments, potentially through specific microbe-host interactions.  相似文献   

17.
Sulfate- and sulfite-reducing prokaryotes (SSRP) communities play a key role in both sulfur and carbon cycles. In estuarine ecosystems, sulfate concentrations change with tides and could be limited in tidal freshwater reach or deep sediments. In a subtropical estuary of northern Taiwan in December 2007, we examined the compositional changes of SSRP communities. We examined three sites: from the lower estuarine brackish-water reach (site GR and mangrove vegetation site, GM) to the upper estuarine tidal freshwater reach (site HR), as well as from surface to a 50-cm depth. The partial sequence of sulfite reductase (dsrB) genes was used as a molecular marker of SSRP, linked to polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE) techniques. SSRP communities of the DGGE profiles varied with sites according to one-way analyses of similarities (Global R = 0.69, P = 0.001). Using cluster analysis, the DGGE profile was found to show site-specific clusters and a distinct depth zonation (five, six, and two SSRP communities at the GM, GR, and HR sites, respectively). SSRP composition was highly correlated to the combination of salinity, reduced sulfur, and total organic carbon contents (BIO-ENV analysis, r s  = 0.56). After analyzing a total of 35 dsrB sequences in the DGGE gel, six groups with 15 phylotypes were found, which were closely related to marine-freshwater gradient. Moreover, sequences neighboring sulfite-reducing prokaryotes were observed, in addition to those affiliated to sulfate-reducing prokaryotes. Four phylotypes harvested in HR resembled the genus Desulfitobacterium, a sulfite-reducing prokaryote, which failed to use sulfate as an electron acceptor and were active in freshwater and sulfate-limited habitat. The other five phylotypes in the HR reach belonged to the sulfate-reducing prokaryotes of the genera Desulfatiferula, Desulfosarcina, Desulfovibrio, and Desulfotomaculum, which appeared to tolerate low salinity and low sulfate supply. SSRP phylotypes at the mangrove-vegetated GM site (five phylotypes in two groups) were phylogenetically less diverse, when compared with those at the non-mangrove-vegetated GR site (three phylotypes in three groups) and the tidally influenced freshwater HR site (nine phylotypes in five groups). Phylotypes found at GR and GM were all affiliated to marine sulfate-reducing prokaryote strains of the genera Desulfofaba, Desulfobotulus, Desulfatiferula, Desulfosarcina, and Desulfotomaculum. Notably, a phylotype recorded in the surface sediment at GR resembled the genus Desulfobulbus, which was recorded from freshwater environment consisting of the freshwater input at GR during ebb tides.  相似文献   

18.
The aim of this study was to describe the microbial communities in the distal gut of wild wolves (Canis lupus). Fecal samples were collected from three healthy unrelated adult wolves captured at the nearby of Dalai Lake Nature Reserve in Inner Mongolia of China. The diversity of fecal bacteria was investigated by constructing PCR-amplified 16S rRNA gene clone libraries using the universal bacterial primers 27 F and 1493 R. A total of 307 non-chimeric near-full-length 16S rRNA gene sequences were analyzed and 65 non-redundant bacteria phylotypes (operational taxonomical units, OTUs) were identified. Seventeen OTUs (26%) showed less than 98% sequence similarity to 16S rRNA gene sequences were reported previously. Five different bacterial phyla were identified, with the majority of OTUs being classified within the phylum Firmicutes (60%), followed by Bacteroidetes (16.9%), Proteobacteria (9.2%), Fusobacteria (9.2%) and Actinobacteria (4.6%). The majority of clones fell within the order Clostridiales (53.8% of OTUs). It was predominantly affiliated with five families: Lachnospiraceae was the most diverse bacterial family in this order, followed by Ruminococcaceae, Clostridiaceae, Peptococcaceae and Peptostreptococcaceae.  相似文献   

19.
16S ribosomal DNA (rDNA) clone library analysis was conducted to assess prokaryotic diversity and community structural changes within a surficial sediment core obtained from an Antarctic continental shelf area (depth, 761 m) within the Mertz Glacier Polynya (MGP) region. Libraries were created from three separate horizons of the core (0- to 0.4-cm, 1.5- to 2.5-cm, and 20- to 21-cm depth positions). The results indicated that at the oxic sediment surface (depth, 0 to 0.4 cm) the microbial community appeared to be dominated by a small subset of potentially r-strategist (fast-growing, opportunistic) species, resulting in a lower-than-expected species richness of 442 operational taxonomic units (OTUs). At a depth of 1.5 to 2.5 cm, the species richness (1,128 OTUs) was much higher, with the community dominated by numerous gamma and delta proteobacterial phylotypes. At a depth of 20 to 21 cm, a clear decline in species richness (541 OTUs) occurred, accompanied by a larger number of more phylogenetically divergent phylotypes and a decline in the predominance of Proteobacteria. Based on rRNA and clonal abundance as well as sequence comparisons, syntrophic cycling of oxidized and reduced sulfur compounds appeared to be the dominant process in surficial MGP sediment, as phylotype groups putatively linked to these processes made up a large proportion of clones throughout the core. Between 18 and 65% of 16S rDNA phylotypes detected in a wide range of coastal and open ocean sediments possessed high levels of sequence similarity (>95%) with the MGP sediment phylotypes, indicating that many sediment prokaryote phylotype groups defined in this study are ubiquitous in marine sediment.  相似文献   

20.
We compared the function and composition of free-living and particle-associated microbial communities at an inshore site in coastal North Carolina and across a depth profile on the Blake Ridge (offshore). Hydrolysis rates of six different polysaccharide substrates were compared for particle-associated (>3 μm) and free-living (<3 to 0.2 μm) microbial communities. The 16S rRNA- and rDNA-based clone libraries were produced from the same filters used to measure hydrolysis rates. Particle-associated and free-living communities resembled one another; they also showed similar enzymatic hydrolysis rates and substrate preferences. All six polysaccharides were hydrolyzed inshore. Offshore, only a subset was hydrolyzed in surface water and at depths of 146 and 505 m; just three polysaccharides were hydrolyzed at 505 m. The spectrum of bacterial taxa changed more subtly between inshore and offshore surface waters, but changed greatly with depth offshore. None of the OTUs occurred at all sites: 27 out of the 28 major OTUs defined in this study were found either exclusively in a surface or in a mid-depth/bottom water sample. This distinction was evident with both 16S rRNA and rDNA analyses. At the offshore site, despite the low community overlap, bacterial communities maintained a degree of functional redundancy on the whole bacterial community level with respect to hydrolysis of high-molecular-weight substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号