首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The sequence of events occurring during the germination and outgrowth of appendage-bearing spores of Clostridium bifermentans was studied by phase-contrast and electron microscopy. The mature spore was characterized ultrastructurally as having the normal spore components as well as long tubular appendages which orginated from the surface of the spore coat. Spores were incompletely enclosed by a distinctly laminated exosporium which possessed hairlike projections on its outermost layer. During germination, structural changes were observed in the core, core wall, cortex, and spore coat layers. Cortical material was extruded from the spore during outgrowth, which usually occurred from the pole opposite the appendages. The subunits comprising the structure of the appendages and the morphology of the mature appendages were observed. No discernible changes could be observed in the spore appendages during germination and outgrowth.  相似文献   

2.
Clostridium Spores with Ribbon-like Appendages   总被引:11,自引:9,他引:2       下载免费PDF全文
Spores of Clostridium sp. N1 are characterized by numerous broad ribbon-like appendages attached to one end. The appendages are two to three times the length of the spore and, at their maximal dimension, may be two-thirds the width of the spore. They are attached to the spore body by a common trunk which is continuous with the outer spore coat. Each appendage is a multilayered structure and is enclosed in an amorphous material. Details of spore and appendage formation are described, and appendage ultrastructural features are presented. The function of the appendages is not known.  相似文献   

3.
FORMATION AND STRUCTURE OF THE SPORE OF BACILLUS COAGULANS   总被引:19,自引:2,他引:17       下载免费PDF全文
Spore formation in Bacillus coagulans has been studied by electron microscopy using an epoxy resin (Araldite) embedding technique. The developmental stages from the origin of the initial spore septum to the mature spore were investigated. The two forespore membranes developed from the double layer of cytoplasmic membrane. The cortex was progressively deposited between these two membranes. The inner membrane finally became the spore protoplasmic membrane, and the outer membrane part of the inner spore coat or the outer spore coat itself. In the mature spore the completed integuments around the spore protoplasm consisted of the cortex, a laminated inner coat, and a dense outer coat. No exosporium was observed. The method of formation of the cortex and the spore coats is discussed.  相似文献   

4.
Fine Structure of Bacillus megaterium during Microcycle Sporogenesis   总被引:10,自引:7,他引:3       下载免费PDF全文
Ultrathin sections were prepared from cultures of Bacillus megaterium QM B1551 undergoing microcycle sporogenesis (initial spore to primary cell to second-stage spore without intervening cell division) on a chemically defined medium. The cytoplasmic core of the dormant spore was surrounded by plasma membrane, cell-wall primordium, cortex, outer cortical layer, and spore coats. Early in the cycle, the coat opened at the germinal groove, the cortex swelled, ribosomes and a chromatinic area associated with large mesosomes (which may later be incorporated into the expanding plasma membrane) appeared in the core, and the cell wall became defined at the site of the cell wall primordium. Poly-β-hydroxybutyrate granules began to appear in the primary cell at about 3 hr. By 7 hr, the forespore of the second-stage spore was delineated by typical double membranes. Between 7 and 12 hr, second-stage cell-wall primordium and cortex developed between the separating forespore membranes. The inner membrane became the plasma membrane of the second-stage spore, and the outer membrane eventually disintegrated within the second-stage spore cortex. A densely staining double layer (spore-coat primordium) developed external to the outer forespore membrane. The inner spore coat and the outer cortical layer of the second-stage spore developed from this primordium. The outer part of the spore coat, probably of sporangial origin, was laid down on the external surface of the inner spore coat. By 12 hr, second-stage spores were almost mature. By 20 hr, the mature endospores, with a thickened outer coat, were often still enclosed by degenerate primary cell wall and by the outer cortical layer and spore coat of the initial spore.  相似文献   

5.
Three conditional Bacillus cereus mutants altered in the assembly or formation of spore coat layers were analyzed. They all grew as well as the wild type in an enriched or minimal medium but produced lysozyme and octanol-sensitive spores at the nonpermissive temperature (35 to 38 degrees C). The spores also germinated slowly when produced at 35 degrees C. Temperature-shift experiments indicated that the defective protein or regulatory signal is expressed at the time of formation of the outer spore coat layers. Revertants regained all wild-type spore properties at frequencies consistent with initial point mutations. Spore coat defects were evident in thin sections and freeze-etch micrographs of mutant spores produced at 35 degrees C. In addition, one mutant contained an extra surface deposit, perhaps unprocessed spore coat precursor protein. A prevalent band of about 65,000 daltons (the same size as the presumptive precursor) was present in spore coat extracts of this mutant and may be incorrectly processed to mature spore coat polypeptides. Another class of mutants was defective in the late uptake of half-cystine residues into spore coats. Such a defect could lead to improper formation of the outer spore coat layers.  相似文献   

6.
An ultrastructural study was made of the spore envelope during development in the microsporidan, Thelohania bracteata. The frozen-etched outer (convex) face of the relatively thin spore coat in the earliest immature stage of development has a granular structure in regular array. The inner (concave) face bears particles as well as depressions arranged in a net-like pattern. The mature spore coat has a substructure of numerous microfibers, ~8 nm in diameter, arranged in a matrix and forming thin layers which run parallel to the spore surface. The mature spore coat possesses both outer and inner limiting layers. The outer (convex) face of the outer limiting layer is granular. The convex face of inner limiting layer bears many particles as well as many long, narrow depressions. The concave face of the inner limiting layer carries many stud-like projections, ~40 nm long and 30 nm high, which are complementary to the depressions observed on the convex face. In addition, the concave face has subunits ~15 nm in diameter, apparently arranged in a hexagonal pattern with a center to center distance of ~18 nm. The change in size of these projections, depressions, and subunits presumably is related to spore maturation.  相似文献   

7.
The Bacillus subtilis spore coat is a multilayer, proteinaceous structure that consists of more than 50 proteins. Located on the surface of the spore, the coat provides resistance to potentially toxic molecules as well as to predation by the protozoan Tetrahymena thermophila. When coat-defective spores are fed to Tetrahymena, the spores are readily digested. However, a residue termed a "rind" that looks like coat material remains. As observed with a phase-contrast microscope, the rinds are spherical or hemispherical structures that appear to be devoid of internal contents. Atomic force microscopy and chemical analyses showed that (i) the rinds are composed of insoluble protein largely derived from both outer and inner spore coat layers, (ii) the amorphous layer of the outer coat is largely responsible for providing spore resistance to protozoal digestion, and (iii) the rinds and intact spores do not contain significant levels of silicon.  相似文献   

8.
Myxococcus xanthus is a Gram-negative deltaproteobacterium that has evolved the ability to differentiate into metabolically quiescent spores that are resistant to heat and desiccation. An essential feature of the differentiation processes is the assembly of a rigid, cell wall-like spore coat on the surface of the outer membrane. In this study, we characterize the spore coat composition and describe the machinery necessary for secretion of spore coat material and its subsequent assembly into a stress-bearing matrix. Chemical analyses of isolated spore coat material indicate that the spore coat consists primarily of short 1–4- and 1–3-linked GalNAc polymers that lack significant glycosidic branching and may be connected by glycine peptides. We show that 1–4-linked glucose (Glc) is likely a minor component of the spore coat with the majority of the Glc arising from contamination with extracellular polysaccharides, O-antigen, or storage compounds. Neither of these structures is required for the formation of resistant spores. Our analyses indicate the GalNAc/Glc polymer and glycine are exported by the ExoA-I system, a Wzy-like polysaccharide synthesis and export machinery. Arrangement of the capsular-like polysaccharides into a rigid spore coat requires the NfsA–H proteins, members of which reside in either the cytoplasmic membrane (NfsD, -E, and -G) or outer membrane (NfsA, -B, and -C). The Nfs proteins function together to modulate the chain length of the surface polysaccharides, which is apparently necessary for their assembly into a stress-bearing matrix.  相似文献   

9.
Exosporium and Spore Coat Formation in Bacillus cereus T   总被引:8,自引:3,他引:5       下载免费PDF全文
The exosporium of Bacillus cereus T was first observed as a small lamella in the cytoplasm in proximity to the outer forespore membrane (OFSM) near the middle of the sporangium. Serial sections, various staining methods, and enzyme treatments failed to show any connections between the small lamella and the OFSM. The advancing edge of the exosporium moved toward the polar end of the cell until the spore was completely enveloped. The middle coat was formed between the exosporium and the OFSM from a three-layered single plate or "belt," consisting of two electron-dense layers separated by an electron-transparent layer. This "belt," usually first observed toward the center of the sporangium, developed without changing thickness or appearance over the surface of the forespore. Between the middle coat and the OFSM, a layer of cytoplasm about 50-nm thick was enclosed by the developing coat; this became the inner coat. Electron-dense material was deposited on the outer surface of the middle coat to form the outer coat.  相似文献   

10.
In Bacillus subtilis the protective layers that surround the mature spore are formed by over seventy different proteins. Some of those proteins have a regulatory role on the assembly of other coat proteins and are referred to as morphogenetic factors. CotE is a major morphogenetic factor, known to form a ring around the forming spore and organize the deposition of the outer surface layers. CotH is a CotE-dependent protein known to control the assembly of at least nine other coat proteins. We report that CotH also controls the assembly of CotE and that this mutual dependency is due to a direct interaction between the two proteins. The C-terminal end of CotE is essential for this direct interaction and CotH cannot bind to mutant CotE deleted of six or nine C-terminal amino acids. However, addition of a negatively charged amino acid to those deleted versions of CotE rescues the interaction.  相似文献   

11.
Myxococcus xanthus is a Gram-negative bacterium that differentiates into environmentally resistant spores. Spore differentiation involves septation-independent remodelling of the rod-shaped vegetative cell into a spherical spore and deposition of a thick and compact spore coat outside of the outer membrane. Our analyses suggest that spore coat polysaccharides are exported to the cell surface by the Exo outer membrane polysaccharide export/polysaccharide co-polymerase 2a (OPX/PCP-2a) machinery. Conversion of the capsule-like polysaccharide layer into a compact spore coat layer requires the Nfs proteins which likely form a complex in the cell envelope. Mutants in either nfs, exo or two other genetic loci encoding homologues of polysaccharide synthesis enzymes fail to complete morphogenesis from rods to spherical spores and instead produce a transient state of deformed cell morphology before reversion into typical rods. We additionally provide evidence that the cell cytoskeletal protein, MreB, plays an important role in rod to spore morphogenesis and for spore outgrowth. These studies provide evidence that this novel Gram-negative differentiation process is tied to cytoskeleton functions and polysaccharide spore coat deposition.  相似文献   

12.
13.
《Experimental mycology》1989,13(2):169-182
Macromolecular components of the spore coat ofDictyostelium discoideum have been localized by gold-labeled affinity cytochemistry. The outer electron-dense layer is the residence of three prominent glycoproteins that express a fucose-dependent epitope, whereas the inner electron-dense layer includes SP85 and the galactose/N-acetylgalactosamine-containing polysaccharide (GPS). The cellulosic layers are interposed between them. The outer-layer glycoproteins and the GPS also can be found in the interspore fluid, which is usually lost during collection of the spores. Assembly of the spore coat, examined over time, showed that all components, except for the cellulose, are found in an internal secretory vesicle population. All components are found in each vesicle but are not uniformly intermixed within them. Cellulose does not appear until after the outer electron-dense layer of the spore coat has been organized following secretion. The GPS is excluded from the outer dense layer and largely from the cellulosic layer, being more concentrated in the inner layer. SP85 remains localized in the inner dense layer near the cell surface with a circumferentially focal distribution. The distinct distributions of these macromolecular species in the mature spore coat are foreshadowed by their mosaic distribution in the prespore vesicles from which they originate.  相似文献   

14.
THE PARASPORAL BODY OF BACILLUS LATEROSPORUS LAUBACH   总被引:7,自引:5,他引:2       下载免费PDF全文
On sporulation the slender vegetative rods swell and form larger spindle-shaped cells in which the spores are formed. When the spores mature they lie in a lateral position cradled in canoe-shaped parasporal bodies which are highly basophilic and can be differentiated from the surrounding vegetative cell cytoplasm with dilute basic dyes. On completion of sporulation the vegetative cell protoplasm and the cell wall lyse, leaving the spore cradled in its parasporal body. This attachment continues indefinitely on the usual culture medium and even persists after the spores have germinated. In thin sections of sporing cells the bodies are differentiated from the cell protoplasm by differences in structure. Whereas the protoplasm has a granular appearance, in both longitudinal and cross-sections the parasporal body comprises electron-dense lamellae running parallel with the membranes of the spore coat and less electron-dense material in the interstices of the lamellae. The inner surface of the body is contiguous with that of the spore coat as if it were part of the spore, rather than a separate body attached to the spore. The staining reactions of the parasporal body are not consistent with those of any substance described in bacteria. With Giemsa the bodies stain like chromatin, but the Feulgen reaction indicates that they do not contain the requisite nucleic acid. With an aqueous solution of toluidine blue they stain metachromatically, but with an acidified solution the results are variable. Neisser's stain for polyphosphate is negative. The basophilic substance is removed from the body with some organic solvents. This basophilic substance has not been specifically identified with any material seen in ultrathin sections, but it is suggested that it might be the less electron-dense material in the interstices of the lamellar structure. In contrast to the spore coat of B. laterosporus, those of its two relatives B. brevis and B. circulans take up basic stain like the parasporal body. Thin spore sections of these species have shown that the walls are thicker than those surrounding the spores of B. laterosporus, and it is suggested that the outer stainable layer of brevis and circulans spores is an accessory coat which in laterosporus may have been deformed to give a parasporal body.  相似文献   

15.
采用透射电镜和细胞化学技术对红盖鳞毛蕨(Dryopteris erythrosora(Eaton)O.Ktze.)的孢子发育过程进行了研究,根据超微结构和细胞化学特征可将其孢子发育过程分为3个阶段:(1)孢子母细胞及其减数分裂阶段:孢子母细胞壳在孢原细胞末期开始形成,位于孢子母细胞及其减数分裂形成的四分体外侧,PAS反应显示其为多糖性质,与胼胝质壁为同功结构;在减数分裂形成的四分孢子之间产生孢子外壳,从功能、形成位置和时间上看与胼胝质壁相似,但苏丹黑B反应显示其可能含有脂类物质,与孢子母细胞壳和胼胝质壁不同。(2)孢子外壁形成阶段:外壁为乌毛蕨型(Blechnoidal-type),由薄的多糖性质的外壁内层和表面平滑的孢粉素外壁外层构成;小球参与外壁外层的形成,组织化学分析显示小球的中央区域和外壁外层内侧部分由红色(多糖)变为黄色,小球的表面区域和外壁外层部分始终被染成黑色(脂类),可知小球与外壁同步发育。(3)孢子周壁形成阶段:周壁为凹陷型(Cavate-type),包括2层,内层薄,紧贴外壁,外层隆起形成孢子脊状褶皱纹饰的轮廓,以少见的向心方向发育;苏丹黑B和PAS反应观察周壁被染成橙色,推测其可能由多糖等成分构成;孢子囊壁细胞参与周壁的形成。本研究为揭示蕨类植物孢子发生的细胞学机制提供了新资料。  相似文献   

16.
Spores of the thermophilic, acidophilic, Bacillus acidocaldarius were covered by a thick outer coat and a laminated inner coat (5.5 nm periodicity). Small membranous vesicles were present in the spore core and they disappeared as germination proceeded. After depolymerization of the cortex, and a 30% increase in spore diameter a localized gap appeared in the laminated inner coat only. This inner coat gap was narrow and could be the whole length of the spore. The germ cell appeared to grow, or to be pushed towards the inner coat gap, at which stage the outer coat disappeared in the same localized area. As the vegetative cell grew out the spore coat fell away, with loose cortical material still attached to it. The young germ cell developed a large spherical electron dense inclusion body in the cytoplasm, at the same time as the ribosomal and nuclear areas became distinct.  相似文献   

17.
18.
Spores of the thermophilic, acidophilic, Bacillus acidocaldarius were covered by a thick outer coat and a laminated inner coat (5.5 nm periodicity). Small membranous vesicles were present in the spore core and they disappeared as germination proceeded. After depolymerization of the cortex, and a 30% increase in spore diameter, a localized gap appeared in the laminated inner coat only. This inner coat gap was narrow and could be the whole length of the spore. The germ cell appeared to grow, or to be pushed towards the inner coat gap, at which stage the outer coat disappeared in the same localized area. As the vegetative cell grew out the spore coat fell away, with loose cortical material still attached to it. The young germ cell developed a large spherical electron dense inclusion body in the cytoplasm, at the same time as the ribosomal and nuclear areas became distinct.  相似文献   

19.
Assembly of the Bacillus subtilis spore coat involves over 80 proteins which self-organize into a basal layer, a lamellar inner coat, a striated electrodense outer coat and a more external crust. CotB is an abundant component of the outer coat. The C-terminal moiety of CotB, SKRB, formed by serine-rich repeats, is polyphosphorylated by the Ser/Thr kinase CotH. We show that another coat protein, CotG, with a central serine-repeat region, SKRG, interacts with the C-terminal moiety of CotB and promotes its phosphorylation by CotH in vivo and in a heterologous system. CotG itself is phosphorylated by CotH but phosphorylation is enhanced in the absence of CotB. Spores of a strain producing an inactive form of CotH, like those formed by a cotG deletion mutant, lack the pattern of electrondense outer coat striations, but retain the crust. In contrast, deletion of the SKRB region, has no major impact on outer coat structure. Thus, phosphorylation of CotG by CotH is a key factor establishing the structure of the outer coat. The presence of the cotB/cotH/cotG cluster in several species closely related to B. subtilis hints at the importance of this protein phosphorylation module in the morphogenesis of the spore surface layers.  相似文献   

20.
Spore ornamentation of Haplosporidium nelsoni and Haplosporidium costale was determined by scanning electron microscopy. For H. nelsoni, the spore surface was covered with individual ribbons that were tightly bound together and occurred as a single sheet. In some spores, this layer was overlaid with a network of branching fibers, about 0.05 microm in diameter, which often was dislodged from the spore at the aboral pole. For H. costale, ornamentation consisted of a sparse network of branching fibers on the spore surface. Molecular phylogenetic analysis of the phylum Haplosporidia revealed that Urosporidium, Bonamia, and Minchinia were monophyletic but that Haplosporidium was paraphyletic. All species of Minchinia have ornamentation composed of epispore cytoplasm, supporting the monophyly of this genus. The presence of spores with a hinged operculum and spore wall-derived ornamentation in Bonamia perspora confounds the distinction between Bonamia and Haplosporidium. Species with ornamentation composed of outer spore wall material and attached to the spore wall do not form a monophyletic group in the molecular phylogenetic analysis. These results suggest that the widely accepted practice of assigning all species with spore wall-derived ornamentation to Haplospordium cannot be supported and that additional genera are needed in which to place some species presently assigned to Haplosporidium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号