首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5'-Nucleotidase activity was elevated in patients with liver cirrhosis; greater values of 5'-Nucleotidase activity were found in biliary cirrhosis, 5'-Nucleotidase from liver cirrhotic sera was less stable than from normal sera. The velocity of 5'Nucleotidase from liver cirrhotic sera per minute, at t = 10, was greater than normal controls. The optimum (S) for 5'-Nucleotidase was found to be 1.0 mM A-5'-MP, for both normal and liver cirrhotic sera. Km (A-5'-MP) and (2'-d-A-5'-MP) of 5'-Nucleotidase was found to be significantly lower in patients with liver cirrhosis than normal controls.  相似文献   

2.
The activities of 5'-nucleotidase (5'-ribonucleoside phosphohydrolase, EC 3.1.3.5); adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4); AMP deaminase (AMP aminohydrolase, EC 3.5.3.6), and ATP-(Mg2+)-ase (ATP phosphohydrolase, EC 3.6.1.3) were assayed in mitochondria of normal and regenerating rat liver 5'-Nucleotidase (5'Nase) and ATP-(Mg2+)-ase activities were compared with similar enzyme activities in the plasma membrane (PM) fraction, obtained from the same biological material. In the regenerating liver, 5'Nase for dTMP diminished its activity by 56% (24 h after partial hepatectomy) and 35 +/- 4% for all substrates in the PM fraction (48 h after operation). In mitochondria, 5'Nase for dTMP manifests sigmoidal substrate activity curve (in contrast with all substrates in the PM fraction and remaining substrates in mitochondria). In vivo 5-azacytidine (a) administered 1 h after partial hepatectomy, prevented changes of 5'Nase activity: (b) administered 24 or 48 h after partial hepatectomy, stabilized low 5'Nase activity (in mitochondria for dTMP, in the PM fraction for all substrates) and decreased ATP-(Mg2+)-ase activity by 51 and 31% in mitochondria and the PM fraction respectively.  相似文献   

3.
Increased 2-3 Diphosphoglycerate levels in cirrhotic patients have been reported. Previous studies did not show significant changes in 2-3 DPG in anaemic cirrhotic patients when compared to non anaemic cirrhotic patients, but the role played by alkalosis and/or hypoxia has not been investigated. To study this question, haematic 2-3 DPG was measured in 8 male patients with liver cirrhosis (histologically diagnosed) together with PO2, PCO2, pH and Hct. 2-3 DPG was also measured in 6 healthy male volunteers. We found a significant increase in blood 2-3 DPG of cirrhotic patients compared to control subjects (5,55 +/- 0,4 vs 2,18 +/- 0,3 mmol/l erythrocytes respectively, p less than 0,001) in agreement with previous studies. PO2 levels and Hct value did not show important changes, whereas PCO2 and pH resulted to be very altered when compared to normal values, even though we could not correlate these values with blood 2-3 DPG. We conclude that the genesis of 2-3 DPG increase is multifactorial, however an alteration in acid-base equilibrium seems to play a more important role than hypoxia.  相似文献   

4.
Human placental adenosine kinase. Kinetic mechanism and inhibition   总被引:4,自引:0,他引:4  
The kinetic properties of human placental adenosine kinase, purified 3600-fold, were studied. The reaction velocity had an absolute requirement for magnesium and varied with the pH. Maximal activity was observed at pH 6.5 with a Mg2+:ATP ranging from 1:1 to 2:1. High concentrations of Mg2+ or free ATP were inhibitory. Double reciprocal plots of initial velocity studies yielded intersecting lines for both adenosine and MgATP2-. The Michaelis constant was 0.4 micro M for adenosine and 75 micro M for MgATP2-. Inhibition by adenosine was observed at concentrations greater than 2.5 micro M. AMP was a competitive inhibitor with respect to adenosine and a noncompetitive inhibitor with respect to ATP. ADP was a noncompetitive inhibitor with respect to adenosine and ATP. Hyperbolic inhibition was observed during noncompetitive inhibition of adenosine kinase by AMP and ADP. Other purine and pyrimidine nucleoside mono-, di-, and triphosphates were poor inhibitors in general. S-Adenosylhomocysteine and 2'-deoxyadenosine inhibited adenosine kinase. The data suggest that (a) MgATP2- is the true substrate of adenosine kinase, and both pH and [Mg2+] may regulate its activity; (b) the kinetic mechanisms of adenosine kinase is Ordered Bi Bi; and (c) adenosine kinase may be regulated by the concentrations of its products, AMP and ADP, but is relatively insensitive to other purine and pyrimidine nucleotides.  相似文献   

5.
The serum concentration of circulating somatomedins was measured in the blood of healthy donors and subjects with hepatic cirrhosis, and in culture media from in vitro explants of healthy and cirrhotic human liver. Serum levels of somatomedin bioactivity were significantly lower in cirrhotic subjects (0.42 +/- 0.03 U/ml; M +/- SEM) compared with age matched controls (0.99 +/- 0.03 U/ml). Radioreceptor assay of somatomedin concentrations confirmed this reduction in cirrhotic patients (0.89 +/- 0.06 U/ml) compared with controls (1.32 +/- 0.05 U/ml). A parallel reduction in somatomedin circulating binding ability was also observed (99.43 +/- 7.28% in cirrhotic and 123.5% +/- 10.8% in normal subjects). In vitro explants from normal human liver tissue produced a significant increase (0.57 +/- 0.09 U/ml) in somatomedin bioactivity contained in the medium (0.29 +/- 0.06 U/ml), while a decreased bioactivity (0.12 +/- 0.06 U/ml) was observed with explants of cirrhotic livers. These results support a role of liver in the biosynthesis of both somatomedin and somatomedin binding protein.  相似文献   

6.
5'-Nucleotidase I (N-I) from rabbit heart was purified to homogeneity. After ammonium sulfate precipitation, the purification involved chromatography on phosphocellulose, DEAE-Sepharose, AMP-agarose, and ADP-agarose. The pure enzyme has a specific activity of 318 mumol (mg of protein)-1 min-1. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate yields a subunit molecular weight of 40,000. N-I is activated by ADP but not by ATP, in contrast to the 5'-nucleotidase (N-II) purified by Itoh et al. (1986), which is activated by ATP and, less well, by ADP. N-I displays sigmoidal saturation kinetics in the absence of ADP and hyperbolic kinetics in the presence of ADP. Partially purified N-I was previously shown to prefer AMP over IMP as substrate (Truong et al., 1988); this has been confirmed for pure N-I. Comparison of AMP and ADP concentrations reported to occur in heart with the kinetic behavior of N-I implicates N-I as the enzyme responsible for producing adenosine under conditions leading to a rise in ADP and AMP, such as hypoxia or increased workload. N-I is not activated by the ADP analogue adenosine 5'-methylenediphosphonate (AOPCP) and is only weakly inhibited by relatively high concentrations of AOPCP, in contrast to 5'-nucleotidase from plasma membrane, which is powerfully inhibited by this analogue. N-I shows an absolute dependence on Mg2+ ions. Mn2+ and Co2+ ions can replace Mg2+ ions as activator; Ni2+ and Fe2+ are much less effective, while Ca2+, Ba2+, Zn2+, and Cu2+ fail to activate the enzyme.  相似文献   

7.
Patients with cirrhosis of the liver often have insulin resistance and elevated circulating growth hormone levels. This study was undertaken (a) to evaluate glucose intolerance, insulin resistance and abnormal growth hormone secretion and (b) to determine if GH suppression improves insulin resistance. Glucose tolerance tests (GTT), intravenous insulin tolerance tests (IVITT), arginine stimulation tests (AST) and glucose clamp studies before and during GH suppression with somatostatin were performed in a group of patients with alcohol-induced liver cirrhosis. During GTT cirrhotic subjects had a 2-hour plasma glucose of 200 +/- 9.8 ng/dl (N = 14) compared to 128 +/- 8.0 ng/dl in normal controls (N = 15), P less than 0.001. Basal GH was elevated in cirrhotic patients and in response to arginine stimulation reached a peak of 17.0 +/- 5.4 ng/ml (N = 7), compared to a peak of 11.3 +/- 1.8 ng/ml in 5 normal controls (P = NS). During IVITT patients with cirrhosis had a glucose nadir of 60.0 +/- 4.0 mg/dl (N = 9), compared to 29.0 +/- 7.0 mg/dl in controls (N = 5), P less than 0.001. Peak GH levels during IVITT were not significantly different in cirrhotics and controls. Glucose utilization rates in 4 patients with cirrhosis of the liver before somatostatin mediated GH suppression was 3.1 +/- 0.5 mg/kg/min and 6.5 +/- 1.5 mg/kg/min during somatostatin infusion, P less than 0.025. We conclude that patients with alcohol induced cirrhosis have sustained GH elevations resulting in insulin resistance which improves after GH suppression.  相似文献   

8.
1. The adenosine deaminase has an approximate molecular weight of 130,000-140,000 and the composition of two polypeptide units (mol. wt about 68,000) is suggested, by means of SDS disc electrophoresis. 2. Both the alpha (Vm/Km) and beta (Vm) parameters were varied with pH and temperature. RSS (relative substrate specificity) adenosine and deoxyadenosine values for alpha and beta were 1.2 and 1.1, respectively. 3. Adenine, 2'-, 3', 5'-AMP, 5'-deoxyAMP, ADP and ATP were not deaminated by the enzyme. 4. Inhibition by Mg2+ was found in reaction with adenosine at pH 8 but not with deoxyadenosine at the same pH. Mn2+, which did not affect the reaction rate at pH 4 and 5, showed competitive inhibitory effects at pH 6, 7 and 8.  相似文献   

9.
ATP and adenosine are important extracellular regulators of glomerular functions. In this study, ATP release from glomeruli suspension and its extracellular metabolism were investigated. Basal extraglomerular ATP concentration (1nM) increased several fold during inhibition of ecto-ATPase activity, reflecting the basal ATP release rate. Mechanical perturbation increased the amounts of ATP released from glomeruli. ATP added to glomeruli was almost completely degraded within 20 minutes. In that time, AMP was the main product of extracellular ATP metabolism. Significant accumulation of AMP was observed after 5 min (194 +/-16 microM) and 20 min (271 +/-11 microM), whereas at the same time concentration of adenosine was only 10 muM. A competitive inhibitor of ecto-5-nucleotidase alpha-beta-methylene-ADP (AOPCP), decreased extraglomerular ATP and adenosine concentration by 80% and 50%, respectively. Similarly, AMP (100 microM) also markedly reduced extraglomerular ATP accumulation, whereas IMP, its deamination product, was not effective. P1, P5-diadenosine pentaphosphate (Ap5A) - an inhibitor of ecto-adenylate kinase prevented significantly the disappearance of ATP from extraglomerular media caused by AMP. These findings demonstrate that the decrease in extracellular ATP concentration observed after addition of AOPCP or AMP is caused by the presence of ecto-adenylate kinase activity in the glomeruli. The enzyme catalyses reversible reaction 2ADP<->ATP+AMP, and a rise in the AMP concentration can lead to fall in ATP level. The present study provides evidence the extraglomerular accumulation of ATP reflects both release of ATP from glomeruli cells and its metabolism by ecto-enzymes. Our data suggest that AMP, produced from ATP in the Bowman's capsular space, might plays a dual role as a substrate for ecto-adenylate kinase and ecto-nucleotidase reactions being responsible for the regulation of intracapsular ATP and adenosine concentration. We conclude that AMP degrading and converting ecto-enzymes effectively determine the balance between ATP and adenosine concentration and thus the activation of P2 and/or adenosine receptors.  相似文献   

10.
The kinetic properties of type-II ATP diphosphohydrolase are described in this work. The enzyme preparation from the inner layer of the bovine aorta, mostly composed of smooth muscle cells, shows an optimum at pH 7.5. It catalyzes the hydrolysis of tri- and diphosphonucleosides and it requires either Ca2+ or Mg2+ for activity. It is insensitive to ouabain (3 mM), an inhibitor of Na+/K(+)-ATPase, to tetramisole (5 mM), an inhibitor of alkaline phosphatase, and to Ap5A (100 microM), an inhibitor of adenylate kinase. In contrast, sodium azide (10 mM), a known inhibitor for ATPDases and mitochondrial ATPase, is an effective inhibitor. Mercuric chloride (10 microM) and 5'-p-fluorosulfonylbenzoyl adenosine are also powerful inhibitors, both with ATP and ADP as substrates. The inhibition patterns are similar for ATP and DP, thereby, supporting the concept of a common catalytic site for these substrates. Apparent Km and Vmax, obtained with ATP as the substrate, were evaluated at 23 +/- 3 microM and 1.09 mumol Pi/min per mg protein, respectively. The kinetic properties of this enzyme and its localization as an ectoenzyme on bovine aorta smooth muscle cells suggest that it may play a major role in regulating the relative concentrations of extracellular nucleotides in blood vessels.  相似文献   

11.
Mevalonate-5-pyrophosphate decarboxylase [ATP:5-diphosphomevalonate carboxy-lyase (dehydrating), EC 4.1.1.33] has been purified 5800 times from chicken liver and obtained in a stable and highly purified form. The protein is a dimer of molecular weight 85400 +/- 1941, and its subunits were not resolved by gel electrophoresis in denaturing conditions. The purified enzyme does not require the presence of SH-containing reagents for either activity or stability. The enzyme shows a high specificity for adenosine 5'-triphosphate (ATP) and requires for activity a divalent metal cation, Mg2+ being most effective. The optimum pH for the enzyme ranges from 4.0 to 6.5. Inhibitory effects for the enzyme activity were detected by citrate, phthalate, and phosphate. The isoelectric point, as determined by column chromatofocusing, is 4.8. The kinetics are hyperbolic for both substrates, showing a sequential mechanism; true Km values of 0.0141 mM and 0.504 mM have been obtained for mevalonate-5-pyrophosphate and ATP, respectively.  相似文献   

12.
Bleeding complication and abnormal platelet functions are associated with liver cirrhosis. The aim of the present investigation was to assess the functional integrity of platelets in terms of lipids like cholesterol and phospholipids, glycoproteins and membrane-bound enzymes. Liver cirrhotic patients with bleeding complications were studied. Age and sex matched normal healthy volunteers were also involved in this study as a control group. Levels of cholesterol, phospholipids, glycoproteins and adenosine triphosphatases were assessed in isolated platelet membrane fraction. The level of glycoproteins and the activity of adenosine triphosphatases were found to be decreased significantly in cirrhotic patients. The cholesterol/phospholipid ratio was found to be altered significantly, indicating an alteration in the fluidity of platelet membrane. The results of this study reveal that the functional impairment of platelets in liver cirrhotic patients which is responsible for their bleeding tendency might also be due to altered lipid and enzyme levels in platelet membrane.  相似文献   

13.
Characterization of Nucleotide Transport into Rat Brain Synaptic Vesicles   总被引:2,自引:0,他引:2  
ATP transport to synaptic vesicles from rat brain has been studied using the fluorescent substrate analogue 1,N6-ethenoadenosine 5'-triphosphate (epsilon-ATP). The increase in intravesicular concentration was time dependent for the first 30 min, epsilon-ATP being the most abundant nucleotide. The complexity of the saturation curve indicates the existence of kinetic and allosteric cooperativity in the nucleotide transport, which exhibits various affinity states with K0.5 values of 0.39 +/- 0.06 and 3.8 +/- 0.1 mM with epsilon-ATP as substrate. The Vmax values obtained were 13.5 +/- 1.4 pmol x min(-1) x mg of protein(-1) for the first curve and 28.3 +/- 1.6 pmol x min(-1) x mg of protein(-1) considering both components. This kinetic behavior can be explained on the basis of a mnemonic model. The nonhydrolyzable adenine nucleotide analogues adenosine 5'-O-3-(thiotriphosphate), adenosine 5'-O-2-(thiodiphosphate), and adenosine 5'-(beta,gamma-imino)triphosphate and the diadenosine polyphosphates P1,P3-di(adenosine)triphosphate, P1,P4-di(adenosine)tetraphosphate, and P1,P5-di(adenosine)pentaphosphate inhibited the nucleotide transport. The mitochondrial ATP/ADP exchange inhibitor atractyloside, N-ethylmaleimide, and polysulfonic aromatic compounds such as Evans blue and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid also inhibit epsilon-ATP vesicular transport.  相似文献   

14.
M Le Hir  R Gandhi  U C Dubach 《Enzyme》1989,41(2):87-93
5'-Nucleotidase activity was solubilized from a particulate fraction of rat renal homogenates by Sulphobetaine 14. An 11,430-fold purification was achieved by a two-step chromatographic procedure using concanavalin-A Sepharose and ADP-agarose. SDS-PAGE of the purified material revealed a single polypeptide band with a Mr of 69,000. The enyzme exhibited absolute specificity for 5'-mononucleotides. Among 7 tested substrates, adenosine monophosphate (AMP) showed the highest value of V/Km. The Km for 5'-AMP is 5.1 mumol/l and V is 632 mumol/min/mg. The plot of activity versus pH shows a broad plateau between pH 6.8 and 8.0. The hydrolysis of 5'-AMP was competitively inhibited by adenosine 5'-triphosphate (ATP; Ki = 1.2 mumol/l), adenosine 5'-diphosphate (ADP; Ki = 0.032 mumol/l) and alpha, beta-methyleneadenosine 5'-diphosphate (AOPCP; Ki = 0.005 mumol/l). All of the 5 detergents tested activated the enzyme. Sulphobetaine 14 was the most potent and resulted in a 4-fold stimulation by increasing V without change of Km. Addition of exogenous divalent cations was not required for activity. However, the enzyme was inhibited by EDTA. This inhibition was overcome by the addition of Co2+, Mn2+ and to a lesser extent of Mg2+. Hg2+, Zn2+, Cu2+ and Pb2+ inhibited in the low micromolar range. The properties of this enzyme from the rat kidney are similar to those reported in the literature for ecto 5'-nucleotidases from other sources.  相似文献   

15.
Adenosine kinase from human liver   总被引:5,自引:0,他引:5  
Adenosine kinase (ATP: adenosine 5'-phosphotransferase, EC 2.7.1.20) has been purified to homogeneity from human liver. The yield was 55% of the initial activity with a final specific activity of 6.3 mumol/min per mg protein. The molecular weight was estimated as about 40 000 by Sephadex G-100 gel filtration and polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). The enzyme catalyzed the phosphorylation of adenosine, deoxyadenosine, arabinoadenosine, inosine and ribavirin. The activity of deoxyadenosine phosphorylation was 18% of that of adenosine. The pH optimum profile was biphasic; a sharp pH optimum at pH 5.5 and a broad optimum at pH 7.5--8.5. The Km value for adenosine was 0.15 micrometer, and the activity was strongly inhibited at higher concentrations than 0.5 micrometer. ATP, dATP, GTP and dGTP were proved to be effective phosphate donors. Co2+ was more effective than Mg2+, and Ca2+, Mn2+, Fe2+ and Ni2+ showed about 50% of the activity for Mg2+. Some difference in structure between the adenosine kinase from human liver and that from rabbit or rat tissue, was observed by amino acid analysis and peptide mapping analysis.  相似文献   

16.
Microsomal Na+,K+-ATPase isolated from the renal cortex of rats with CCL4-induced cirrhosis (CIR) showed a higher specific activity than the enzyme obtained from control rats (COR). Kinetic studies showed a lower K0.5 for ATP (0.08 +/- 0.03 vs. 0.24 +/- 0.04 mM; p less than 0.05), a lower Na+ activation constant (9.6 +/- 1.5 vs. 19.0 +/- 1.7 mM; p less than 0.05), and a higher K+ activation constant (1.2 +/- 0.1 vs. 0.6 +/- 0.1 mM; p less than 0.05) for CIR. The optimal pH of the enzyme was 0.5 units higher in CIR than COR. The fluorescence of eosin-treated enzymes indicated a higher ratio of E1/E2 forms of Na+,K+-ATPase in CIR. The K+-activated p-nitrophenylphosphatase (pNPPase) activity of the enzyme was lower in CIR than COR rats (1.5 +/- 0.1 vs. 2.2 +/- 0.1 mU/mg; p less than 0.05). Dialysing (24 h) COR microsomes reproduced most of the changes observed in CIR enzymes (kinetics, optimal pH, and eosin fluorescence). Lyophilized dialysate of COR, but not of CIR microsomes, inhibits Na+,K+-ATPase activity. These results suggest that a dialysable inhibitor modifies the Na+,K+-ATPase activity in the kidney of COR which is almost absent in that of CIR. The absence of this factor may lead to the overall inability to excrete Na+ in the cirrhotic state.  相似文献   

17.
The 1-phosphofructokinase (1-PFK, EC 2.7.1.56) from Pseudomonas putida was partially purified by a combination of (NH4)2SO4 fractionation and DEAE-Sephadex column chromatography. In its kinetic properties, this enzyme resembled the 1-PFK's from other bacteria. With the substrates fructose-1-phosphate (F-1-P) and adenosine triphosphate (ATP) Michaelis-Menten kinetics were observed, the Km for one substrate being unaffected by a variation in the concentration of the other substrate. At pH 8.0, the Km values for F-1-P and ATP were 1.64 X 10(-4) M and 4.08 X 10(-4) M, respectively. At fixed concentrations of F-1-P and ATP, an increase in the Mg2+ resulted in sigmoidal kinetics. Activity was inhibited by ATP when the ratio of ATP:Mg2+ was greater than 0.5 suggesting that ATP:2 Mg2+ was the substrate and free ATP was inhibitory. Activity of 1-PFK was stimulated by K+ and to a lesser extent by NH4+ and Na+. The reaction rate was unaffected by 2 mM K2HPO4, pyruvate, phosphoenolpyruvate, adenosine monophosphate, adenosine 3',5'-cyclic monophosphate, fructose-6-phosphate, glucose-6-phosphate, 6-phosphogluconate, 2-keto-3-deoxy-6-phosphogluconate, or citrate. The results indicated that the 1-PFK from P. putida was not allosterically regulated by a number of metabolites which may play an important role in the catabolism of D-fructose.  相似文献   

18.
The contents of desmosine and isodesmosine, the cross-linking amino acids of elastin, were increased 4-fold in rat liver with carbon tetrachloride-induced cirrhosis, which suggests that insoluble elastin accumulates in cirrhosis. Elastase activity in the cirrhotic liver, as determined with 3-carboxypropionyl-L-alanyl-L-alanyl-L-alanine p-nitroanilide, was 17% less than in the normal liver; no change was found when Congo Red-elastin was used as a substrate.  相似文献   

19.
The diastereomers of adenosine 5'-O-(1-thiotriphosphate) (ATP alpha S), adenosine 5'-O-(2-thiotriphosphate) (ATP beta S), and adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) could act as substrates for phosphomevalonate kinase in the presence of Mg2+ and Cd2+ as activating divalent metal cations. The Sp diastereomer of ATP alpha S was the preferred substrate regardless of the metal ion used, consistent with the metal ion not binding to the alpha-phosphate. With ATP beta S, the Sp diastereomer was the preferred substrate with Mg2+, and the Rp diastereomer was the preferred substrate with Cd2+. The reversal of specificity establishes that the metal is chelated through the beta-phosphate in the active site of the phosphomevalonate kinase reaction. A comparison of the Vmax values as a function of substitution of oxygen by sulfur showed the order for Mg2+ to be: ATP greater than ATP alpha S(Sp) greater than ATP alpha S(Rp) greater than ATP beta S(Sp) greater than ATP gamma S greater than ATP beta S(Rp). With Cd2+ as the activating metal ion, the order was: ATP greater than ATP alpha S(Sp) greater than ATP alpha S(Rp) greater than ATP beta S(Rp) greater than ATP gamma S greater than ATP beta S(Sp). It is concluded that the chelate structure of metal ATP substrate in the phosphomevalonate kinase reaction is the delta, beta, gamma-bidentate complex. 31P NMR measurements and radioassay with [2-14C] phosphomevalonate were used to measure the equilibrium of the reaction catalyzed by phosphomevalonate kinase with ATP and phosphorothioate analogues of ATP as the phosphoryl group donor. The order as a phosphate donor as determined by both methods in the phosphomevalonate kinase reaction is ATP beta S greater than ATP alpha S greater than ATP greater than ATP gamma S. Except for ATP gamma S, the equilibrium is shifted in the direction of formation of ADP alpha S and ADP beta S relative to ADP formation. Thus, ATP beta S rather than ATP would be effective for the synthesis of diphosphomevalonate. The phosphomevalonate kinase reaction could also be used to synthesize mevalonate 5-(2-thiodiphosphate) using ATP gamma S as the phosphoryl group donor.  相似文献   

20.
Trans cisternal elements of the Golgi apparatus from rat liver, identified by thiamin pyrophosphatase cytochemistry, were isolated by preparative free-flow electrophoresis and were found to undergo acidification as measured by a spectral shift in the absorbance of acridine orange. Acidification was supported not only by adenosine triphosphate (ATP) but nearly to the same degree by inorganic pyrophosphate (PPi). The proton gradients generated by either ATP or PPi were collapsed by addition of a neutral H+/K+ exchanger, nigericin, or the protonophore, carbonyl cyanide m-chlorophenylhydrazone, both at 1.5 microM. Both ATP hydrolysis and ATP-driven proton translocation as well as pyrophosphate hydrolysis and pyrophosphate-driven acidification were stimulated by chloride ions. However, ATP-dependent activities were optimum at pH 6.6, whereas pyrophosphate-dependent activities were optimum at pH 7.6. The Mg2+ optima also were different, being 0.5 mM with ATP and 5 mM with pyrophosphate. With both ATPase and especially pyrophosphatase activity, both by cytochemistry and analysis of free-flow electrophoresis fractions, hydrolysis was more evenly distributed across the Golgi apparatus stack than was either ATP- or PPi-induced inward transport of protons. Proton transport colocalized more closely with thiamin pyrophosphatase activity than did either pyrophosphatase or ATPase activity. ATP- and pyrophosphatase-dependent acidification were maximal in different electrophoretic fractions consistent with the operation of two distinct proton translocation activities, one driven by ATP and one driven by pyrophosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号