首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
External invertase is the product of the SUC2 gene of Saccharomyces cerevisiae. The deduced sequence of this enzyme (Taussig, R., and Carlson, M. (1983) Nucleic Acid Res. 11, 1943-1954) reveals it to contain 14 potential N-linked glycosylation sites, or sequons, although only 9-10 appear to be glycosylated (Trimble, R. B., and Maley, F. (1977) J. Biol. Chem. 252, 4409-4412). To determine the location of the glycosylated sequons, external invertase was deglycosylated with endo-beta-acetylglucosaminidase H and its component peptides analyzed by both fast atom bombardment mass spectrometry (FABMS) and classical peptide isolation procedures. By use of the former technique most of the glucosamine-containing sequons could be located and by the latter sufficient amounts of small glucosamine-containing peptides were isolated to enable their quantitation. From the combined FABMS and glucosamine analyses, it was established that eight of the sequons in a subunit of invertase are either completely or almost completely glycosylated, while five others are glycosylated to the extent of about 50% or less. In the case of two overlapping sequons (4 and 5), which include Asn92-Asn93-Thr-Ser, only the first Asn was glycosylated. Thus, all but one of the sequons of external invertase are glycosylated to some extent, giving an appearance of only 9-10 N-linked oligosaccharides/subunit. The sequence identity of both external and internal invertase was verified by FABMS and by peptide sequence analysis. In only one site was an amino acid found to differ from that deduced from the DNA sequence of the SUC2 gene. This occurred at position 390 where a proline was found in place of alanine, which could result from a single base change in the triplet specifying the latter amino acid.  相似文献   

2.
Many eukaryotic proteins are modified by N-linked glycosylation, a process in which oligosaccharides are added to asparagine residues in the sequon Asn-X-Ser/Thr. However, not all such sequons are glycosylated. For example, rabies virus glycoprotein (RGP) contains three sequons, only two of which appear to be glycosylated in virions. To examine further the signals in proteins which regulate N-linked core glycosylation, the glycosylation efficiencies of each of the three sequons in the antigenic domain of RGP were compared. For these studies, mutants were generated in which one or more sequons were deleted by site-directed mutagenesis. Core glycosylation of these mutants was studied using two independent systems: 1) in vitro translation in rabbit reticulocyte lysate supplemented with dog pancreatic microsomes, and 2) transfection into glycosylation-deficient Chinese hamster ovary cells. Parallel results were obtained with both systems, demonstrating that the sequon at Asn37 is inefficiently glycosylated, the sequons at Asn247 and Asn319 are efficiently glycosylated, and the glycosylation efficiency of each sequon is not influenced by glycosylation at other sequons in this protein. High levels of cell surface expression of RGP in Chinese hamster ovary cells are seen with any mutant containing an intact sequon at Asn247 or Asn319, whereas low levels of cell surface expression are seen when the sequon at Asn37 is present alone; deletion of all three sequons completely blocks RGP cell surface expression. Thus, although core glycosylation at Asn37 is inefficient, it is still sufficient to support a biological function, cell surface expression. Future studies using mutagenesis of this model protein and its expression in these two well defined systems will aim to begin to unravel the rules governing core glycosylation of glycoproteins.  相似文献   

3.
Rabies glycoprotein (RGP(WT)) contains N-glycosylation sequons at Asn(37), Asn(247), and Asn(319), although Asn(37) is not efficiently glycosylated. To examine N-glycan processing at Asn(247) and Asn(319), full-length glycosylation mutants, RGP(-2-) and RGP(--3), were expressed, and Endo H sensitivity was compared. When the Asn(247) sequon is present alone in RGP(-2-), 90% of its N-glycans are high-mannose type, whereas only 35% of the N-glycans at Asn(319) in RGP(--3) are high-mannose. When both sequons are present in RGP(-23), 87% of the N-glycans are of complex type. The differing patterns of Endo H sensitivity at sequons present individually or together suggests that glycosylation of one sequon affects glycosylation at another, distant sequon. To explore this further, we constructed soluble forms of RGP: RGP(WT)T441His and RGP(--3)T441His. Tryptic glycopeptides from these purified secreted proteins were isolated by HPLC and characterized by a 3D oligosaccharide mapping technique. RGP(WT)T441His had fucosylated, bi- and triantennary complex type glycans at Asn(247) and Asn(319). However, Asn(247) had half as many neutral glycans, more monosialylated glycans, and fewer disialylated glycans when compared with Asn(319). Moreover, when comparing the N-glycans at Asn(319) on RGP(--3)T441His and RGP(WT)T441His, the former had 30% more neutral, 28% more monosialylated, and 33% fewer disialylated glycans. This suggests that the N-glycan at Asn(247) allows additional N-glycan processing to occur at Asn(319), yielding more heavily sialylated bi- and triantennary forms. The mechanism(s) by which glycosylation at one sequon influences N-glycan processing at a distant sequon on the same glycoprotein remains to be determined.  相似文献   

4.
Campylobacter jejuni is unusual among bacteria in possessing a eukaryotic-like system for N-linked protein glycosylation at Asn residues in sequons of the type Asp/Glu-Xaa-Asn-Xaa-Ser/Thr. However, little is known about the structural context of the glycosylated sequons, limiting the design of novel recombinant glycoproteins. To obtain more information on sequon structure, we have determined the crystal structure of the PEB3 (Cj0289c) dimer. PEB3 has the class II periplasmic-binding protein fold, with each monomer having two domains with a ligand-binding site containing citrate located between them, and overall resembles molybdate- and sulfate-binding proteins. The sequon around Asn90 is located within a surface-exposed loop joining two structural elements. The three key residues are well exposed on the surface; hence, they may be accessible to the PglB oligosaccharyltransferase in the folded state.  相似文献   

5.
N-Glycosylation, the most common and most versatile protein modification reaction, occurs at the beta-amide of the aspargine of the Asn-Xaa-Ser/Thr sequon. For reasons that are unclear, not all such sequons are glycosylated. To find patterns that affect glycosylation, we examined the amino acid residues from the 20th preceding the sequon to the 20th residue following it, using bioinformatics tools. A clean data set of annotated, experimentally verified, glycosylated and nonglycosylated sequons derived from 617 well-defined nonredundant N- and N-,O-glycoproteins listed in SWISS-PROT (June 2002) was used. NXS and NXT sequons were analyzed separately. Although no overt patterns were found to explain sequon occupancy or nonoccupancy, trends for over- or underrepresentation of certain amino acids at particular positions were statistically significant and different in NXS and NXT sequons. In extension of earlier reports, none of the 80 Asn-Pro-Ser/Thr found were glycosylated, and a markedly low level of glycosylation was seen in sequons with Pro at the position following the Ser/Thr. In addition, a general observation was made that the considerable number of glycosylated sequons in the C-terminal 10 residues of glycoproteins suggests that N-glycosylation in these cases may be posttranslational and not cotranslational, as widely accepted.  相似文献   

6.
Human protein C (hPC) is glycosylated at three Asn‐X‐Ser/Thr and one atypical Asn‐X‐Cys sequons. We have characterized the micro‐ and macro‐heterogeneity of plasma‐derived hPC and compared the glycosylation features with recombinant protein C (tg‐PC) produced in a transgenic pig bioreactor from two animals having approximately tenfold different expression levels. The N‐glycans of hPC are complex di‐ and tri‐sialylated structures, and we measured 78% site occupancy at Asn‐329 (the Asn‐X‐Cys sequon). The N‐glycans of tg‐PC are complex sialylated structures, but less branched and partially sialylated. The porcine mammary epithelial cells glycosylate the Asn‐X‐Cys sequon with a similar efficiency as human hepatocytes even at these high expression levels, and site occupancy at this sequon was not affected by expression level. A distinct bias for particular structures was present at each of the four glycosylation sites for both hPC and tg‐PC. Interestingly, glycans with GalNAc in the antennae were predominant at the Asn‐329 site. The N‐glycan structures found for tg‐PC are very similar to those reported for a recombinant Factor IX produced in transgenic pig milk, and similar to the endogenous milk protein lactoferrin, which may indicate that N‐glycan processing in the porcine mammary epithelial cells is more uniform than in other tissues.  相似文献   

7.
Roy Jefferis 《MABS-AUSTIN》2013,5(5):638-640
The glycoform profile of a glycoprotein is non-templated, i.e., is not encoded within the genome or otherwise predetermined; however, it is estimated that ~50% of human genes having an open reading frame encode a –N-X-S/T- amino acid sequence, where X represents any amino acid other than proline, that comprises a potential site (sequon) for N-linked glycosylation of the translated protein. N-linked glycosylation is both a co- and post-translational modification. The complex oligosaccharide GlcNAc2Man9Glu3 may be added at a –N-X-S/T- sequon as the polypeptide chain emerges from the ribosome tunnel. Local secondary structure determines whether oligosaccharide is added and the extent of addition. Higher occupancy is observed for –N-X-T- sequons than at –N-X-S- sequons, and the efficiency of addition can be further influenced by adjacent amino acid residues.  相似文献   

8.
To understand better the structural requirements of the protein moiety important for N-glycosylation, we have examined the influence of proline residues with respect to their position around the consensus sequence (or sequon) Asn-Xaa-Ser/Thr. In the first part of the paper, experiments are described using a cell-free translation/glycosylation system from reticulocytes supplemented with dog pancreas microsomes to test the ability of potential acceptor peptides to interfere with glycosylation of nascent yeast invertase chains. It was found that peptides, being acceptors for oligosaccharide transferase in vitro, inhibit cotranslational glycosylation, whereas nonacceptors have no effect. Acceptor peptides do not abolish translocation of nascent chains into the endoplasmic reticulum. Results obtained with proline-containing peptides are compatible with the notion that a proline residue in an N-terminal position of a potential glycosylation site does not interfere with glycosylation, whereas in the position Xaa or at the C-terminal of the sequon, proline prevents and does not favour oligosaccharide transfer, respectively. This statement was further substantiated by in vivo studies using site-directed mutagenesis to introduce a proline residue at the C-terminal of a selected glycosylation site of invertase. Expression of this mutation in three different systems, in yeast cells, frog oocytes and by cell-free translation/glycosylation in reticulocytes supplemented with dog pancreas microsomes, leads to an inhibition of glycosylation with both qualitative and quantitative differences. This may indicate that host specific factors also contribute to glycosylation.  相似文献   

9.
Despite having provided the first example of a prokaryal glycoprotein, little is known of the rules governing the N-glycosylation process in Archaea. As in Eukarya and Bacteria, archaeal N-glycosylation takes place at the Asn residues of Asn-X-Ser/Thr sequons. Since not all sequons are utilized, it is clear that other factors, including the context in which a sequon exists, affect glycosylation efficiency. As yet, the contribution to N-glycosylation made by sequon-bordering residues and other related factors in Archaea remains unaddressed. In the following, the surroundings of Asn residues confirmed by experiment as modified were analyzed in an attempt to define sequence rules and requirements for archaeal N-glycosylation.  相似文献   

10.
Differences in glycosylation between the natural alpha-1,6 glucan-6-glucanohydrolase from Penicillium minioluteum and the heterologous protein expressed in the yeast Pichia pastoris were analyzed. Glycosylation profiling was carried out using fluorophore-assisted carbohydrate electrophoresis and amine absorption high-performance liquid chromatography (NH(2)-HPLC) in combination with matrix-assisted laser desorption-time of flight-mass spectrometry. Both microorganisms produce only oligomannosidic type structures, but the oligosaccharide population differs in both enzymes. The native enzyme has mainly short oligosaccharide chains ranging from Man(5)GlcNAc(2) to Man(9)GlcNAc(2), of which Man(8)GlcNAc(2) was the most represented oligosaccharide. The oligosaccharides linked to the protein produced in P. pastoris range from Man(7)GlcNAc(2) up to Man(14)GlcNAc(2), with Man(8)GlcNAc(2) and Man(9)GlcNAc(2) being the most abundant structures. In both enzymes the first glycosylation site (Asn(5)) is always glycosylated. However, Asn(537) and Asn(540) are only partially glycosylated in an alternate manner.  相似文献   

11.
Rabies virus glycoprotein is important in the biology and pathogenesis of neurotropic rabies virus infection. This transmembrane glycoprotein is the only viral protein on the surface of virus particles, is the viral attachment protein that facilitates virus uptake by the infected cell, and is the target of the host humoral immune response to infection. The extracellular domain of this glycoprotein has N- glycosylation sequons at Asn37, Asn247, and Asn319. Appropriate glycosylation of these sequons is important in the expression of the glycoprotein. Soluble forms of rabies virus glycoprotein were constructed by insertion of a stop codon just external to the transmembrane domain. Using site-directed mutagenesis and expression in transfected eukaryotic cells, it was possible to compare the effects of site-specific glycosylation on the cell-surface expression and secretion of transmembrane and soluble forms, respectively, of the same glycoprotein. These studies yielded the surprising finding that although any of the three sequons permitted cell surface expression of full-length rabies virus glycoprotein, only the N-glycan at Asn319 permitted secretion of soluble rabies virus glycoprotein. Despite its biological and medical importance, it has not yet been possible to determine the crystal structure of the full-length transmembrane form of rabies virus glycoprotein which contains heterogeneous oligosaccharides. The current studies demonstrate that a soluble form of rabies virus glycoprotein containing only one sequon at Asn319 is efficiently secreted in the presence of the N-glycan processing inhibitor 1-deoxymannojirimycin. Thus, it is possible to purify a conformationally relevant form of rabies virus glycoprotein that contains only one N-glycan with a substantial reduction in its microheterogeneity. This form of the glycoprotein may be particularly useful for future studies aimed at elucidating the three-dimensional structure of this important glycoprotein.   相似文献   

12.
Human and simian immunodeficiency viruses (HIV and SIV), influenza virus, and hepatitis C virus (HCV) have heavily glycosylated, highly variable surface proteins. Here we explore N-linked glycosylation site (sequon) variation at the population level in these viruses, using a new Web-based program developed to facilitate the sequon tracking and to define patterns (www.hiv.lanl.gov). This tool allowed rapid visualization of the two distinctive patterns of sequon variation found in HIV-1, HIV-2, and SIV CPZ. The first pattern (fixed) describes readily aligned sites that are either simply present or absent. These sites tend to be occupied by high-mannose glycans. The second pattern (shifting) refers to sites embedded in regions of extreme local length variation and is characterized by shifts in terms of the relative position and local density of sequons; these sites tend to be populated by complex carbohydrates. HIV, with its extreme variation in number and precise location of sequons, does not have a net increase in the number of sites over time at the population level. Primate lentiviral lineages have host species-dependent levels of sequon shifting, with HIV-1 in humans the most extreme. HCV E1 and E2 proteins, despite evolving extremely rapidly through point mutation, show limited sequon variation, although two shifting sites were identified. Human influenza A hemagglutinin H3 HA1 is accumulating sequons over time, but this trend is not evident in any other avian or human influenza A serotypes.  相似文献   

13.
The SWISS-PROT protein sequence data bank contains at present nearly 75,000 entries, almost two thirds of which include the potential N-glycosylation consensus sequence, or sequon, NXS/T (where X can be any amino acid but proline) and thus may be glycoproteins. The number of proteins filed as glycoproteins is however considerably smaller, 7942, of which 749 have been characterized with respect to the total number of their carbohydrate units and sites of attachment of the latter to the protein, as well as the nature of the carbohydrate-peptide linking group. Of these well characterized glycoproteins, about 90% carry either N-linked carbohydrate units alone or both N- and O-linked ones, attached at 1297 N-glycosylation sites (1.9 per glycoprotein molecule) and the rest are O-glycosylated only. Since the total number of sequons in the well characterized glycoproteins is 1968, their rate of occupancy is 2/3. Assuming that the same number of N-linked units and rate of sequon occupancy occur in all sequon containing proteins and that the proportion of solely O-glycosylated proteins (ca. 10%) will also be the same as among the well characterized ones, we conclude that the majority of sequon containing proteins will be found to be glycosylated and that more than half of all proteins are glycoproteins.  相似文献   

14.
It has been shown previously that chicken ovalbumin synthesized and secreted in a heterologous cell system is glycosylated at the correct site and that the oligosaccharides at that site, similar to the protein made in hen oviduct, are predominantly of the hybrid type (Sheares, B. T., and Robbins, P. W. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 1993-1997). This site-specific glycosylation of Asn293, but not Asn312, suggested a prominent role for the nascent protein chain rather than the specific cell type in directing the proper attachment of oligosaccharide chains. In the present study, the effect of glycosylation at Asn293 on the glycosylation of Asn312 has been investigated. Using a 20-base oligodeoxynucleotide primer containing a 2-base mismatch, the codon for Asn293 in the chicken ovalbumin gene (AAC) was changed to that for Gln (CAA), thereby preventing glycosylation at amino acid 293. Constructions containing this mutation were transfected into mouse L (tk-) cells which were subsequently labeled with [35S]methionine. Ovalbumin secreted by these cells was recovered by immunoaffinity chromatography and analyzed for the presence of an oligosaccharide attached at Asn312. Treatment of the material with peptide:N-glycosidase F demonstrated that ovalbumin molecules containing Gln substituted for Asn293 were not glycosylated. This further supports our earlier hypothesis that the nascent protein chain is responsible for directing site-specific glycosylation of ovalbumin, and that the presence of an oligosaccharide chain at the first site has no influence on glycosylation at the second site.  相似文献   

15.
Mouse myeloma immunoglobulin IgM heavy chains were cleaved with cyanogen bromide into nine peptide fragments, four of which contain asparagine-linked glycosylation. Three glycopeptides contain a single site, including Asn 171, 402, and 563 in the intact heavy chain. Another glycopeptide contains two sites at Asn 332 and 364. The carbohydrate containing fragments were treated with Pronase and fractionated by elution through Bio-Gel P-6. The major glycopeptides from each site were analyzed by 500 MHz 1H-NMR and the carbohydrate compositions determined by gas-liquid chromatography. The oligosaccharide located at Asn 171 is a biantennary complex and is highly sialylated. The amount of sialic acid varies, and some oligosaccharides contain alpha 1,3-galactose linked to the terminal beta 1,4-galactose. The oligosaccharides at Asn 332, Asn 364, an Asn 402 are all triantennary and are nearly completely sialylated on two branches and partially sialylated on the triantennary branch linked beta 1,4 to the core mannose. The latter is sialylated about 40% of the time for all three glycosylation sites. The major oligosaccharide located at Asn 563 is of the high mannose type. The 1H-NMR determination of structures at Asn 563 suggests that the high mannose oligosaccharide contains only three mannose residues.  相似文献   

16.
The addition of N-linked oligosaccharides to Asn-X-(Ser/Thr) sites is catalyzed by the oligosaccharyltransferase, an enzyme closely associated with the translocon and generally thought to have access only to nascent chains as they emerge from the ribosome. However, the presence of the sequon does not automatically ensure core glycosylation because many proteins contain sequons that remain either nonglycosylated or glycosylated to a variable extent. In this study, hepatitis C virus (HCV) envelope protein E1 was used as a model to study the efficiency of N-glycosylation. HCV envelope proteins, E1 and E2, were released from a polyprotein precursor after cleavage by host signal peptidase(s). When expressed alone, E1 was not efficiently glycosylated. However, E1 glycosylation was improved when expressed as a polyprotein including full-length or truncated forms of E2. These data indicate that glycosylation of E1 is dependent on the presence of polypeptide sequences located downstream of E1 on HCV polyprotein.  相似文献   

17.
18.
This report describes the structure of soluble human stem cell factor isolated from the conditioned medium of Chinese hamster ovary (CHO) cells transfected with stem cell factor (SCF) cDNA, which encodes a leader sequence plus 248 additional amino acids. The 248 amino acids include a hydrophobic transmembrane region at positions 190-212. The isolated material is glycosylated and three bands (apparent M(r) 28,000, M(r) 35,000, and M(r) 40,000) are evident by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. After complete deglycosylation, the molecular weight by SDS-polyacrylamide gel electrophoresis is 18,000-19,000. Structural analyses of the intact SCF, the deglycosylated SCF, and a deglycosylated C-terminal peptide were performed by laser desorption, fast atom bombardment, or electrospray mass spectrometry. Pulse-labeling of cells with 35S-labeled Met and Cys resulted in cell-associated glycosylated SCF of M(r) 33,000-45,000 which was converted to M(r) 33,000 by in vitro treatment with glycosidases. During a chase with unlabeled Met and Cys, labeled SCF of M(r) 28,000, M(r) 35,000, and M(r) 40,000 appeared in the medium; it was converted to M(r) 18,000-19,000 by glycosidase treatment. SCF at the surface of the transfected CHO cells could be demonstrated by immunofluorescence. The data obtained indicate that the recombinant human stem cell factor, as isolated, represents proteolytically processed forms containing amino acids 1-165, derived from the initially synthesized membrane-bound form of 248 amino acids. Further characterization indicated that the M(r) 28,000 form is glycosylated at Asn120, the M(r) 35,000 form at Asn120 and Asn65, and the M(r) 40,000 form at Asn120, Asn93, and Asn65. Each form also contains O-linked carbohydrate. The N-linked glycosylation, particularly that at Asn93 and at Asn65, adversely affects in vitro biological activity and receptor binding.  相似文献   

19.
The major yeast exoglucanase (ExgIb) consists of a 408 amino acid polypeptide carrying two short N-linked oligosaccharides attached to asparagines 165 (Asn(165)) and 325 (Asn(325)). These oligosaccharides are very similar, in both length and composition, to those present in the vacuolar protease carboxypeptidase Y. Minor glycoforms of exoglucanase arise by underglycosylation of the protein precursor (Exg(165) and Exg(325)) or by elongation of the second oligosaccharide (ExgIa). The fact that these glycoforms can be readily separated and identified by HPLC and/or Western blots converts ExgI in an excellent model to study the role of the several components or branches of the precursor oligosaccharide in the efficiency and selectivity of the oligosaccharidyl transferase in vivo. We have found that the presence of a single glucose attached to Dol-PP-GlcNAc(2)-Man(9) increases the efficiency of transfer of that oligosaccharide to the protein acceptor. Also, the glucotriose unit appears to be involved in the selection of the sequons to be occupied, in such a way that its absence results in a bias towards the glycosylation of a particular sequon. Finally, we have shown the transfer of GlcNAc(2) from Dol-PP-GlcNAc(2) to exoglucanase, an indication that this intermediate is able to translocate from the cytoplasmic to the lumenal face of the endoplasmic reticulum membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号