首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determining how the regulation of cellular processes is impacted in cystic fibrosis (CF) is fundamental to understanding disease pathology and to identifying new therapeutic targets. In this study, unesterified cholesterol accumulation is observed in lung and trachea sections obtained from CF patients compared with non-CF tissues, suggesting an inherent flaw in cholesterol processing. An alternate staining method utilizing a fluorescent cholesterol probe also indicates improper lysosomal storage of cholesterol in CF cells. Excess cholesterol is also manifested by a significant increase in plasma membrane cholesterol content in both cultured CF cells and in nasal tissue excised from cftr(-/-) mice. Impaired intracellular cholesterol movement is predicted to stimulate cholesterol synthesis, a hypothesis supported by the observation of increased de novo cholesterol synthesis in lung and liver of cftr(-/-) mice compared with controls. Furthermore, pharmacological inhibition of cholesterol transport is sufficient to cause CF-like elevation in cytokine production in wild-type cells in response to bacterial challenge but has no effect in CF cells. These data demonstrate via multiple methods in both cultured and in vivo models that cellular cholesterol homeostasis is inherently altered in CF. This perturbation of cholesterol homeostasis represents a potentially important process in CF pathogenesis.  相似文献   

2.
cAMP-induced ion transport in normal and cystic fibrosis (CF) fibroblasts was investigated by X-ray microanalysis. Stimulation with cAMP causes an increase in cellular Na content and a decrease in cellular Cl and K content. No significant difference in response between CF and normal cells was noted. In this respect, fibroblasts differ from epithelial cells, where cAMP-induced Cl- efflux blocked in CF patients. Isoproterenol produced similar changes in Na and K content as cAMP, but did not effect Cl content.  相似文献   

3.
Considerable lung injury results from the inflammatory response to Pseudomonas aeruginosa infections in patients with cystic fibrosis (CF). The P. aeruginosa laboratory strain PAO1, an environmental isolate, and isolates from CF patients were cultured in vitro and outer membrane vesicles from those cultures were quantitated, purified, and characterized. Vesicles were produced throughout the growth phases of the culture and vesicle yield was strain-independent. Strain-dependent differences in the protein composition of vesicles were quantitated and identified. The aminopeptidase PaAP (PA2939) was highly enriched in vesicles from CF isolates. Vesicles from all strains elicited IL-8 secretion by lung epithelial cells. These results suggest that P. aeruginosa colonizing the CF lung may produce vesicles with a particular composition and that the vesicles could contribute to inflammation.  相似文献   

4.
Proliferation rates and cellular protein content have been measured in cultured fibroblasts derived from the skin of normal volunteers and cystic fibrosis patients. Three methods of measuring growth indicated that under our conditions, CF fibroblasts divide normally with a mean doubling time of 29 hr. During the logarithmic growth phase, however, lower cell protein/DNA ratios were observed consistently in CF cultures. This difference was not present in contact-inhibited, confluent fibroblasts. The finding of an apparent reduction in protein synthesis during rapid division, coupled with an observation by others that CF fibroblasts fail to normally induce collagen formation, suggests the possibility of a disturbance in the biochemical regulation of protein synthesis.  相似文献   

5.
We have developed immortalized epithelial cystic fibrosis (CF) cell lines by infecting cultured nasal polyp cells with a SV40/Adenol2 hybrid virus. The cell lines obtained are epithelial in nature as shown by cytokeratin production and morphology, although cytokeratins 4 and 13 typical of primary nasal polyp cells are produced at a much reduced rate. Ussing chamber experiments showed that the precrisis CF cell line NCF3 was able to perform trans-cellular chloride transport when activated by agents which elevate intracellular calcium. cAMP agonists had no effect on chloride flux in NCF3 as expected for CF cells. The apical chloride channels found with the patch clamp technique in NCF3 and in the postcrisis cell line NCF3A have a conductance similar to that of chloride channels found earlier in normal and CF epithelial cells. The channels show a delay in the onset of activity in off-cell patches and are not activated by increased cAMP levels in the cell. This indicates that immortalized CF epithelial cells will provide a useful model for the study of cystic fibrosis.  相似文献   

6.
Pseudomonas aeruginosa (PA) is a major pathogen causing morbidity and ultimately mortality in patients afflicted with cystic fibrosis (CF) lung disease. One important virulence factor, pyocyanin (PCN), is a blue, redox-active compound that is secreted in such copious amounts by PA in the CF lungs that it determines the colour of expectorated sputum. In this study, we discovered that physiological concentrations of PCN inactivate the airway epithelial vacuolar ATPase, resulting in reduced expression and trafficking of the cystic fibrosis transmembrane conductance regulator in cultured lung and primary nasal epithelial cells. Our study supports the notion that PCN contributes significantly to the pathogenesis of CF and other bronchiectasis patients infected by PA.  相似文献   

7.
Specific fatty acid alterations have been described in the blood and tissues of cystic fibrosis (CF) patients. The principal alterations include decreased levels of linoleic acid (LA) and docosahexaenoic acid (DHA). We investigated the potential mechanisms of these alterations by studying the cellular uptake of LA and DHA, their distribution among lipid classes, and the metabolism of LA in a human bronchial epithelial cell model of CF. CF (antisense) cells demonstrated decreased levels of LA and DHA compared with wild type (WT, sense) cells expressing normal CFTR. Cellular uptake of LA and DHA was higher in CF cells compared with WT cells at 1 h and 4 h. Subsequent incorporation of LA and DHA into most lipid classes and individual phospholipids was also increased in CF cells. The metabolic conversion of LA to n-6 metabolites, including 18:3n-6 and arachidonic acid, was upregulated in CF cells, indicating increased flux through the n-6 pathway. Supplementing CF cells with DHA inhibited the production of LA metabolites and corrected the n-6 fatty acid defect. In conclusion, the evidence suggests that low LA level in cultured CF cells is due to its increased metabolism, and this increased LA metabolism is corrected by DHA supplementation.  相似文献   

8.
S-Nitrosoglutathione (GSNO) is an endogenous bronchodilator levels of which are reduced in the airways of cystic fibrosis (CF) patients. GSNO has recently been shown to increase maturation of CFTR in CF cell lines at physiological concentrations. The ability of S-nitrosoglutathione to direct the DeltaF508-CFTR to the plasma membrane and restore the function of the cAMP-dependent chloride transport in cultured human airway epithelial cells has been studied. Immunocytochemistry showed a time- and dose-dependent increase of apically located CFTR after GSNO treatment. Chloride transport studies with the fluorescent dye N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) showed that GSNO was able to induce a fourfold increase of cAMP-dependent chloride transport. Our data and the fact that endogenous GSNO levels are lower in the airways of CF patients make GSNO an interesting candidate for pharmacological treatment of cystic fibrosis.  相似文献   

9.
Cystic fibrosis is a common genetic disorder characterized by a severe lung inflammation and fibrosis leading to the patient's death. Enhanced angiogenesis in cystic fibrosis (CF) tissue has been suggested, probably caused by the process of inflammation, as similarly described in asthma and chronic bronchitis. The present study demonstrates an intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells. Microarray experiments showed that CF airway epithelial cells expressed several angiogenic factors such as VEGF-A, VEGF-C, bFGF, and PLGF at higher levels than control cells. These data were confirmed by real-time quantitative PCR and, at the protein level, by ELISA. Conditioned media of these cystic fibrosis cells were able to induce proliferation, migration and sprouting of cultured primary endothelial cells. This report describes for the first time that cystic fibrosis epithelial cells have an intrinsic angiogenic activity. Since excess of angiogenesis is correlated with more severe pulmonary disease, our results could lead to the development of new therapeutic applications.  相似文献   

10.
Cystic fibrosis (CF) is a life-shortening disease caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. To gain an understanding of the epithelial dysfunction associated with CF mutations and discover biomarkers for therapeutics development, untargeted metabolomic analysis was performed on primary human airway epithelial cell cultures from three separate cohorts of CF patients and non-CF subjects. Statistical analysis revealed a set of reproducible and significant metabolic differences between the CF and non-CF cells. Aside from changes that were consistent with known CF effects, such as diminished cellular regulation against oxidative stress and osmotic stress, new observations on the cellular metabolism in the disease were generated. In the CF cells, the levels of various purine nucleotides, which may function to regulate cellular responses via purinergic signaling, were significantly decreased. Furthermore, CF cells exhibited reduced glucose metabolism in glycolysis, pentose phosphate pathway, and sorbitol pathway, which may further exacerbate oxidative stress and limit the epithelial cell response to environmental pressure. Taken together, these findings reveal novel metabolic abnormalities associated with the CF pathological process and identify a panel of potential biomarkers for therapeutic development using this model system.  相似文献   

11.
Cystic fibrosis (CF) is a disease that is caused by mutations within the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most common mutation, DeltaF508, accounts for 70% of all CF alleles and results in a protein that is defective in folding and trafficking to the cell surface. However, DeltaF508-CFTR is functional when properly localized. We report that a single, noncytotoxic dose of the anthracycline doxorubicin (Dox, 0.25 microM) significantly increased total cellular CFTR protein expression, cell surface CFTR protein expression, and CFTR-associated chloride secretion in cultured T84 epithelial cells. Dox treatment also increased DeltaF508-CFTR cell surface expression and DeltaF508-CFTR-associated chloride secretion in stably transfected Madin-Darby canine kidney cells. These results suggest that anthracycline analogs may be useful for the clinical treatment of CF.  相似文献   

12.
Cystic fibrosis (CF) is associated with fatty acid alterations characterized by low linoleic and docosahexaenoic acid. It is not clear whether these fatty acid alterations are directly linked to cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction or result from nutrient malabsorption. We hypothesized that if fatty acid alterations are a result of CFTR dysfunction, those alterations should be demonstrable in CF cell culture models. Two CF airway epithelial cell lines were used: 16HBE, sense and antisense CFTR cells, and C38/IB3-1 cells. Wild-type (WT) and CF cells were cultured in 10% fetal bovine serum (FBS) or 10% horse serum. Fatty acid levels were analyzed by GC-MS. Culture of both WT and CF cells in FBS resulted in very low linoleic acid levels. When cells were cultured in horse serum containing concentrations of linoleic acid matching those found in human plasma, physiological levels of linoleic acid were obtained and fatty acid alterations characteristic of CF tissues were then evident in CF compared with WT cells. Kinetic studies with radiolabeled linoleic acid demonstrated in CF cells increased conversion to longer and more-desaturated fatty acids such as arachidonic acid. In conclusion, these data demonstrate that CFTR dysfunction is associated with altered fatty acid metabolism in cultured airway epithelial cells.  相似文献   

13.
A major characteristic of cystic fibrosis (CF) is the progressive degeneration of acinar cells in the pancreas. It is now well established that the normal pancreas contains an abundant amount of an [3H]estradiol-binding protein. Although the physiological function of this protein is unknown, available evidence suggests that it modulates resting secretion from acinar cells. Analysis of pancreatic autopsy samples from 13 patients who had CF demonstrated a high degree of correlation between loss of acinar cells and loss of [3H]estradiol-binding activity. Autopsy samples taken from individuals unaffected by CF contained large amounts of the [3H]estradiol-binding protein that were significantly correlated with the tissue content of amylase. This biological model demonstrates that the [3H]estradiol-binding protein in pancreas is localized primarily within acinar cells. Based on the presumed regulatory role this protein has on pancreatic secretion, an hypothesis is offered to account for acinar cell degeneration in individuals suffering from cystic fibrosis.  相似文献   

14.
The gene associated with cystic fibrosis (CF) encodes a membrane-associated, N-linked glycoprotein called CFTR. Mutations were introduced into CFTR at residues known to be altered in CF chromosomes and in residues believed to play a role in its function. Examination of the various mutant proteins in COS-7 cells indicated that mature, fully glycosylated CFTR was absent from cells containing delta F508, delta 1507, K464M, F508R, and S5491 cDNA plasmids. Instead, an incompletely glycosylated version of the protein was detected. We propose that the mutant versions of CFTR are recognized as abnormal and remain incompletely processed in the endoplasmic reticulum where they are subsequently degraded. Since mutations with this phenotype represent at least 70% of known CF chromosomes, we argue that the molecular basis of most cystic fibrosis is the absence of mature CFTR at the correct cellular location.  相似文献   

15.
Recent molecular and cellular studies have shed new light on the basis for the susceptibility of cystic fibrosis (CF) patients to Pseudomonas aeruginosa infection. Changes in airway liquid composition and/or viscosity, enhanced bacterial binding to mucin and epithelial cell receptors, increased innate inflammation owing to disruptions in lipid metabolism and a role for the CFTR protein in bacterial ingestion and clearance have all been postulated. The high P. aeruginosa infection rate in CF patients can potentially be explained by the specificity of the interaction between the CFTR and P. aeruginosa.  相似文献   

16.
Chronic inflammation of the lung, as a consequence of persistent bacterial infections by several opportunistic pathogens represents the main cause of mortality and morbidity in cystic fibrosis (CF) patients. Mechanisms leading to increased susceptibility to bacterial infections in CF are not completely known, although the involvement of cystic fibrosis transmembrane conductance regulator (CFTR) in microbicidal functions of macrophages is emerging. Tissue macrophages differentiate in situ from infiltrating monocytes, additionally, mature macrophages from different tissues, although having a number of common activities, exhibit variation in some molecular and cellular functions. In order to highlight possible intrinsic macrophage defects due to CFTR dysfunction, we have focused our attention on in vitro differentiated macrophages from human peripheral blood monocytes. Here we report on the contribution of CFTR in the bactericidal activity against Pseudomonas aeruginosa of monocyte derived human macrophages. At first, by real time PCR, immunofluorescence and patch clamp recordings we demonstrated that CFTR is expressed and is mainly localized to surface plasma membranes of human monocyte derived macrophages (MDM) where it acts as a cAMP-dependent chloride channel. Next, we evaluated the bactericidal activity of P. aeruginosa infected macrophages from healthy donors and CF patients by antibiotic protection assays. Our results demonstrate that control and CF macrophages do not differ in the phagocytic activity when infected with P. aeruginosa. Rather, although a reduction of intracellular live bacteria was detected in both non-CF and CF cells, the percentage of surviving bacteria was significantly higher in CF cells. These findings further support the role of CFTR in the fundamental functions of innate immune cells including eradication of bacterial infections by macrophages.  相似文献   

17.
As a step toward understanding the metabolic consequences of the cystic fibrosis (CF) mutation, we have examined the kinetics of 36Cl efflux in cells cultured from sweat glands, a tissue that is affected in the disease. Epithelial cells, derived from the secretory coil of sweat glands of CF and control individuals, were cultured in serum-free medium, and primary cultures used for efflux experiments. Cell layers were equilibrated with Na36Cl in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid-buffered balanced salt solution for 45 min at 37 degrees C, washed in 0.25 M sucrose, and incubated in nonradioactive buffer for measurement of 36Cl efflux. Efflux from CF and control cells followed biphasic kinetics and was described by the equation Y = Ae-kat + Be-kbt. All efflux was inhibited at 6 degrees C. The fast component of efflux, Ae-kat, of both control and CF cells was inhibited by the anion channel blockers 4,4'-diisothiocyanato-2,2'-stilbene disulfonic acid, 9-anthracene carboxylate, and diphenylamine 2-carboxylate, implicating release through chloride channels. At 23 degrees C, the kinetics of 36Cl efflux from CF and control cells were indistinguishable, but efflux from control cells could be accelerated by cAMP analogs and isoproterenol. At 37 degrees C, 36Cl efflux was more rapid from control cells than from CF cells, but could not be stimulated further by beta-adrenergic agents. In both cases, the increased rate of efflux was due to a severalfold increase in the A parameter of the fast component. These differential responses constitute a "CF phenotype" of secretory sweat gland cells in culture that may be useful for further investigation of the metabolic defect in cystic fibrosis.  相似文献   

18.
Pseudomonas aeruginosa is an important human pathogen, producing lung infection in individuals with cystic fibrosis (CF), patients who are ventilated and those who are neutropenic. The respiratory epithelium provides the initial barrier to infection. Pseudomonas aeruginosa can enter epithelial cells, although the mechanism of entry and the role of intracellular organisms in its life cycle are unclear. We devised a model of infection of polarized human respiratory epithelial cells with P. aeruginosa and investigated the role of the cystic fibrosis transmembrane conductance regulator (CFTR) in adherence, uptake and IL-8 production by human respiratory epithelial cells. We found that a number of P. aeruginosa strains could invade and replicate within cells derived from a patient with CF. Intracellular bacteria did not produce host cell cytotoxicity over a period of 24 h. When these cells were transfected with wild-type CFTR, uptake of bacteria was significantly reduced and release of IL-8 following infection enhanced. We propose that internalized P. aeruginosa may play an important role in the pathogenesis of infection and that, by allowing greater internalization into epithelial cells, mutant CFTR results in an increased susceptibility of bronchial infection with this microbe.  相似文献   

19.
Our current understanding of cystic fibrosis (CF) has revealed that the biophysical properties of mucus play a considerable role in the pathogenesis of the disease in view of the fact that most mucus-producing organs are affected in CF patients. In this review, we discuss the potential causal relationship between altered cystic fibrosis transmembrane conductance regulator (CFTR) function and the production of mucus with abnormal biophysical properties in the intestine and lungs, highlighting what has been learned from cell cultures and animal models that mimic CF pathogenesis. A similar cascade of events, including mucus obstruction, infection and inflammation, is common to all epithelia affected by impaired surface hydration. Hence, the main structural components of mucus, namely the polymeric, gel-forming mucins, are critical to the onset of the disease. Defective CFTR leads to epithelial surface dehydration, altered pH/electrolyte composition and mucin concentration. Further, it can influence mucin transition from the intracellular to extracellular environment, potentially resulting in aberrant mucus gel formation. While defective HCO3 production has long been identified as a feature of CF, it has only recently been considered as a key player in the transition phase of mucins. We conclude by examining the influence of mucins on the biophysical properties of CF sputum and discuss existing and novel therapies aimed at removing mucus from the lungs.This article is part of a Directed Issue entitled: Cystic Fibrosis: From o-mics to cell biology, physiology, and therapeutic advances.  相似文献   

20.
The non-neuronal cholinergic system is widely expressed in human airways, skin and immune cells. Choline acetyltransferase (ChAT), acetylcholine and nicotine/muscarine receptors are demonstrated in epithelial surface cells, submucosal glands, airway smooth muscle fibres and immune cells. Moreover, acetylcholine is involved in the regulation of cell functions like proliferation, differentiation, migration, organization of the cytoskeleton, cell-cell contact, secretion and transport of ions and water. Cystic fibrosis (CF), the most frequent genetic disorder, is known to be caused by a mutation of the CF-gene coding for the cystic fibrosis transmembrane regulator protein (CFTR). CFTR represents a regulating transport protein for ion channels and processes involving endo- and exocytosis. Despite the identification of the genetic mutation knowledge of the underlying cellular pathways is limited. In the present experiments the cholinergic system was investigated in the peripheral blood and in the lung of CF patients undergoing lung transplantation (n=7). Acetylcholine content in bronchi and lung parenchyma of CF was reduced by 70% compared to controls (tumor-free tissue obtained from patients with lung tumor; n=13). In contrast, ChAT activity was elevated to some extent (p>0.05) in CF, and esterase activity did not differ from control. Acetylcholine content extracted from peripheral leucocytes (30 ml) was also reduced by 70% in CF (n=13) compared to healthy volunteers (n=9). Double labelling experiments with anti-CF antibodies and anti-ChAT antibodies showed a co-localization in peripheral lymphocytes, giving first evidence that CFTR may be linked with the intracellular storage/transport of non-neuronal acetylcholine. It is concluded that the non-neuronal cholinergic system is involved in the pathogenesis of CF. A reduced content of non-neuronal acetylcholine could contribute to the deleterious changes of epithelial ion and water movements in CF, because acetylcholine stimulates apical Cl(-) secretion, inhibits apical Na(+) and water absorption and therewith facilitates mucociliary clearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号