首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Anne Mie C. Emons 《Planta》1985,163(3):350-359
Particle arrangement in the plasma membrane during cell wall formation was investigated by means of the double-replica technique in root hairs of Equisetum hyemale. Particle density in the protoplasmic fracture face of the plasma membrane was higher than in the extraplasmic fracture face. Apart from randomly distributed particles, particle rosettes were visible in the PF face of the plasma membrane. The rosettes consisted of six particles arranged in a circle and had an outer diameter of approx. 26 nm. No gradient in the number of rosettes was found, which agrees with micrifibril deposition taking place over the whole hair. The particle rosettes were found individually, which might indicate that they spin out thin microfibrils as found in higher-plant cell walls. Indeed microfibril width in these walls, measured in shadowed preparations, is 8.5±1.5 nm. It is suggested that the rosettes are involved in microfibril synthesis. Non-turgid cells lacked microfibril imprints in the plasma membrane and no particle rosettes were present on their PF face. Fixation with glutaraldehyde caused, probably as a result of plasmolysis, the microfibril imprints to disappear together with the particle rosettes. The PF face of the plasma membrane of non-turgid hairs sometimes showed domains in which the intramembrane particles were aggregated in a hexagonal pattern. Microfibril orientation during deposition will be discussed.Abbreviations EF extraplasmic fracture face - PF protoplasmic fracture face  相似文献   

2.
The assembly of cellulose microfibrils was investigated in artificially induced protoplasts of the alga, Valonia macrophysa (Siphonocladales). Primary-wall microfibrills, formed within 72 h of protoplast induction, are randomly oriented. Secondary-wall lamellae, which are produced within 96 h after protoplast induction, have more than three orientations of highly ordered microfibrils. The innermost, recently deposited micofibrils are not parallel with the cortical microtubules, thus indicating a more indirect role of microtubules in the orientation of microfibrils. Fine filamentous structures with a periodicity of 5.0–5.5 nm and the dimensions of actin were observed adjacent to the plasma membrane. Linear cellulose-terminal synthesizing complexes (TCs) consisting of three rows, each with 30–40 particles, were observed not only on the E fracture (EF) but also on P fracture (PF) faces of the plasma membrane. The TC appears to span both faces of the bimolecular leaflet. The average length of the TC is 350 nm, and the number of TCs per unit area during primary-wall synthesis is 1 per m2. Neither paired TCs nor granule bands characteristic of Oocystis were observed. Changes in TC structure and distribution during the conversion from primary- to secondary-wall formation have been described. Cellulose microfibril assembly in Valonia is discussed in relation to the process among other eukaryotic systems.Abbreviations TC terminal complex - EF E (outer leaflet) fracture face of the plasma membrane - PF P (inner leaflet) fracture face of the plasma membrane - MT microtubule - PS protoplasmic surface of the membrane  相似文献   

3.
Freeze etching studies in a symbiotic and a freeliving strain of Chroococcidiopsis revealed a specific layer in the outer cell wall not described so far from Cyanophyta. The layer showed a complex organisation: The main unit are ribbons, 2–3 nm thick, striated at right angle to the longitudinal axis. They are interwoven to a patchwork-like leaflet. The ribbons are virtually composed of globular particles associated in parallel rows. The cytoplasmic membrane and the cell walls of the symbiotic and the free-living strain were compared.Abbreviations cm cytoplasmic membrane - CW 1,2,3 cell wall layer 1,2,3 - EF exoplasmic fracture face - PF protoplasmic fracture face  相似文献   

4.
Summary Labyrinth and nephridial canal cells of the crayfish (Orconectes virilis) antennal gland possess two types of intercellular junctions revealed by freeze-fracture studies. Apical margins of the cells are connected by long septate junctions. In replicas, these junctions consist of many parallel rows of 80–140 Å intramembrane particles situated on the PF membrane face (EF and PF fracture faces of Branton et al., 1975). Rows of pits are found on the EF fracture face and are deemed complementary to the rows of particles. Moreover, lateral margins of basal regions of the epithelial cells are attached by many intercellular junctions. These contacts are characterized in thin plastic sections by a narrow dense cytoplasmic plaque located subjacent to the plasma membrane at sites of adjoined cells, and 5 to 12 fine strands of dense material that extend across the intercellular gap between adjoined cells. In freeze-fracture replicas, EF intramembrane faces basal to the region of the plasma membrane containing septate junctions exhibit numerous discoid clusters of particles. The particle aggregates, assumed to represent freeze-cleave images of adhering junctions, range from 900 to 3,700 Å in diameter, with individual particles about 185 Å in diameter. These junctions appear to connect epithelial cell processes formed by basal infoldings of the plasma-lemma, and occur between adjacent cells as well as adjacent processes of a single cell. The discrete aggregates of particles resemble replicated desmosomes (Shienvold and Kelly, 1974) and hemi-desmosomes (Shivers, 1976); therefore, they probably do not constitute a basis for electrical coupling between antennal gland epithelial cells.Supported by the National Research Council of Canada  相似文献   

5.
Dieter Volkmann 《Planta》1981,151(2):180-188
The peripheral secretion tissue of the root cap of Lepidium sativum L. was investigated by electronmicroscopy and freeze-fracturing in order to study structural changes of membranes involved in the secretion process of polysaccharide slime. Exocytosis of slime-transporting vesicles occurs chiefly in the distal region of the anticlinal cell walls. The protoplasmic fracture face (PF) of the plasmalemma of this region is characterized by a high number of homogenously distributed intramembranous particles (IMPs) interrupted by areas nearly free of IMPs. Near such areas slime-transporting vesicles are found to be underlying the plasma membrane. It can be concluded that areas poor in particles are prospective sites for membrane fusion. During the formation of slime-transporting vesicles, the number of IMPs undergoes a striking change in the PF of dictyosome membranes and their derivatives. It is high in dictyosome cisternae and remarkably lower in the budding region at the periphery of the cisternae. Slime-transporting vesicles are as poor in IMPs as the areas of the plasmalemma. Microvesicles rich in IMPs are observed in the surroundings of dictyosomes. The results indicate that in the plasmalemma and in membranes of the Golgi apparatus special classes of proteins — recognizable as IMPs — are displaced laterally into adjacent membrane regions. Since the exoplasmic fracture face (EF) of these membranes is principally poor in particles, it can be concluded that membrane fusion occurs in areas characterized by a high quantity of lipid molecules. It is obvious that the Golgi apparatus regulates the molecular composition of the plasma membrane by selection of specific membrane components. The drastic membrane transformation during the formation of slime-transporting vesicles in the Golgi apparatus causes the enrichment of dictyosome membranes by IMPs, whereas the plasma membrane probably is enriched by lipids. The structural differentiations in both the plasma membrane and in Golgi membranes are discussed in relation to membrane transformation, membrane flow, membrane fusion, and recycling of membrane constituents.Abbreviations PF protoplasmic fracture face - EF exoplasmic fracture face - IMP intramembranous particle  相似文献   

6.
C. Kerhoas  G. Gay  C. Dumas 《Planta》1987,171(1):1-10
A multidisciplinary approach (freeze-fracture, nuclear magnetic resonance, differential scanning calorimetry, isoelectric focusing and fluorochromatic reaction test) has been used to follow the behaviour of Zea mays pollen during dehydration - and to estimate its quality. At anthesis, the water content of maize pollen is 57–58% and the vegetative plasma membrane is continous and well structured with a very low density of intramembraneous particles on the extraplasmic fracture face. Maize pollen grains can withstand the drying process until a water content of 28% is reached, at which point 60–80% of the individuals show a negative reaction in the fluorochromatic test. At this water content, there is no more crystallizable water and thus metabolism decreases, leading to oxidative damage and the formation of gelphase microdomains in the plasma membrane. Consequently, the plasma-membrane permeability is modified. At 15–13% water content, all pollen grains show a negative fluorochromatic reaction, and gel-phase microdomains are more numerous but membranes still have a bilayer structure. Relaxation-time experiments indicate the occurrence of water replacement at the membrane level. Thus, sugar may stabilize the membrane structure at water contents as low as 3%. During the dehydration process, pollen walls act as elastic structures and remain closely applied to the protoplast. The combination of wall deformation and water replacement would permit pollen survival until oxidative damage occurs in the dehydrated grain.Abbreviations EF extraplasmic fracture face - FCR fluorochromatic reaction - IMP intramembraneous particle - NMR nuclear magnetic resonance - PF protoplasmic fracture face - T2 relaxation time  相似文献   

7.
S. Mizuta  R. M. Brown Jr. 《Protoplasma》1992,166(3-4):187-199
Summary Ultrastructure and assembly of cellulose terminal synthesizing complexes (terminal complexes, TCs) in the algaVaucheria hamata (Waltz) were investigated by high resolution analytical techniques for freeze-fracture replication.Vaucheria TCs consist of many diagonal rows of subunits located on the inner leaflet of the plasma membrane. Each row contains about 10–18 subunits. The subunits themselves are rectangular, approx. 7×3.5 nm, and each has a single elliptical hole which may be the site of a single glucan chain polymerization. The subunits are connected with extremely small filaments (0.3–0.5 nm). Connections are more extensive in a direction parallel to the subunit rows and less extensive perpendicular to them. Nascent TC subunits are found to be packed within globules (15–20 nm in diameter) which are larger than typical intramembranous particles (IMPS are 10–11 nm in diameter) distributed in the plasma membrane. The subunits in the globule, which may be a zymogenic precursor of the TC, are generally exhibited in the form of doublets. Approximately 6 doublets are connected to a center core with small filaments. The globules are inserted into the plasma membrane together with IMPS by the fusion of cytoplasmic (Golgi derived) vesicles. Two or three globules attach to each other, unfold, and expand to form the first subunit rows of the TC on the inner leaflet of the plasma membrane. More globules attach to the structure and unfold until the nascent TC consists of a few rows of subunits. These rows are arranged almost parallel to each other. Two formation centers of subunits appear at both ends of an elongating TC. New subunits carried by the globules are added at each of these centers to create new rows until the elongating TC structure is completed. On the basis of this study, a model of TC assembly and early initiation of microfibril formation inVaucheria is proposed.Abbreviations IMPS intramembranous particles - MF microfibril - TC terminal complex  相似文献   

8.
The basic cellular organization of Heliobacterium chlorum is described using the freeze-etching technique. Internal cell membranes have not been observed in most cells, leading to the conclusion that the photosynthetic apparatus of these organisms must be localized in the cell membrane of the bacterium. The two fracture faces of the cell membrane are markedly different. The cytoplasmic (PF) face is covered with densely packed particles averaging 8 nm in diameter, while the exoplasmic (EF) face contains far fewer particles, averaging approximately 10 nm in diameter. Although a few differentiated regions were noted within these fracture faces, the overall appearance of the cell membrane was remarkably uniform. The Heliobacterium chlorum cell wall is a strikingly regular structure, composed of repeating subunits arranged in a rectangular pattern at a spacing of 11 nm in either direction. We have isolated cell wall fragments by brief sonication in distilled water, and visualized the cell wall structure by negative staining as well as deep-etching.Abbreviations PF protoplasmic fracture face - EF exoplasmic fracture face  相似文献   

9.
Summary Rosettes of six particles have been visualized by freeze-fracture in the protoplasmic fracture (PF) faces of: a) the plasma membrane, b) Golgi cisternae, and c) Golgi-derived vesicles in mesophyll cells ofZinnia elegans that had been induced to differentiate synchronously into tracheary elements in suspension culture. These rosettes have been observed previously in the PF face of the plasma membranes of a variety of cellulose-synthesizing cells and are thought to be important in cellulose synthesis. InZinnia tracheary elements, the rosettes are localized in the membrane over regions of secondary wall thickening and are absent between thickenings. The observation of rosettes in the Golgi cisternae and vesicles suggests that the Golgi apparatus is responsible for the selective transport and exocytosis of rosettes in higher plants, as has been previously indicated in the algaMicrasterias (Giddings et al. 1980). The data presented indicate that the Golgi apparatus has a critical role in the control of cell wall deposition because it is involved not only in the synthesis and export of matrix components but also in the export of an important component of the cellulose synthesizing apparatus. The rosettes are present in the plasma membrane and Golgi vesicles throughout the enlargement of the secondary thickening, suggesting that new rosettes must be continually inserted into the membrane to achieve complete cell wall thickening.Abbreviations EF Golgi vesicles, exoplasmic fracture; the plasma membrane, extracellular fracture - PF protoplasmic fracture  相似文献   

10.
Freeze-fracture electron microscopy of the cortical cytoplasm of unfixed, uncryoprotected, ultrarapidly frozen embryos of the marine brown algaPelvetia fastigiata has demonstrated the presence of numerous 0.5-m diameter, disc-shaped vesicles lying adjacent and nearly parallel to the plasma membrane. Some vesicles are fused with the plasma membrane through a narrow connection; this however appears to be a reversible attachment rather than an intermediate stage in the incorporation of the vesicle into the plasma membrane. The distribution of these connections in the plane of the membrane is not uniform; they tend to occur in patches. The fraction of vesicles that is fused with the plasma membrane at any one time appears to be related to a cell's perception of a stressful hypotonic imbalance between the internal and external concentrations of osmotically active compounds. Thus, a sudden 5% decrease in osmolarity of the artificial seawater medium just before freezing leads to a 38% increase in connections per unit membrane area, while a 20% decrease in osmolarity leads to a 75% increase in connections per unit area. Based on these findings and the corresponding ion-transport studies of R. Nuccitelli and L.F. Jaffe (1976, Planta131, 315–320), we postulate that the disc-shaped vesicles mediate short-term osmoregulation inPelvetia embryos by reversibly inserting chloride channels into the plasma membrane.Abbreviations ASW artificial sea water - IMP intramembrane particle - EF fracture face of a freeze-fractured exoplasmic membrane leaflet - PF fracture face of a protoplasmic membrane leaflet  相似文献   

11.
Summary Photoautotrophically growing cultures of the fresh water cyanobacteriumAnacystis nidulans adapted to the presence of 0.4–0.5 M NaCl (about sea water level) with a lag phase of two days after which time the growth rate reassumed 80–90% of the control. Plasma and thylakoid membranes were separated from cell-free extracts of French pressure cell treatedAnacystis nidulans by discontinuous sucrose density gradient centrifugation and purified by repeated recentrifugation on fresh gradients. Identity of the plasma and thylakoid membrane fractions was confirmed by labeling of intact cells with impermeant protein markers prior to breakage and membrane isolation. Electron microscopy revealed that each type of membrane was obtained in the form of closed and perfectly spherical vesicles. Major changes in structure and function of the plasma membranes (and, to a much lesser extent, of the thylakoid membranes) were found to accompany the adaptation process. On the average, diameters of plasma membrane vesicles from salt adapted cells were only one-third of the diameters of corresponding vesicles from control cells. By contrast, the diameters of thylakoid membrane vesicles were the same in both cases.Freeze-etching the cells and counting the number of membrane-intercalating particles on both protoplasmic and exoplasmic fracture faces of plasma and thylakoid membranes indicated a roughly 50% increase of the particle density in plasma membranes during the adaptation process while that in thylakoid membranes was unaffected. Comparison between particle densities on isolated membranes and those on corresponding whole cell membranes permitted an estimate as to the percentage of inside-out and right-side-out vesicles. Stereometric measurement of particle sizes suggested that two distinct sub-populations of the particles in the plasma membranes increased during the adaptation process, tentatively correlated to the cytochrome oxidase and sodium-proton antiporter, respectively. The effects of salt adaptation described in this paper were fully reversed upon withdrawal of the additional NaCl from the growth medium (deadaptation). Moreover, they were not observed when the NaCl was replaced by KCl.Abbreviations CM cytoplasmic or plasma membrane - ICM intracytoplasmic or thylakoid membrane - EF exoplasmic fracture face - PF protoplasmic fracture face - DABS diazobenzosulfonate; Hepes N-2-hydroxyethylpiperazine-N-2-ethane-sulfonate - PMSF phenylmethylsulfonylfluoride Dedicated to the memory of Professor Oswald Kiermayer  相似文献   

12.
Summary YoungFunaria protonemata were treated with Monensin (10–6 M) and Cytochalasin (CB) (2×10–5 M). The influence of the inhibitors on a) elongation growth, b) cell fine structure and c) particle rosettes within the plasma membrane after freeze fracture was observed. Monensin stopped cell growth, caused swelling of the mitochondria and plastids and inhibited the secretory activity of the Golgi apparatus within about 15 minutes. The number of rosettes in the PF of the plasma membrane was distinctly reduced after 4–5 minutes and decreased further to only very few after 30 minutes. The tip to base gradient in distribution was maintained for a long time. The effects were reversible, regeneration occurred within 3 hours. CB treatment showed no effect on elongation growth and cell fine structure. The number of rosettes, however, was strongly reduced within 3 minutes exposure time and their distribution was nearly uniform then. Number and tip to base gradient increased again after 6 minutes intoxication. The results are discussed in regard to the turn over of the rosettes.Abbreviations CB Cytochalasin B - PF protoplasmic fracture face - F-vesicle flat vesicle - F-Actin filamentous actin - G-Ac-tin globular actin  相似文献   

13.
Spermatozoa of Limax sp. were studied by electron microscopy following thin section and freeze-fracture techniques. Mature spermatozoa were seen to be helically shaped, 150 μm long cells. A single mitochondrion extends the entire length of the spermatozoon. Its helical turn is the same as that of the spermatozoon. Freezefracture images of the spermatozoon reveal that the EF and PF, plasmalemmal faces contain scattered, 7–9 nm size particles, and that the PF, outer mitochondrial membrane face contains 8–10 nm size particles. The corresponding EF, outer mitochondrial face contains matching pits. A paracrystalline complex is situated between the inner and outer mitochondrial membranes. The complex is constructed of a series of 8–9 nm thick, 35 nm wide, helically orientated, tripartate elements which extend the full length of the spermatozoon. The helical tilt angle is approximately 55 °. Each element is composed of tightly approximated (interspace distance 10 nm), strands of particles 8–9 nm in diameter. Speculations as to the significance of this complex, and its location between inner and outer mitochondrial membranes are made. It is concluded that the paracrystalline order of the complex either reflects the molecular packing of enzyme systems present in the mitochondrion, or some other unknown function.  相似文献   

14.
M. Melkonian  H. Robenek 《Protoplasma》1979,100(2):183-197
Summary The eyespot region of the flagellateTetraselmis cordiformis Stein (Chlorophyceae) was investigated with the freeze-fracture technique. The only fracture faces observed in this region were the two complementary fracture faces (PF and EF) of the outer chloroplast envelope membrane. Intramembranous particle numbers on both fracture faces of this membrane were significantly higher in the eyespot region as compared to regions outside the eye-spot. Higher numbers of particles on the PF face in the eyespot region were mainly caused by an increase in particle numbers of the size class 6–8 mm, while on the EF face particle size distribution was not significantly different between eyespot and other regions. Functional implications are discussed and evidence is presented that the outer chloroplast envelope membrane may be the site of photoreceptor location in green algal phototaxis.  相似文献   

15.
The ultrastructure of the cell wall and the thylakoid membranes of the thermophilic cyanobacterium Synechococcus lividus was studied by freezefracture electron microscopy after temperature shifts. Different fracture faces of the outer, the cytoplasmic and the thylakoid membranes were demonstrated when the preparation-temperature was in the range of the optimal growth temperature at 52°C or after fixation at 52°C. In the outer membrane of the cell wall two fracture faces with holes and 7.5 nm intramembrane particles were detected. On both the outer (EF) and inner (PF) leaflet of the cytoplasmic membrane randomly distributed particles were demonstrated. The particle density on the PF-face was approx. three times that of the EF-face. The EF-face of the thylakoid membrane exposed rows of particles with an average diameter of 10 nm. The spacing between the particle rows was 35–50 nm. This regular particle arrangement on the EF-face was demonstrated only in a few cases. Mostly the intramembrane particles were distributed randomly on the thylakoid fracture faces. The particle density of thylakoids with a random distribution was approx. in the same range both on the EF-and PF-face. The EF-particles fall into four groups of 9,10,11, and 12.5 nm. The main particle class was the 10 nm class. The PF-face exposed smaller particles with two maxima at 8.5–9 nm and 10 nm. When Synechococcus lividus OH-53s was chilled to temperatures below 30–35°C before the freeze-etch preparation a phase transition took place after the temperature shift. On the fracture faces of the thylakoid and cytoplasmic membranes particle depleted areas occurred. The size of the areas were different in both membranes and dependent on the velocity of cooling. Contrary to Synechococcus lividus OH-53s in the mesophilic Synechococcus strain 6910 the phase transition point was 15°C. The lower phase transition point may be due to a higher content of unsaturated fatty acids.Dedicated to Prof. D. Peters (Hamburg) on the occasion of the 65th anniversary of his birthday  相似文献   

16.
The fine structure of the atypical cyanobacterium Gloeobacter violaceus has been studied on frozen-etched replicas and compared to that of a typical unicellular strain: Synechocystis 6701. The complementary fracture faces of G. violaceus cytoplasmic membrane contain particles less numerous and more heterogenous in size than either the cytoplasmic membrane or the thylakoid membranes of Synechocystis. The most frequently observed particles of the exoplasmic fracture (EF) face of the G. violaceus cytoplasmic membrane are 11 nm in diameter and occasionally form short alignments. This particle class is similar in appearance to the numerous, aligned EF particles of Synechocystis thylakoid membranes. In replicas of cross-fractured G. violaceus, a layer 50–70 nm thick, composed of rod-like elements, underlies the inner surface of the cytoplasmic membrane. The rods, 12–14 nm in diameter, are oriented perpendicularly to the cytoplasmic membrane and show a 6 nm repeat along their length.Isolated phycobilisomes of G. violaceus appear, after fixation and negative staining, as bundles of 6 parallel rodshaped elements connected to an ill-defined basal structure. The bundles are 40–45 nm wide and 75–90 nm long. The rods are 10–12 nm in width; their length varies between 50 and 70 nm. These rods are morphologically similar to those observed at the periphery of hemidiscoidal phycobilisomes of other cyanobacteria, with a strong repeat at 6 nm intervals and a weaker one at 3 nm intervals along their length.The calculated molar ratio of phycobiliproteins in isolated G. violaceus phycobilisomes corresponds to 1:3.9:2.9 for allophycocyanin, phycocyanin and phycoerythrin respectively. When excited at 500 nm, isolated phycobilisomes exhibit a major fluorescence emission band centered at 663 nm.Abbreviations PBS phycobilisome(s) - PBP phycobiliprotein(s) - AP allophycocyanin - PC phycocyanin - PE phycoerythrin - K–PO4 buffer KH2PO4 titrated with KOH to a given pH  相似文献   

17.
I. Tsekos  H. -D. Reiss 《Protoplasma》1992,169(1-2):57-67
Summary Cells of thalli at different developmental stages of the epiphytic marine red algaErythrocladia subintegra have been studied by freeze-etching. It was found that the plasma membrane exhibits linear microfibril-termnal synthesizing complexes (TCs), randomly distributed consisting of four rows of linearly-arranged particles (average diameter of particles 8.6 nm); each row of TCs consists of 5–33 particles (average 15). The TCs were observed on both fracture faces (PF and EF) but more clearly on the PF face. These structures appear to span both the outer and inner leaflets of the plasma membrane (transmembrane complexes)-The TCs have stable width (35 nm) and vary in length (41–311 nm, average 181 nm). The TCs subunits are highly ordered arrays forming a semicylinder. The average density of TCs on the PF face is 5.5TC/m2. The microfibrils are randomly distributed and have a mean width of 39.4 nm (ranging from 16 to 70 nm). Many TCs are associated with the ends of microfibrils and microfibril imprints. The structural characteristics of linear TCs in the red algaErythrocladia are compared with those of the so far investigated Chlorophyta spp. All results favour the suggestion that TCs in the plasma membrane ofErythrocladia cells are involved in the biosynthesis, assembly and orientation of microfibrils.  相似文献   

18.
The supramolecular organization of the plasma membrane of apical cells in shoot filaments of the marine red alga Porphyra yezoensis Ueda (conchocelis stage) was studied in replicas of rapidly frozen and fractured cells. The protoplasmic fracture (PF) face of the plasma membrane exhibited both randomly distributed single particles (with a mean diameter of 9.2 ± 0.2 nm) and distinct linear cellulose microfibril-synthesizing terminal complexes (TCs) consisting of two or three rows of linearly arranged particles (average diameter of TC particles 9.4 plusmn; 0.3 nm). The density of the single particles of the PF face of the plasma membrane was 3000 μm?2, whereas that of the exoplasmic fracture face was 325 μm?2. TCs were observed only on the PF face. The highest density of TCs was at the apex of the cell (mean density 23.0 plusmn; 7.4 TCs μm?2 within 5 μm from the tip) and decreased rapidly from the apex to the more basal regions of the cell, dropping to near zero at 20 μm. The number of particle subunits of TCs per μm2 of the plasma membrane also decreased from the tip to the basal regions following the same gradient as that of the TC density. The length of TCs increased gradually from the tip (mean length 46.0 plusmn; 1.4 nm in the area at 0–5 μm from the tip) to the cell base (mean length 60.0 plusmn; 7.0 μm in the area at 15–20 μm). In the very tip region (0–4 μm from the apex), randomly distributed TCs but no microfibril imprints were observed, while in the region 4–9 μm from the tip microfibril imprints and TCs, both randomly distributed, occurred. Many TCs involved in the synthesis of cellulose microfibrils were associated with the ends of microfibril imprints. Our results indicate that TCs are involved in the biosynthesis, assembly, and orientation of cellulose microfibrils and that the frequency and distribution of TCs reflect tip growth (polar growth) in the apical shoot cell of Porphyra yezoensis. Polar distribution of linear TCs as “cellulose synthase” complexes within the plasma membrane of a tip cell was recorded for the first time in plants.  相似文献   

19.
Summary Cells of the charophycean alga,Coleochaete scutata active in cell wall formation were freeze fractured in the search for cellulose synthesizing complexes (TCs) since this alga is considered to be among the most advanced and a progenitor to land plant evolution. We have found a new TC which consists of two geometrically distinctive particle complexes complementary to one another in the plasma membrane and occasionally associated with microfibril impressions. In the E-fracture face is found a cluster of 8–50 closely packed particles, each with a diameter of 5–17 nm. Most of these particles are confined within an 80 nm circle. In the P-fracture face is found an 8-fold symmetrical arrangement of 10 nm particles circumferentially arranged around a 28 nm central particle. The TCs ofC. scutata are quite distinctive from the rosette/globule TCs of land plants. The 5.5×3.1 nm microfibril inC. scutata is also distinctive from the 3.5×3.5 nm microfibril typical of land plants. The phylogenetic implications of this unique TC in land plant evolution are discussed.  相似文献   

20.
Gloeocapsa strain NS4, a cyanophyte (cyanobacterium) which grows in low light levels inside cave entrances, was studied in the electron microscope by thin sectioning and freeze-etching. The cells are surrounded by a microfibrillar sheath divided by dense lamellae, which are probably an acidic mucopolysaccharide. Inside this is a typical Gramnegative cell wall. Double-replica freeze-fracture showed that the outer envelope of the wall fractures to give two faces each consisting of densely-packed particles; the particles of the outer leaflet seem to consist of subunits arranged in a hollow cylinder. A structural model of the outer envelope is proposed. The plasma membrane fractures to give a PF face with 3000 9 nm particles m-1 and an EF face with 150–700 11–12 nm particles m-1. The thylakoids are arranged in a pattern not previously found in a unicellular cyanophyte, parallel arrays which intersect, and may fuse with, the plasma membrane. The thylakoid membranes have 2,850 particles m-1, mean size 10.9 nm, on the PF face and 560 particles m-1, mean size 12.3 nm, on the EF face. Phycobilisomes are difficult to see, but may be unusually large. These ultrastructural features may be adaptations to a very low light habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号