首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Requirement for maturation of Escherichia coli bacteriophage lambda   总被引:6,自引:0,他引:6  
During infection a λ phage that is incapable of DNA replication requires recombination for maturation. If two prophages are situated in tandem, this requirement for DNA replication and recombination is bypassed. In physical experiments using the DNA cutting assay of Freifelder et al. (1973), the DNA of a sex factor containing one or two prophages defective in both excision and DNA replication is cut efficiently only when two prophages are in tandem. We interpret this to mean that λ can only be matured from a structure of greater than unit length, and hypothesize that the structure must contain two joined ends (AR-joints).  相似文献   

2.
K Abremski  R Hoess 《Gene》1983,25(1):49-58
The bacteriophage lambda Xis protein is one of the proteins required for site-specific excisive recombination by which the lambda prophage is excised from the Escherichia coli bacterial chromosome. We cloned the lambda xis gene under the control of several prokaryotic promoters to obtain a sufficient source of the protein for biochemical studies. Our results demonstrate that E. coli lac promoter and lambda pL promoter fusions to the xis gene produce high levels of Xis protein. Induction of the expression vectors results in a 10- to 50-fold increase in Xis activity. In addition, one of these plasmids allows the control of xis expression in vivo.  相似文献   

3.
Summary Among the survivors of Escherichia coli derivatives infected with phage c1 or vir that are unable to establish ordinal lysogeny, clones arise which perpetuate the nondefective phage genome. When the bacteria bears a mutation(s) that makes the cell tolerant to the phage multiplication, such clones appear readily.The bacteria- complex was studied genetically and chemically, and it was concluded that the intact phage genomes, about two to four circular copies per bacterial chromosome, are perpetuated in bacterial cytoplasm as plasmids or in lysogenic state in cytoplasm.Several lines of evidence suggests that the phage genome in the lysogenic state in cytoplasm is under a different regulatory system from that in the normal prophage state on chromosome.  相似文献   

4.
Restriction of bacteriophage lambda by Escherichia coli K   总被引:13,自引:0,他引:13  
Derivatives of phage lambda, for which the numbers and positions of the recognition sites for endonuclease R. Ecok are known, were used as substrates for the Escherichia coli K restriction system in vivo and in vitro. A single unmodified recognition site was sufficient for a DNA molecule to be bound and broken by the K restriction enzyme. Although discrete fragments of DNA were not produced, the breaks were made preferentially in the proximity of the recognition site. Breakage of a DNA molecule with only one recognition site required a 10 to 40-fold higher concentration of restriction enzyme than breakage of a DNA molecule with two or more recognition sites, but these substrates were all equally effective in a binding assay for the enzyme.The polynucleotide kinase reaction provided no evidence for new 5′-terminal sequences generated by restriction in vitro; the 5′ termini were either refractory to the polynucleotide kinase reaction or had no sequence specificity.  相似文献   

5.
6.
Recombination of bacteriophage lambda in recD mutants of Escherichia coli   总被引:25,自引:0,他引:25  
RecBCD enzyme is centrally important in homologous recombination in Escherichia coli and is the source of ExoV activity. Null alleles of either the recB or the recC genes, which encode the B and C subunits, respectively, manifest no recombination and none of the nuclease functions characteristic of the holoenzyme. Loss of the D subunit, by a recD mutation, likewise results in loss of ExoV activity. However, mutants lacking the D subunit are competent for homologous recombination. We report that the distribution of exchanges along the chromosome of Red-Gam-phage lambda is strikingly altered by recD null mutations in the host. When lambda DNA replication is blocked, recombination in recD mutant strains is high near lambda's right end. In contrast, recombination in isogenic recD+ strains is approximately uniform along lambda unless the lambda chromosome contains a chi sequence. Recombination in recD mutant strains is focused toward the site of action of a type II restriction enzyme acting in vivo on lambda. The distribution of exchanges in isogenic recD+ strains is scarcely altered by the restriction enzyme (unless the phage contains an otherwise silent chi). The distribution of exchanges in recD mutants is strongly affected by lambda DNA replication. The distribution of exchanges on lambda growing in rec+ cells is not influenced by DNA replication. The exchange distribution along lambda in recD mutant cells is independent of chi in a variety of conditions. Recombination in rec+ cells is chi influenced. Recombination in recD mutants depends on recC function, occurs in strains deleted for rac prophage, and is independent of recJ, which is known to be required for lambda recombination via the RecF pathway. We entertain two models for recombination in recD mutants: (i) recombination in recD mutants may proceed via double-chain break--repair, as it does in lambda's Red pathway and E. coli's RecE pathway; (ii) the RecBC enzyme, missing its D subunit, is equivalent to the wild-type, RecBCD, enzyme after that enzyme has been activated by a chi sequence.  相似文献   

7.
Barnhart, Benjamin J. (Los Alamos Scientific Laboratory, University of California, Los Alamos, N.M.). Kinetics of bacteriophage lambda deoxyribonucleic acid infection of Escherichia coli. J. Bacteriol. 90:1617-1623. 1965.-The kinetics of Escherichia coli K-12 infection by phage lambda deoxyribonucleic acid (DNA) were determined. An initial lag of 55 to 80 sec was found to be the time required for infecting DNA to become deoxyribonuclease-insensitive at 33 C. When cell-DNA interactions were stopped by washing away unbound DNA, the already bound DNA continued to infect the cell at rates described by linear kinetics with no apparent lag. Whereas the lag period was relatively insensitive to DNA and cell concentrations, both the lag and the subsequent linear portions of the rate curves were temperature-sensitive. Cell and DNA dose-response curves prescribed hyperbolic functions. Similarities between lambda DNA infection of E. coli and bacterial transformation systems are discussed.  相似文献   

8.
Summary Entry of DNA from phages particles into rMal- mutants of Escherichia coli K-12 is shown to be due to two distinguishable processes. One, residual transduction, results from a low level expression of lamB. The other one, background transduction, is independent of gene lamB.Interpretations are presented for these results. It is proposed that residual transduction is due to a weak promoter pB3 located within or near the distal part of the gene preceeding lamB in the same operon. It is proposed that background transduction is due to a secondary receptor structure for phage . Finally a tentative hypothesis relating pB3 to insertion sequences is presented.  相似文献   

9.
We found that infection of Escherichia cell by lambda results in at least a twofold stimulation in the rate of synthesis of one of the products of groE. To determine what lambda-coded factors were responsible for this stimulation, numerous phage lambda mutants carrying bio substitutions were analyzed for their ability to stimulate groE synthesis. Our results revealed that the main factor(s) which is responsible for stimulating groE synthesis is located between the endpoints of the lambda bio69 and lambda bio252 substitutions, a region of DNA coding for bet, gam, kil, and cIII.  相似文献   

10.
11.
We used two-dimensional gel electrophoresis to quantitate the changes in rates of synthesis that follow phage lambda infection for 21 Escherichia coli proteins, including groE and dnaK proteins. Although total protein synthesis and the rates of synthesis of most individual E. coli proteins decreased after infection, some proteins, including groE protein, dnaK protein, and stringent starvation protein, showed increases to rates substantially above their preinfection rates. Infection by lambda Q- affected host synthesis in the same way as infection by gamma+, whereas infection by lambda N- showed no detectable effect on host synthesis. Deletion of the early genes between att and N abolished the effect, and shorter deletions in this region gave intermediate effects. By this sort of deletion mapping, we show that a large part, though not all, of the effect of lambda infection on host protein synthesis can be ascribed to the early region that contains phage genes Ea10 and ral. We compared the changes in protein synthesis after infection with the changes that occur in uninfected cells upon heat shock or amino acid starvation. The spectrum of changes that occurred on infection was very different from that seen after heat shock but quite similar to that seen during amino acid starvation. Despite this similarity of the effects of lambda infection and starvation, we did not detect any increase in the level of guanosine tetraphosphate during infection. We show that the groE protein is the same protein as B56.5 of Lemaux et al. (Cell 13:427-434, 1978) and A protein of Subramanian et al. (Eur. J. Biochem. 67:591-601, 1976).  相似文献   

12.
13.
Recombinant lambda phages were isolated that resulted from recombination between the lambda genome and plasmid pBR322 in Escherichia coli, even though these deoxyribonucleic acids (DNAs) did not share extensive regions of homology. The characterization of these recombinant DNAs by heteroduplex analysis and restriction endonucleases is described. All but one of the recombinants appeared to have resulted from reciprocal recombination between a site on lambda DNA and a site on the plasmid. In general, there were two classes of recombinants. One class appeared to have resulted from recombination at the phage attachment site that probably resulted from lambda integration into secondary attachment sites on the plasmid. Seven different secondary attachment sites on pBR322 were found. The other class resulted from plasmid integration at other sites that were widely scattered on the lambda genome. For this second class of recombinants, more than one site on the plasmid could recombine with lambda DNA. Thus, the recombination did not appear to be site specific with respect to lambda or the plasmid. Possible mechanisms for generating these recombinants are discussed.  相似文献   

14.
Dissolved oxygen (DO)-controlled nar promoter expression vectors were constructed, and their expression efficiency was compared with that of the T7 promoter pET22 expression vector by expressing human growth hormone (hGH), enhanced green fluorescence protein (EGFP), and β-tyrosinase in Escherichia coli cells. The nar promoter expression vector pRBS, which was engineered with a 5′-untranslated region and ribosomal binding site for the T7 promoter, expressed hGH at a rate of up to 32% of the total cellular proteins (TCP) in E. coli W3110narL. The expression level of hGH was further enhanced, up to ∼42% of the TCP, by adding the N-terminal peptide tag of β-galactosidase to hGH, which was comparable to the expression of ∼43% of the TCP in pET-lac:hGH/BL21(DE3). A further engineered expression vector, pRBS(fnr), which coexpressed fumarate/nitrate reductase (fnr), expressed more EGFP than pET22 in BL21(DE3). In addition, recombinant β-tyrosinase was successfully expressed at a rate of up to ∼45% of the TCP in pRBS(fnr) in W3110narL. From these results, the DO-controlled nar promoter system developed in this study can be considered a reliable and cost-effective expression system for protein production, especially in large-scale fermentation, as an alternative to the pET/BL(DE3) system.  相似文献   

15.
16.
17.
C Derom  D Gheysen  W Fiers 《Gene》1982,17(1):45-54
Several plasmids were constructed in which the SV40 small-t antigen gene was inserted in close proximity downstream from the thermoinducible leftward promoter (pL) of bacteriophage lambda. Upon temperature induction the best of our constructions expressed a small-t-related 19 000-dalton polypeptide in an amount corresponding to approx. 2.5% of total de novo protein synthesis. This 19 000-dalton protein was identified as small-t by specific immunoprecipitation with anti-T serum and by two-dimensional fingerprint analysis. In addition to the 19 000-dalton product, representative plasmids expressed fairly large amounts (up to 7% of total de novo protein synthesis) of a protein with an apparent Mr of 14 500. This 14 500-dalton polypeptide was shown to be related to authentic small-t. Presumably the secondary structure of the mRNA starting at pL is such that translation initiation at an internal AUG codon of the small-t gene is favored over initiation at the true initiating codon.  相似文献   

18.
19.
lambda gua transducing bacteriophages were used to identify and sequence the secondary attachment site for lambda in the guaB gene of Escherichia coli. The sequence matched the primary core sequence at nine positions, and a putative integrase binding-site overlapped the left core-arm junction. Recombinational crossover occurred between nucleotides -3 and +2 of the core region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号