首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Nova Scotia duck tolling retrievers are predisposed to a SLE-related disease complex including immune-mediated rheumatic disease (IMRD) and steroid-responsive meningitis–arteritis (SRMA). IMRD involves symptoms that resemble those seen in systemic autoimmune rheumatic diseases, such as systemic lupus erythematosus, SLE, or SLE-related diseases, in humans. This disease complex involves persistent lameness, stiffness, mainly after resting, and palpable pain from several joints of extremities. The majority of affected dogs display antinuclear autoantibody (ANA)-reactivity. SRMA is manifested in young dogs with high fever and neck stiffness and can be treated with corticosteroids. We have investigated the possible role of MHC class II as a genetic risk factor in IMRD and SRMA etiology. We performed sequence-based typing of the DLA-DRB1, -DQA1, and -DQB1 class II loci in a total of 176 dogs including 51 IMRD (33 ANA-positive), 49 SRMA cases, and 78 healthy controls (two dogs were both IMRD- and SRMA-affected). Homozygosity for the risk haplotype DRB1*00601/DQA1*005011/DQB1*02001 increased the risk for IMRD (OR?=?4.9; ANA-positive IMRD: OR?=?7.2) compared with all other genotypes. There was a general heterozygote advantage, homozygotes had OR?=?4.4 (ANA-positive IMRD: OR?=?8.9) compared with all heterozygotes. The risk haplotype contains the five amino acid epitope RARAA, known as the shared epitope for rheumatoid arthritis. No association was observed for SRMA. We conclude that DLA class II is a highly significant genetic risk factor for ANA-positive IMRD. The results indicate narrow diversity of DLA II haplotypes and identify an IMRD-related risk haplotype, which becomes highly significant in homozygous dogs.  相似文献   

4.
5.
6.
7.
Oligosaccharyltransferase catalyzes the N-linked glycosylation of asparagine residues on nascent polypeptides in the lumen of the rough endoplasmic reticulum (RER). A protein complex composed of 66, 63, and 48 kd subunits copurified with oligosaccharyltransferase from canine pancreas. The 66 and 63 kd subunits were shown by protein immunoblotting to be identical to ribophorin I and II, two previously identified RER glycoproteins that colocalize with membrane-bound ribosomes. The transmembrane segment of ribophorin I was found to be homologous to a recently proposed dolichol recognition consensus sequence. Based on a revision of the consensus sequence, we propose a model for the interaction of dolichol with the glycosyltransferases that catalyze the assembly and transfer of lipid-linked oligosaccharides.  相似文献   

8.
Previous studies have indicated an intimate linkage between gap junction and adherens junction formation. It was suggested this could reflect the close membrane-membrane apposition required for junction formation. In NIH3T3 cells, we observed the colocalization of connexin43 (Cx43alpha1) gap junction protein with N-cadherin, p120, and other N-cadherin-associated proteins at regions of cell-cell contact. We also found that Cx43alpha1, N-cadherin, and N-cadherin-associated proteins were coimmunoprecipitated by antibodies to either Cx43alpha1, N-cadherin, or various N-cadherin-associated proteins. These findings suggest that Cx43alpha1 and N-cadherin are coassembled in a multiprotein complex containing various N-cadherin-associated proteins. Studies using siRNA knockdown indicated that cell surface expression of Cx43alpha1 required N-cadherin, and conversely, N-cadherin cell surface expression required Cx43alpha1. Pulse-chase labeling and cell surface biotinylation experiments indicated that in the absence of N-cadherin, Cx43alpha1 cell surface trafficking is blocked. Surprisingly, siRNA knockdown of p120, an N-cadherin-associated protein known to modulate cell surface turnover of N-cadherin, reduced N-cadherin cell surface expression without altering Cx43alpha1 expression. These observations suggest that in contrast to the coregulated cell surface trafficking of Cx43alpha1 and N-cadherin, N-cadherin turnover at the cell surface may be regulated independently of Cx43alpha1. Functional studies showed gap junctional communication is reduced and cell motility inhibited with N-cadherin or Cx43alpha1 knockdown, consistent with the observed loss of both gap junction and cadherin contacts with either knockdown. Overall, these studies indicate that the intracellular coassembly of connexin and cadherin is required for gap junction and adherens junction formation, a process that likely underlies the intimate association between gap junction and adherens junction formation.  相似文献   

9.
10.
11.
12.
13.
14.
A 190-kDa centrosomal protein interacts with microtubules when Drosophila embryo extracts are passed over microtubule-affinity columns. We have obtained a partial cDNA clone that encodes this protein. Using a fusion protein produced from the clone, we have developed a novel immunoaffinity chromatography procedure that allows both the 190-kDa protein and a complex of proteins that associates with it to be isolated in in a single step. For this procedure, the fusion protein is used as an antigen to prepare rabbit polyclonal antibodies, and those antibodies that recognize the 190-kDa protein with low affinity are selectively purified on a column containing immobilized antigen. These low-affinity antibodies are then used to construct an immunoaffinity column. When Drosophila embryo extracts are passed over this column, the 190-kDa protein is quantitatively retained and can be eluted in nearly pure form under nondenaturing conditions with 1.5 M MgCl2, pH 7.6. The immunoaffinity column is washed with 1.0 M KCl just before the elution with 1.5 M MgCl2. This wash elutes 10 major proteins, as well as a number of minor ones. We present evidence that these KCl-eluted proteins represent additional centrosomal components that interact with the 190-kDa protein to form a multiprotein complex within the cell.  相似文献   

15.
16.
In this report, we describe the identification and molecular characterization of a human RAD50 homolog, hRAD50. hRAD50 was included in a collection of cDNAs which were isolated by a direct cDNA selection strategy focused on the chromosomal interval spanning 5q23 to 5q31. Alterations of the 5q23-q31 interval are frequently observed in myelodysplasia and myeloid leukemia. This strategy was thus undertaken to create a detailed genetic map of that region. Saccharomyces cerevisiae RAD50 (ScRAD50) is one of three yeast RAD52 epistasis group members (ScRAD50, ScMRE11, and ScXRS2) in which mutations eliminate meiotic recombination but confer a hyperrecombinational phenotype in mitotic cells. The yeast Rad50, Mre11, and Xrs2 proteins appear to act in a multiprotein complex, consistent with the observation that the corresponding mutants confer essentially identical phenotypes. In this report, we demonstrate that the human Rad50 and Mre11 proteins are stably associated in a protein complex which may include three other proteins. hRAD50 is expressed in all tissues examined, but mRNA levels are significantly higher in the testis. Other human RAD52 epistasis group homologs exhibit this expression pattern, suggesting the involvement of human RAD52 epistasis group proteins in meiotic recombination. Human RAD52 epistasis group proteins are highly conserved and act in protein complexes that are analogous to those of their yeast counterparts. These findings indicate that the function of the RAD52 epistasis group is conserved in human cells.  相似文献   

17.
Although the best-defined function of type II major histocompatibility complex (MHC-II) is presentation of antigenic peptides to T lymphocytes, these molecules can also transduce signals leading alternatively to cell activation or apoptotic death. MHC-II is a heterodimer of two transmembrane proteins, each containing a short cytoplasmic tail that is dispensable for transduction of death signals. This suggests the function of an undefined MHC-II-associated transducer in signaling the death response. Here we describe a novel plasma membrane tetraspanner (MPYS) that is associated with MHC-II and mediates its transduction of death signals. MPYS is unusual among tetraspanners in containing an extended C-terminal cytoplasmic tail (approximately 140 amino acids) with multiple embedded signaling motifs. MPYS is tyrosine phosphorylated upon MHC-II aggregation and associates with inositol lipid and tyrosine phosphatases. Finally, MHC class II-mediated cell death signaling requires MPYS-dependent activation of the extracellular signal-regulated kinase signaling pathway.  相似文献   

18.
19.
Human herpesviruses utilize an impressive range of strategies to evade the immune system during their lytic replicative cycle, including reducing the expression of cell surface major histocompatibility complex (MHC) and immunostimulatory molecules required for recognition and lysis by virus-specific cytotoxic T cells. Study of possible immune evasion strategies by Epstein-Barr virus (EBV) in lytically infected cells has been hampered by the lack of an appropriate permissive culture model. Using two-color immunofluorescence staining of cell surface antigens and EBV-encoded lytic cycle antigens, we examined EBV-transformed B-cell lines in which a small subpopulation of cells had spontaneously entered the lytic cycle. Cells in the lytic cycle showed a four- to fivefold decrease in cell surface expression of MHC class I molecules relative to that in latently infected cells. Expression of MHC class II molecules, CD40, and CD54 was reduced by 40 to 50% on cells in the lytic cycle, while no decrease was observed in cell surface expression of CD19, CD80, and CD86. Downregulation of MHC class I expression was found to be an early-lytic-cycle event, since it was observed when progress through late lytic cycle was blocked by treatment with acyclovir. The immediate-early transactivator of the EBV lytic cycle, BZLF1, did not directly affect expression of MHC class I molecules. However, BZLF1 completely inhibited the upregulation of MHC class I expression mediated by the EBV cell-transforming protein, LMP1. This novel function of BZLF1 elucidates the paradox of how MHC class I expression can be downregulated when LMP1, which upregulates MHC class I expression in latent infection, remains expressed in the lytic cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号